General or case II interval-censored data are commonly encountered in practice. We develop methods for model-checking and goodness-of-fit testing for the additive hazards model with case II interval-censored data. We propose test statistics based on the supremum of the stochastic processes derived from the cumulative sum of martingale-based residuals over time and covariates. We approximate the distribution of the stochastic process via a simulation technique to conduct a class of graphical and numerical techniques for various purposes of model-fitting evaluations. Simulation studies are conducted to assess the finite-sample performance of the proposed method. A real dataset from an AIDS observational study is analyzed for illustration.
在实践中经常会遇到一般或情况 II 区间删失数据。我们开发了使用情况 II 间隔删失数据的加性危险模型的模型检查和拟合优度检验方法。我们提出的检验统计量是基于马氏残差随时间和协变量的累积和得出的随机过程的上峰。我们通过模拟技术对随机过程的分布进行了近似,从而为模型拟合评估的各种目的提供了一类图形和数值技术。我们进行了模拟研究,以评估所提出方法的有限样本性能。为说明起见,还分析了一项艾滋病观察研究的真实数据集。
{"title":"Method of model checking for case II interval-censored data under the additive hazards model","authors":"Yanqin Feng, Ming Tang, Jieli Ding","doi":"10.1002/cjs.11759","DOIUrl":"10.1002/cjs.11759","url":null,"abstract":"<p>General or case II interval-censored data are commonly encountered in practice. We develop methods for model-checking and goodness-of-fit testing for the additive hazards model with case II interval-censored data. We propose test statistics based on the supremum of the stochastic processes derived from the cumulative sum of martingale-based residuals over time and covariates. We approximate the distribution of the stochastic process via a simulation technique to conduct a class of graphical and numerical techniques for various purposes of model-fitting evaluations. Simulation studies are conducted to assess the finite-sample performance of the proposed method. A real dataset from an AIDS observational study is analyzed for illustration.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48612832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heterogeneity exists in populations, and people may benefit differently from the same treatments or services. Correctly identifying subgroups corresponding to outcomes such as treatment response plays an important role in data-based decision making. As few discussions exist on subgroup analysis with measurement error, we propose a new estimation method to consider these two components simultaneously under the linear regression model. First, we develop an objective function based on unbiased estimating equations with two repeated measurements and a concave penalty on pairwise differences between coefficients. The proposed method can identify subgroups and estimate coefficients simultaneously when considering measurement error. Second, we derive an algorithm based on the alternating direction method of multipliers algorithm and demonstrate its convergence. Third, we prove that the proposed estimators are consistent and asymptotically normal. The performance and asymptotic properties of the proposed method are evaluated through simulation studies. Finally, we apply our method to data from the Lifestyle Education for Activity and Nutrition study and identify two subgroups, of which one has a significant treatment effect.
{"title":"Subgroup analysis of linear models with measurement error","authors":"Yuan Le, Yang Bai, Guoyou Qin","doi":"10.1002/cjs.11763","DOIUrl":"10.1002/cjs.11763","url":null,"abstract":"<p>Heterogeneity exists in populations, and people may benefit differently from the same treatments or services. Correctly identifying subgroups corresponding to outcomes such as treatment response plays an important role in data-based decision making. As few discussions exist on subgroup analysis with measurement error, we propose a new estimation method to consider these two components simultaneously under the linear regression model. First, we develop an objective function based on unbiased estimating equations with two repeated measurements and a concave penalty on pairwise differences between coefficients. The proposed method can identify subgroups and estimate coefficients simultaneously when considering measurement error. Second, we derive an algorithm based on the alternating direction method of multipliers algorithm and demonstrate its convergence. Third, we prove that the proposed estimators are consistent and asymptotically normal. The performance and asymptotic properties of the proposed method are evaluated through simulation studies. Finally, we apply our method to data from the Lifestyle Education for Activity and Nutrition study and identify two subgroups, of which one has a significant treatment effect.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47687270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuojian Chen, Zhanfeng Wang, Yuan-chin Ivan Chang
Data collected from distributed sources or sites commonly have different distributions or contaminated observations. Active learning procedures allow us to assess data when recruiting new data into model building. Thus, combining several active learning procedures together is a promising idea, even when the collected data set is contaminated. Here, we study how to conduct and integrate several adaptive sequential procedures at a time to produce a valid result via several machines or a parallel-computing framework. To avoid distraction by complicated modelling processes, we use confidence set estimation for linear models to illustrate the proposed method and discuss the approach's statistical properties. We then evaluate its performance using both synthetic and real data. We have implemented our method using Python and made it available through Github at https://github.com/zhuojianc/dsep.
{"title":"Distributed sequential estimation procedures","authors":"Zhuojian Chen, Zhanfeng Wang, Yuan-chin Ivan Chang","doi":"10.1002/cjs.11762","DOIUrl":"10.1002/cjs.11762","url":null,"abstract":"<p>Data collected from distributed sources or sites commonly have different distributions or contaminated observations. Active learning procedures allow us to assess data when recruiting new data into model building. Thus, combining several active learning procedures together is a promising idea, even when the collected data set is contaminated. Here, we study how to conduct and integrate several adaptive sequential procedures at a time to produce a valid result via several machines or a parallel-computing framework. To avoid distraction by complicated modelling processes, we use confidence set estimation for linear models to illustrate the proposed method and discuss the approach's statistical properties. We then evaluate its performance using both synthetic and real data. We have implemented our method using Python and made it available through Github at https://github.com/zhuojianc/dsep.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43825926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}