首页 > 最新文献

Briefings in Functional Genomics最新文献

英文 中文
Identification of pathogenic cell types and shared genetic loci and genes for Alzheimer's disease and inflammatory bowel disease. 阿尔茨海默病和炎症性肠病的致病细胞类型和共享基因位点和基因的鉴定。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-15 DOI: 10.1093/bfgp/elaf013
Jingjing Zhang, Yuqing Yan, Liqin Han, Rui Qiao, Xiaohui Niu, Peiluan Li

Background: Comorbidities and genetic correlations between gastrointestinal tract diseases and psychiatric disorders have been widely reported, but the underlying intrinsic link between Alzheimer's disease (AD) and inflammatory bowel disease (IBD) is not adequately understood.

Methods: To identify pathogenic cell types of AD and IBD and explore their shared genetic architecture, we developed Pathogenic Cell types and shared Genetic Loci (PCGL) framework, which studied AD and IBD and its two subtypes of ulcerative colitis (UC) and Crohn's disease (CD).

Results: We found that monocytes and CD8 T cells were the enriched pathogenic cell types of AD and IBDs, respectively. By PCGL framework, there was a significant global genetic correlation between AD and each of IBD, UC, and CD. Especially, local genetic correlations between AD and IBD showed strong signals in chr6. Bidirectional two-sample MR Analyses also validated these. Cross-trait meta-analysis identified two key genetic loci rs660895 (on chr6) and rs917117 (on chr7), which have not been previously reported. Two loci are located on the genes HLA-DRB1 and JAZF1, respectively. MAGMA genome-wide gene-based analysis identified six overlapping genes including HLA-DRB1. Subsequently, for one thing, SMR analyses further validated six shared genes in specific tissues and monocytes. For another, pathway enrichment analysis revealed shared genes were enriched in several natural killer cell mediated cytotoxicity and chemokine signaling pathways.

Conclusions: PCGL not only revealed the significant genetic correlations underlying AD and IBDs but also identified enriched pathogenic cell types and new shared loci and genes. We highlighted the mediation of HLA-DRB1 effects in the comorbidity mechanisms.

背景:胃肠道疾病和精神疾病之间的合并症和遗传相关性已被广泛报道,但阿尔茨海默病(AD)和炎症性肠病(IBD)之间潜在的内在联系尚未充分了解。方法:为了鉴定AD和IBD的致病细胞类型并探索它们的共同遗传结构,我们建立了致病细胞类型和共享遗传位点(PCGL)框架,对AD和IBD及其溃疡性结肠炎(UC)和克罗恩病(CD)两个亚型进行了研究。结果:我们发现单核细胞和CD8 T细胞分别是AD和IBDs富集的致病细胞类型。在PCGL框架下,AD与IBD、UC和CD均存在显著的全局遗传相关性,特别是AD与IBD的局部遗传相关性在chr6中表现出强烈的信号。双向双样本MR分析也验证了这些。交叉性状荟萃分析发现了两个关键遗传位点rs660895 (chr6)和rs917117 (chr7),这两个位点以前没有报道过。两个基因座分别位于HLA-DRB1和JAZF1基因上。MAGMA全基因组基因分析鉴定出包括HLA-DRB1在内的6个重叠基因。随后,一方面,SMR分析进一步验证了特定组织和单核细胞中的六个共享基因。另一方面,途径富集分析显示,共享基因在几种自然杀伤细胞介导的细胞毒性和趋化因子信号通路中富集。结论:PCGL不仅揭示了AD和ibd之间的显著遗传相关性,还发现了丰富的致病细胞类型和新的共享位点和基因。我们强调了HLA-DRB1在合并症机制中的中介作用。
{"title":"Identification of pathogenic cell types and shared genetic loci and genes for Alzheimer's disease and inflammatory bowel disease.","authors":"Jingjing Zhang, Yuqing Yan, Liqin Han, Rui Qiao, Xiaohui Niu, Peiluan Li","doi":"10.1093/bfgp/elaf013","DOIUrl":"10.1093/bfgp/elaf013","url":null,"abstract":"<p><strong>Background: </strong>Comorbidities and genetic correlations between gastrointestinal tract diseases and psychiatric disorders have been widely reported, but the underlying intrinsic link between Alzheimer's disease (AD) and inflammatory bowel disease (IBD) is not adequately understood.</p><p><strong>Methods: </strong>To identify pathogenic cell types of AD and IBD and explore their shared genetic architecture, we developed Pathogenic Cell types and shared Genetic Loci (PCGL) framework, which studied AD and IBD and its two subtypes of ulcerative colitis (UC) and Crohn's disease (CD).</p><p><strong>Results: </strong>We found that monocytes and CD8 T cells were the enriched pathogenic cell types of AD and IBDs, respectively. By PCGL framework, there was a significant global genetic correlation between AD and each of IBD, UC, and CD. Especially, local genetic correlations between AD and IBD showed strong signals in chr6. Bidirectional two-sample MR Analyses also validated these. Cross-trait meta-analysis identified two key genetic loci rs660895 (on chr6) and rs917117 (on chr7), which have not been previously reported. Two loci are located on the genes HLA-DRB1 and JAZF1, respectively. MAGMA genome-wide gene-based analysis identified six overlapping genes including HLA-DRB1. Subsequently, for one thing, SMR analyses further validated six shared genes in specific tissues and monocytes. For another, pathway enrichment analysis revealed shared genes were enriched in several natural killer cell mediated cytotoxicity and chemokine signaling pathways.</p><p><strong>Conclusions: </strong>PCGL not only revealed the significant genetic correlations underlying AD and IBDs but also identified enriched pathogenic cell types and new shared loci and genes. We highlighted the mediation of HLA-DRB1 effects in the comorbidity mechanisms.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":"24 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145014481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lossless reference-free sequence compression algorithm leveraging grammatical, statistical, and substitution rules. 利用语法、统计和替换规则的无损无引用序列压缩算法。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-15 DOI: 10.1093/bfgp/elae050
Subhankar Roy, Dilip Kumar Maity, Anirban Mukhopadhyay

Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar performance, and their use depends on time-consuming parameter adjustments. To address these limitations, in this article, we propose a reference-free, lossless sequence compressor called GraSS (Grammatical, Statistical, and Substitution Rule-Based). GraSS compresses sequences more effectively by taking advantage of certain characteristics seen in DNA and RNA sequences. It supports various formats, including raw, FASTA, and multi-FASTA, commonly found in GenBank DNA and RNA files. We evaluate GraSS's performance using ten benchmark DNA sequences with reduced number of repeats, two highly repetitive RNA sequences, and fifteen raw DNA sequences. Test results indicate that the weighted average compression ratios (WACR) for DNA and RNA sequences are 4.5 and 19.6, respectively. Additionally, the entire DNA sequence corpus has a total compression time (TCT) of 246.8 seconds (s). These results demonstrate that the proposed compression method performs better than several advanced algorithms specifically designed to handle various levels of sequence redundancy. The decompression times, memory usage, and CPU usage are also very competitive. Contact:  anirban@klyuniv.ac.in.

用于新物种的脱氧核糖核酸(DNA)或核糖核酸(RNA)序列压缩器在处理大规模的原始、FASTA或多FASTA结构化数据时经常面临挑战。多年来,分子序列数据库一直青睐于广泛使用的通用Gzip和Zstd压缩器。在这些编码器中缺乏序列特定的特性导致性能低于标准,并且它们的使用依赖于耗时的参数调整。为了解决这些限制,在本文中,我们提出了一个无引用的无损序列压缩器,称为GraSS(基于语法、统计和替换规则)。GraSS通过利用DNA和RNA序列中的某些特征更有效地压缩序列。它支持各种格式,包括原始,FASTA和多FASTA,常见于GenBank DNA和RNA文件。我们使用10个重复次数减少的基准DNA序列、两个高度重复的RNA序列和15个原始DNA序列来评估GraSS的性能。测试结果表明,DNA和RNA序列的加权平均压缩比(WACR)分别为4.5和19.6。此外,整个DNA序列语料库的总压缩时间(TCT)为246.8秒(s)。这些结果表明,所提出的压缩方法比专门设计用于处理不同级别序列冗余的几种高级算法性能更好。解压时间、内存使用和CPU使用也非常有竞争力。联系:anirban@klyuniv.ac.in。
{"title":"A lossless reference-free sequence compression algorithm leveraging grammatical, statistical, and substitution rules.","authors":"Subhankar Roy, Dilip Kumar Maity, Anirban Mukhopadhyay","doi":"10.1093/bfgp/elae050","DOIUrl":"10.1093/bfgp/elae050","url":null,"abstract":"<p><p>Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar performance, and their use depends on time-consuming parameter adjustments. To address these limitations, in this article, we propose a reference-free, lossless sequence compressor called GraSS (Grammatical, Statistical, and Substitution Rule-Based). GraSS compresses sequences more effectively by taking advantage of certain characteristics seen in DNA and RNA sequences. It supports various formats, including raw, FASTA, and multi-FASTA, commonly found in GenBank DNA and RNA files. We evaluate GraSS's performance using ten benchmark DNA sequences with reduced number of repeats, two highly repetitive RNA sequences, and fifteen raw DNA sequences. Test results indicate that the weighted average compression ratios (WACR) for DNA and RNA sequences are 4.5 and 19.6, respectively. Additionally, the entire DNA sequence corpus has a total compression time (TCT) of 246.8 seconds (s). These results demonstrate that the proposed compression method performs better than several advanced algorithms specifically designed to handle various levels of sequence redundancy. The decompression times, memory usage, and CPU usage are also very competitive. Contact:  anirban@klyuniv.ac.in.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unmeasured human transcription factor ChIP-seq data shape functional genomics and demand strategic prioritization. 未测量的人类转录因子ChIP-seq数据塑造功能基因组学和需求战略优先级。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-15 DOI: 10.1093/bfgp/elaf016
Saeko Tahara, Haruka Ozaki

Transcription factor (TF) chromatin immunoprecipitation followed by sequencing (ChIP-seq) is essential for identifying genome-wide TF-binding sites (TFBSs), and the collected datasets offer a variety of opportunities for downstream analyses such as inference of gene regulatory network and prediction for effects of single-nucleotide polymorphisms (SNPs) on TFBSs. Although TF ChIP-seq data continue to accumulate in public databases, comprehensive coverage of biologically relevant TF-sample pairs (i.e. combination of targeted TF and cell type) remains elusive. This is due to the need for TF-specific antibodies and large cell numbers, limiting feasible TF-cell type combinations. Moreover, ChIP-seq is measurable when the TF is expressed in the target cell type. Thus, defining the full space of biologically relevant TF-sample pairs-including both measured and unmeasured-is essential to assess and improve dataset comprehensiveness. Here, we investigated publicly available human TF ChIP-seq datasets and introduced the concept of unmeasured TF-sample pairs, defined as biologically relevant TF-sample combinations for which ChIP-seq experiments have not yet been performed. Notably, many expressed TFs in specific cell types remain unmeasured by ChIP-seq, affecting the coverage of regulatory regions revealed by TF ChIP-seq and genome-wide association study-SNP analyses. Furthermore, we propose practical strategies to efficiently supplement currently unmeasured data and discuss how these approaches can significantly enhance data-driven research. The database of unmeasured human TF-sample pairs is publicly accessible at https://moccs-db.shinyapps.io/Unmeasured_shiny_v1/, facilitating the systematic expansion of TF ChIP-seq datasets and thereby enhancing our comprehension of gene regulatory mechanisms.

转录因子(TF)染色质免疫沉淀和测序(ChIP-seq)对于鉴定全基因组TF结合位点(TFBSs)至关重要,收集的数据集为下游分析提供了多种机会,如基因调控网络推断和单核苷酸多态性(snp)对TFBSs的影响预测。尽管TF ChIP-seq数据在公共数据库中不断积累,但全面覆盖生物学相关的TF样本对(即靶向TF和细胞类型的组合)仍然难以实现。这是由于需要tf特异性抗体和大细胞数量,限制了可行的tf细胞类型组合。此外,当TF在目标细胞类型中表达时,ChIP-seq是可测量的。因此,定义生物学相关tf样本对的完整空间(包括测量和未测量的)对于评估和提高数据集的全面性至关重要。在这里,我们调查了公开可用的人类TF ChIP-seq数据集,并引入了未测量TF样本对的概念,定义为尚未进行ChIP-seq实验的生物学相关TF样本组合。值得注意的是,许多特定细胞类型中表达的TF仍然无法通过ChIP-seq测量,这影响了TF ChIP-seq和全基因组关联研究- snp分析所揭示的调控区域的覆盖范围。此外,我们提出了切实可行的策略来有效地补充目前未测量的数据,并讨论了这些方法如何显著增强数据驱动的研究。未测量的人类TF样本对数据库可在https://moccs-db.shinyapps.io/Unmeasured_shiny_v1/上公开访问,促进了TF ChIP-seq数据集的系统扩展,从而增强了我们对基因调控机制的理解。
{"title":"Unmeasured human transcription factor ChIP-seq data shape functional genomics and demand strategic prioritization.","authors":"Saeko Tahara, Haruka Ozaki","doi":"10.1093/bfgp/elaf016","DOIUrl":"10.1093/bfgp/elaf016","url":null,"abstract":"<p><p>Transcription factor (TF) chromatin immunoprecipitation followed by sequencing (ChIP-seq) is essential for identifying genome-wide TF-binding sites (TFBSs), and the collected datasets offer a variety of opportunities for downstream analyses such as inference of gene regulatory network and prediction for effects of single-nucleotide polymorphisms (SNPs) on TFBSs. Although TF ChIP-seq data continue to accumulate in public databases, comprehensive coverage of biologically relevant TF-sample pairs (i.e. combination of targeted TF and cell type) remains elusive. This is due to the need for TF-specific antibodies and large cell numbers, limiting feasible TF-cell type combinations. Moreover, ChIP-seq is measurable when the TF is expressed in the target cell type. Thus, defining the full space of biologically relevant TF-sample pairs-including both measured and unmeasured-is essential to assess and improve dataset comprehensiveness. Here, we investigated publicly available human TF ChIP-seq datasets and introduced the concept of unmeasured TF-sample pairs, defined as biologically relevant TF-sample combinations for which ChIP-seq experiments have not yet been performed. Notably, many expressed TFs in specific cell types remain unmeasured by ChIP-seq, affecting the coverage of regulatory regions revealed by TF ChIP-seq and genome-wide association study-SNP analyses. Furthermore, we propose practical strategies to efficiently supplement currently unmeasured data and discuss how these approaches can significantly enhance data-driven research. The database of unmeasured human TF-sample pairs is publicly accessible at https://moccs-db.shinyapps.io/Unmeasured_shiny_v1/, facilitating the systematic expansion of TF ChIP-seq datasets and thereby enhancing our comprehension of gene regulatory mechanisms.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":"24 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145193796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. 探索 RNA 中 N4-乙酰胞嘧啶修饰对非肿瘤性疾病的影响:揭示其在发病机制中的作用和治疗机会。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-15 DOI: 10.1093/bfgp/elae020
Keyu Wan, Tiantian Nie, Wenhao Ouyang, Yunjing Xiong, Jing Bian, Ying Huang, Li Ling, Zhenjun Huang, Xianhua Zhu

RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving "writers," "readers," and "erasers" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.

RNA 修饰不仅包括甲基化修饰(如 m6A),还包括乙酰化修饰,它们构成了一种复杂的相互作用,涉及 "写者"、"读者 "和 "擦除者",在生长、遗传和疾病中发挥着至关重要的作用。N4-乙酰胞苷(ac4C)是一种古老而高度保守的 RNA 修饰,在多种疾病的发病机制中发挥着深远的作用。本综述深入探讨了 ac4C 修饰在疾病中的功能性影响,并为疾病治疗提供了新的视角。这些研究为了解转录后 RNA 修饰的生物学功能及其在疾病机制中的潜在作用提供了重要见解,为疾病治疗提供了新的视角和策略。
{"title":"Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities.","authors":"Keyu Wan, Tiantian Nie, Wenhao Ouyang, Yunjing Xiong, Jing Bian, Ying Huang, Li Ling, Zhenjun Huang, Xianhua Zhu","doi":"10.1093/bfgp/elae020","DOIUrl":"10.1093/bfgp/elae020","url":null,"abstract":"<p><p>RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving \"writers,\" \"readers,\" and \"erasers\" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Emerging challenge: dynamic solution structures of nucleic acids. 癌症免疫治疗时代的功能基因组学:挑战和临床意义。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-15 DOI: 10.1093/bfgp/elae053
{"title":"Correction to: Emerging challenge: dynamic solution structures of nucleic acids.","authors":"","doi":"10.1093/bfgp/elae053","DOIUrl":"10.1093/bfgp/elae053","url":null,"abstract":"","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":"24 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of approaches for spatial domain recognition of spatial transcriptomes. 空间转录组的空间域识别方法综述。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-06 DOI: 10.1093/bfgp/elae040
Ziyi Wang, Aoyun Geng, Hao Duan, Feifei Cui, Quan Zou, Zilong Zhang

In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.

在当前的生物信息学研究中,空间转录组学(ST)作为一种快速发展的技术正逐渐受到研究人员的广泛关注。空间域是基因表达和组织学在空间上一致的区域,检测空间域可以更好地了解组织的组织和功能分布。空间域识别是 ST 数据解读过程中的基础步骤,也是 ST 分析中的一大挑战。因此,开发更准确、高效、通用的空间域识别方法已成为一个重要而紧迫的研究方向。本文旨在回顾空间域识别研究的现状和进展,探讨现有方法的优势和局限,并为未来工具的开发提供建议和方向。
{"title":"A comprehensive review of approaches for spatial domain recognition of spatial transcriptomes.","authors":"Ziyi Wang, Aoyun Geng, Hao Duan, Feifei Cui, Quan Zou, Zilong Zhang","doi":"10.1093/bfgp/elae040","DOIUrl":"10.1093/bfgp/elae040","url":null,"abstract":"<p><p>In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"702-712"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AMLdb: a comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukemia. AMLdb:鉴定急性髓性白血病生物标志物和药物靶点的综合性多组学平台。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-06 DOI: 10.1093/bfgp/elae024
Keerthana Vinod Kumar, Ambuj Kumar, Kavita Kundal, Avik Sengupta, Kunjulakshmi R, Subashani Singh, Bhanu Teja Korra, Simran Sharma, Vandana Suresh, Mayilaadumveettil Nishana, Rahul Kumar

Acute myeloid leukemia (AML) is one of the leading leukemic malignancies in adults. The heterogeneity of the disease makes the diagnosis and treatment extremely difficult. With the advent of next-generation sequencing (NGS) technologies, exploration at the molecular level for the identification of biomarkers and drug targets has been the focus for the researchers to come up with novel therapies for better prognosis and survival outcomes of AML patients. However, the huge amount of data from NGS platforms requires a comprehensive AML platform to streamline literature mining efforts and save time. To facilitate this, we developed AMLdb, an interactive multi-omics platform that allows users to query, visualize, retrieve, and analyse AML related multi-omics data. AMLdb contains 86 datasets for gene expression profiles, 15 datasets for methylation profiles, CRISPR-Cas9 knockout screens of 26 AML cell lines, sensitivity of 26 AML cell lines to 288 drugs, mutations in 41 unique genes in 23 AML cell lines, and information on 41 experimentally validated biomarkers. In this study, we have reported five genes, i.e. CBFB, ENO1, IMPDH2, SEPHS2, and MYH9 identified via our analysis using AMLdb. ENO1 is uniquely identified gene which requires further investigation as a novel potential target while other reported genes have been previously confirmed as targets through experimental studies. Top of form we believe that these findings utilizing AMLdb can make it an invaluable resource to accelerate the development of effective therapies for AML and assisting the research community in advancing their understanding of AML pathogenesis. AMLdb is freely available at https://project.iith.ac.in/cgntlab/amldb.

急性髓性白血病(AML)是成人主要的白血病恶性肿瘤之一。这种疾病的异质性给诊断和治疗带来了极大的困难。随着下一代测序(NGS)技术的出现,在分子水平上探索生物标志物和药物靶点已成为研究人员的工作重点,以便提出新的疗法,改善急性髓细胞白血病患者的预后和生存状况。然而,来自 NGS 平台的海量数据需要一个全面的 AML 平台来简化文献挖掘工作并节省时间。为此,我们开发了一个交互式多组学平台 AMLdb,允许用户查询、可视化、检索和分析 AML 相关的多组学数据。AMLdb 包含 86 个基因表达谱数据集、15 个甲基化谱数据集、26 个 AML 细胞系的 CRISPR-Cas9 基因敲除筛选、26 个 AML 细胞系对 288 种药物的敏感性、23 个 AML 细胞系中 41 个独特基因的突变以及 41 个实验验证生物标志物的信息。在本研究中,我们报告了通过 AMLdb 分析发现的五个基因,即 CBFB、ENO1、IMPDH2、SEPHS2 和 MYH9。ENO1是唯一被发现的基因,作为一个新的潜在靶点还需要进一步研究,而其他报告的基因之前已通过实验研究证实为靶点。最重要的是,我们相信利用 AMLdb 的这些发现可以使其成为加快开发急性髓细胞性白血病有效疗法的宝贵资源,并帮助研究界加深对急性髓细胞性白血病发病机制的了解。AMLdb 可在 https://project.iith.ac.in/cgntlab/amldb 免费获取。
{"title":"AMLdb: a comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukemia.","authors":"Keerthana Vinod Kumar, Ambuj Kumar, Kavita Kundal, Avik Sengupta, Kunjulakshmi R, Subashani Singh, Bhanu Teja Korra, Simran Sharma, Vandana Suresh, Mayilaadumveettil Nishana, Rahul Kumar","doi":"10.1093/bfgp/elae024","DOIUrl":"10.1093/bfgp/elae024","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is one of the leading leukemic malignancies in adults. The heterogeneity of the disease makes the diagnosis and treatment extremely difficult. With the advent of next-generation sequencing (NGS) technologies, exploration at the molecular level for the identification of biomarkers and drug targets has been the focus for the researchers to come up with novel therapies for better prognosis and survival outcomes of AML patients. However, the huge amount of data from NGS platforms requires a comprehensive AML platform to streamline literature mining efforts and save time. To facilitate this, we developed AMLdb, an interactive multi-omics platform that allows users to query, visualize, retrieve, and analyse AML related multi-omics data. AMLdb contains 86 datasets for gene expression profiles, 15 datasets for methylation profiles, CRISPR-Cas9 knockout screens of 26 AML cell lines, sensitivity of 26 AML cell lines to 288 drugs, mutations in 41 unique genes in 23 AML cell lines, and information on 41 experimentally validated biomarkers. In this study, we have reported five genes, i.e. CBFB, ENO1, IMPDH2, SEPHS2, and MYH9 identified via our analysis using AMLdb. ENO1 is uniquely identified gene which requires further investigation as a novel potential target while other reported genes have been previously confirmed as targets through experimental studies. Top of form we believe that these findings utilizing AMLdb can make it an invaluable resource to accelerate the development of effective therapies for AML and assisting the research community in advancing their understanding of AML pathogenesis. AMLdb is freely available at https://project.iith.ac.in/cgntlab/amldb.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"798-805"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches. 加强新型同工酶的发现:利用纳米孔长读数测序和机器学习方法。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-06 DOI: 10.1093/bfgp/elae031
Kristina Santucci, Yuning Cheng, Si-Mei Xu, Michael Janitz

Long-read sequencing technologies can capture entire RNA transcripts in a single sequencing read, reducing the ambiguity in constructing and quantifying transcript models in comparison to more common and earlier methods, such as short-read sequencing. Recent improvements in the accuracy of long-read sequencing technologies have expanded the scope for novel splice isoform detection and have also enabled a far more accurate reconstruction of complex splicing patterns and transcriptomes. Additionally, the incorporation and advancements of machine learning and deep learning algorithms in bioinformatic software have significantly improved the reliability of long-read sequencing transcriptomic studies. However, there is a lack of consensus on what bioinformatic tools and pipelines produce the most precise and consistent results. Thus, this review aims to discuss and compare the performance of available methods for novel isoform discovery with long-read sequencing technologies, with 25 tools being presented. Furthermore, this review intends to demonstrate the need for developing standard analytical pipelines, tools, and transcript model conventions for novel isoform discovery and transcriptomic studies.

与短线程测序等更常见和更早的方法相比,长线程测序技术可以在单个测序读数中捕获整个 RNA 转录本,从而减少了构建和量化转录本模型的模糊性。最近,长读程测序技术的准确性有所提高,扩大了新型剪接异构体的检测范围,也能更准确地重建复杂的剪接模式和转录组。此外,机器学习和深度学习算法在生物信息学软件中的应用和进步也大大提高了长片段测序转录组研究的可靠性。然而,对于什么样的生物信息学工具和管道能产生最精确、最一致的结果还缺乏共识。因此,本综述旨在讨论和比较利用长线程测序技术发现新型同工酶的现有方法的性能,共介绍了 25 种工具。此外,本综述还旨在说明有必要为新型同工酶发现和转录组研究开发标准的分析管道、工具和转录本模型惯例。
{"title":"Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches.","authors":"Kristina Santucci, Yuning Cheng, Si-Mei Xu, Michael Janitz","doi":"10.1093/bfgp/elae031","DOIUrl":"10.1093/bfgp/elae031","url":null,"abstract":"<p><p>Long-read sequencing technologies can capture entire RNA transcripts in a single sequencing read, reducing the ambiguity in constructing and quantifying transcript models in comparison to more common and earlier methods, such as short-read sequencing. Recent improvements in the accuracy of long-read sequencing technologies have expanded the scope for novel splice isoform detection and have also enabled a far more accurate reconstruction of complex splicing patterns and transcriptomes. Additionally, the incorporation and advancements of machine learning and deep learning algorithms in bioinformatic software have significantly improved the reliability of long-read sequencing transcriptomic studies. However, there is a lack of consensus on what bioinformatic tools and pipelines produce the most precise and consistent results. Thus, this review aims to discuss and compare the performance of available methods for novel isoform discovery with long-read sequencing technologies, with 25 tools being presented. Furthermore, this review intends to demonstrate the need for developing standard analytical pipelines, tools, and transcript model conventions for novel isoform discovery and transcriptomic studies.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"683-694"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in integrating single-cell sequencing data to unravel the mechanism of ferroptosis in cancer. 整合单细胞测序数据以揭示癌症中铁凋亡机制的进展。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-06 DOI: 10.1093/bfgp/elae025
Zhaolan Du, Yi Shi, Jianjun Tan

Ferroptosis, a commonly observed type of programmed cell death caused by abnormal metabolic and biochemical mechanisms, is frequently triggered by cellular stress. The occurrence of ferroptosis is predominantly linked to pathophysiological conditions due to the substantial impact of various metabolic pathways, including fatty acid metabolism and iron regulation, on cellular reactions to lipid peroxidation and ferroptosis. This mode of cell death serves as a fundamental factor in the development of numerous diseases, thereby presenting a range of therapeutic targets. Single-cell sequencing technology provides insights into the cellular and molecular characteristics of individual cells, as opposed to bulk sequencing, which provides data in a more generalized manner. Single-cell sequencing has found extensive application in the field of cancer research. This paper reviews the progress made in ferroptosis-associated cancer research using single-cell sequencing, including ferroptosis-associated pathways, immune checkpoints, biomarkers, and the identification of cell clusters associated with ferroptosis in tumors. In general, the utilization of single-cell sequencing technology has the potential to contribute significantly to the investigation of the mechanistic regulatory pathways linked to ferroptosis. Moreover, it can shed light on the intricate connection between ferroptosis and cancer. This technology holds great promise in advancing tumor-wide diagnosis, targeted therapy, and prognosis prediction.

铁中毒是一种常见的由异常代谢和生化机制引起的程序性细胞死亡,经常由细胞压力引发。由于各种代谢途径(包括脂肪酸代谢和铁调节)对脂质过氧化和铁中毒的细胞反应有重大影响,铁中毒的发生主要与病理生理条件有关。这种细胞死亡模式是多种疾病发生发展的基本因素,从而提供了一系列治疗靶点。单细胞测序技术能深入了解单个细胞的细胞和分子特征,而批量测序技术则能以更概括的方式提供数据。单细胞测序技术已在癌症研究领域得到广泛应用。本文回顾了利用单细胞测序技术在铁突变相关癌症研究中取得的进展,包括铁突变相关通路、免疫检查点、生物标记物以及肿瘤中铁突变相关细胞群的鉴定。总的来说,利用单细胞测序技术有可能大大有助于研究与铁凋亡相关的机理调控途径。此外,它还能揭示铁突变与癌症之间错综复杂的联系。这项技术在推进肿瘤诊断、靶向治疗和预后预测方面大有可为。
{"title":"Advances in integrating single-cell sequencing data to unravel the mechanism of ferroptosis in cancer.","authors":"Zhaolan Du, Yi Shi, Jianjun Tan","doi":"10.1093/bfgp/elae025","DOIUrl":"10.1093/bfgp/elae025","url":null,"abstract":"<p><p>Ferroptosis, a commonly observed type of programmed cell death caused by abnormal metabolic and biochemical mechanisms, is frequently triggered by cellular stress. The occurrence of ferroptosis is predominantly linked to pathophysiological conditions due to the substantial impact of various metabolic pathways, including fatty acid metabolism and iron regulation, on cellular reactions to lipid peroxidation and ferroptosis. This mode of cell death serves as a fundamental factor in the development of numerous diseases, thereby presenting a range of therapeutic targets. Single-cell sequencing technology provides insights into the cellular and molecular characteristics of individual cells, as opposed to bulk sequencing, which provides data in a more generalized manner. Single-cell sequencing has found extensive application in the field of cancer research. This paper reviews the progress made in ferroptosis-associated cancer research using single-cell sequencing, including ferroptosis-associated pathways, immune checkpoints, biomarkers, and the identification of cell clusters associated with ferroptosis in tumors. In general, the utilization of single-cell sequencing technology has the potential to contribute significantly to the investigation of the mechanistic regulatory pathways linked to ferroptosis. Moreover, it can shed light on the intricate connection between ferroptosis and cancer. This technology holds great promise in advancing tumor-wide diagnosis, targeted therapy, and prognosis prediction.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"713-725"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAMP: Identifying antimicrobial peptides by an ensemble learning model based on proportionalized split amino acid composition. SAMP:基于按比例分割氨基酸组成的集合学习模型识别抗菌肽。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-06 DOI: 10.1093/bfgp/elae046
Junxi Feng, Mengtao Sun, Cong Liu, Weiwei Zhang, Changmou Xu, Jieqiong Wang, Guangshun Wang, Shibiao Wan

It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC), G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.

预计到 2050 年,可能会有 1 000 万人死于耐药菌感染。要解决这一问题,找出新一代抗生素是一种有效的方法。抗菌肽(AMPs)是一类先天性免疫效应物,因其消除耐药病原体(包括病毒、细菌和真菌)的能力而备受关注。近年来,人们广泛应用计算方法,特别是机器学习(ML)和深度学习(DL)来发现 AMPs。然而,现有的方法只能利用肽的组成、理化和结构特性等特征,无法完全捕捉到 AMPs 的序列信息。在这里,我们提出了一种基于集合随机投影(RP)的计算模型 SAMP,该模型除了利用传统的基于序列的特征进行 AMP 预测外,还利用了一种新型特征,即比例化拆分氨基酸组成(PSAAC)。利用这种新型特征集,SAMP 可以捕捉 N 端和 C 端的残基模式(如排序信号),同时还能保留中间肽段的序列顺序信息。在不同的平衡和不平衡数据集上进行的基准测试表明,SAMP 在准确度、马修斯相关系数 (MCC)、G-measure 和 F1 分数等方面始终优于 iAMPpred 和 AMPScanner V2 等现有的一流方法。此外,通过利用集合 RP 架构,SAMP 可以扩展到处理大规模 AMP 识别,与没有 RP 的模型相比,性能得到进一步提高。为方便使用 SAMP,我们开发了一个 Python 软件包,可在 https://github.com/wan-mlab/SAMP 免费获取。
{"title":"SAMP: Identifying antimicrobial peptides by an ensemble learning model based on proportionalized split amino acid composition.","authors":"Junxi Feng, Mengtao Sun, Cong Liu, Weiwei Zhang, Changmou Xu, Jieqiong Wang, Guangshun Wang, Shibiao Wan","doi":"10.1093/bfgp/elae046","DOIUrl":"10.1093/bfgp/elae046","url":null,"abstract":"<p><p>It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC), G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"879-890"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Briefings in Functional Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1