首页 > 最新文献

Briefings in Functional Genomics最新文献

英文 中文
The frontier of precision medicine: application of single-cell multi-omics in preimplantation genetic diagnosis. 精准医疗的前沿:单细胞多组学在植入前遗传学诊断中的应用。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-06 DOI: 10.1093/bfgp/elae041
Jinglei Zhang, Nan Zhang, Qingyun Mai, Canquan Zhou

The advent of single-cell multi-omics technologies has revolutionized the landscape of preimplantation genetic diagnosis (PGD), offering unprecedented insights into the genetic, transcriptomic, and proteomic profiles of individual cells in early-stage embryos. This breakthrough holds the promise of enhancing the accuracy, efficiency, and scope of PGD, thereby significantly improving outcomes in assisted reproductive technologies (ARTs) and genetic disease prevention. This review provides a comprehensive overview of the importance of PGD in the context of precision medicine and elucidates how single-cell multi-omics technologies have transformed this field. We begin with a brief history of PGD, highlighting its evolution and application in detecting genetic disorders and facilitating ART. Subsequently, we delve into the principles, methodologies, and applications of single-cell genomics, transcriptomics, and proteomics in PGD, emphasizing their role in improving diagnostic precision and efficiency. Furthermore, we review significant recent advances within this domain, including key experimental designs, findings, and their implications for PGD practices. The advantages and limitations of these studies are analyzed to assess their potential impact on the future development of PGD technologies. Looking forward, we discuss the emerging research directions and challenges, focusing on technological advancements, new application areas, and strategies to overcome existing limitations. In conclusion, this review underscores the pivotal role of single-cell multi-omics in PGD, highlighting its potential to drive the progress of precision medicine and personalized treatment strategies, thereby marking a new era in reproductive genetics and healthcare.

单细胞多组学技术的出现彻底改变了胚胎植入前遗传学诊断(PGD)的面貌,为早期胚胎中单个细胞的遗传学、转录组学和蛋白质组学特征提供了前所未有的洞察力。这一突破有望提高胚胎植入前遗传学诊断的准确性、效率和范围,从而显著改善辅助生殖技术(ART)和遗传疾病预防的效果。本综述全面概述了精准医疗背景下 PGD 的重要性,并阐明了单细胞多组学技术如何改变了这一领域。我们首先简要介绍了 PGD 的历史,强调了它在检测遗传疾病和促进抗逆转录病毒疗法方面的演变和应用。随后,我们深入探讨了单细胞基因组学、转录组学和蛋白质组学在 PGD 中的原理、方法和应用,强调了它们在提高诊断精度和效率方面的作用。此外,我们还回顾了这一领域的最新重大进展,包括关键的实验设计、研究结果及其对 PGD 实践的影响。我们分析了这些研究的优势和局限性,以评估它们对 PGD 技术未来发展的潜在影响。展望未来,我们讨论了新出现的研究方向和挑战,重点关注技术进步、新的应用领域以及克服现有局限性的策略。总之,本综述强调了单细胞多组学在 PGD 中的关键作用,凸显了其推动精准医学和个性化治疗策略进步的潜力,从而标志着生殖遗传学和医疗保健进入了一个新时代。
{"title":"The frontier of precision medicine: application of single-cell multi-omics in preimplantation genetic diagnosis.","authors":"Jinglei Zhang, Nan Zhang, Qingyun Mai, Canquan Zhou","doi":"10.1093/bfgp/elae041","DOIUrl":"10.1093/bfgp/elae041","url":null,"abstract":"<p><p>The advent of single-cell multi-omics technologies has revolutionized the landscape of preimplantation genetic diagnosis (PGD), offering unprecedented insights into the genetic, transcriptomic, and proteomic profiles of individual cells in early-stage embryos. This breakthrough holds the promise of enhancing the accuracy, efficiency, and scope of PGD, thereby significantly improving outcomes in assisted reproductive technologies (ARTs) and genetic disease prevention. This review provides a comprehensive overview of the importance of PGD in the context of precision medicine and elucidates how single-cell multi-omics technologies have transformed this field. We begin with a brief history of PGD, highlighting its evolution and application in detecting genetic disorders and facilitating ART. Subsequently, we delve into the principles, methodologies, and applications of single-cell genomics, transcriptomics, and proteomics in PGD, emphasizing their role in improving diagnostic precision and efficiency. Furthermore, we review significant recent advances within this domain, including key experimental designs, findings, and their implications for PGD practices. The advantages and limitations of these studies are analyzed to assess their potential impact on the future development of PGD technologies. Looking forward, we discuss the emerging research directions and challenges, focusing on technological advancements, new application areas, and strategies to overcome existing limitations. In conclusion, this review underscores the pivotal role of single-cell multi-omics in PGD, highlighting its potential to drive the progress of precision medicine and personalized treatment strategies, thereby marking a new era in reproductive genetics and healthcare.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"726-732"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review: simulation tools for genome-wide interaction studies. 综述:全基因组相互作用研究的模拟工具。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-06 DOI: 10.1093/bfgp/elae034
Junliang Shang, Anqi Xu, Mingyuan Bi, Yuanyuan Zhang, Feng Li, Jin-Xing Liu

Genome-wide association study (GWAS) is essential for investigating the genetic basis of complex diseases; nevertheless, it usually ignores the interaction of multiple single nucleotide polymorphisms (SNPs). Genome-wide interaction studies provide crucial means for exploring complex genetic interactions that GWAS may miss. Although many interaction methods have been proposed, challenges still persist, including the lack of epistasis models and the inconsistency of benchmark datasets. SNP data simulation is a pivotal intermediary between interaction methods and real applications. Therefore, it is important to obtain epistasis models and benchmark datasets by simulation tools, which is helpful for further improving interaction methods. At present, many simulation tools have been widely employed in the field of population genetics. According to their basic principles, these existing tools can be divided into four categories: coalescent simulation, forward-time simulation, resampling simulation, and other simulation frameworks. In this paper, their basic principles and representative simulation tools are compared and analyzed in detail. Additionally, this paper provides a discussion and summary of the advantages and disadvantages of these frameworks and tools, offering technical insights for the design of new methods, and serving as valuable reference tools for researchers to comprehensively understand GWAS and genome-wide interaction studies.

全基因组关联研究(GWAS)对于研究复杂疾病的遗传基础至关重要;然而,它通常会忽略多个单核苷酸多态性(SNPs)之间的相互作用。全基因组相互作用研究为探索 GWAS 可能忽略的复杂遗传相互作用提供了重要手段。尽管已经提出了许多交互作用方法,但挑战依然存在,包括缺乏外显模型和基准数据集的不一致性。SNP 数据模拟是相互作用方法与实际应用之间的关键中介。因此,通过模拟工具获得外显模型和基准数据集非常重要,有助于进一步改进交互作用方法。目前,许多模拟工具已在群体遗传学领域得到广泛应用。根据其基本原理,这些现有工具可分为四类:凝聚态模拟、前向时间模拟、重采样模拟和其他模拟框架。本文对它们的基本原理和代表性模拟工具进行了详细比较和分析。此外,本文还对这些框架和工具的优缺点进行了讨论和总结,为新方法的设计提供了技术启示,也为研究人员全面了解 GWAS 和全基因组相互作用研究提供了有价值的参考工具。
{"title":"A review: simulation tools for genome-wide interaction studies.","authors":"Junliang Shang, Anqi Xu, Mingyuan Bi, Yuanyuan Zhang, Feng Li, Jin-Xing Liu","doi":"10.1093/bfgp/elae034","DOIUrl":"10.1093/bfgp/elae034","url":null,"abstract":"<p><p>Genome-wide association study (GWAS) is essential for investigating the genetic basis of complex diseases; nevertheless, it usually ignores the interaction of multiple single nucleotide polymorphisms (SNPs). Genome-wide interaction studies provide crucial means for exploring complex genetic interactions that GWAS may miss. Although many interaction methods have been proposed, challenges still persist, including the lack of epistasis models and the inconsistency of benchmark datasets. SNP data simulation is a pivotal intermediary between interaction methods and real applications. Therefore, it is important to obtain epistasis models and benchmark datasets by simulation tools, which is helpful for further improving interaction methods. At present, many simulation tools have been widely employed in the field of population genetics. According to their basic principles, these existing tools can be divided into four categories: coalescent simulation, forward-time simulation, resampling simulation, and other simulation frameworks. In this paper, their basic principles and representative simulation tools are compared and analyzed in detail. Additionally, this paper provides a discussion and summary of the advantages and disadvantages of these frameworks and tools, offering technical insights for the design of new methods, and serving as valuable reference tools for researchers to comprehensively understand GWAS and genome-wide interaction studies.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"745-753"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics integration analysis reveals the role of N6-methyladenosine in lncRNA translation during glioma stem cell differentiation. 多组学整合分析揭示 N6-甲基腺苷在胶质瘤干细胞分化过程中 lncRNA 翻译中的作用
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-06 DOI: 10.1093/bfgp/elae037
Meng Zhang, Runqiu Cai, Jingjing Liu, Yulan Wang, Shan He, Quan Wang, Xiaofeng Song, Jing Wu, Jian Zhao

Glioblastoma is one of the most lethal brain diseases in humans. Although recent studies have shown reciprocal interactions between N6-methyladenosine (m6A) modifications and long noncoding RNAs (lncRNAs) in gliomagenesis and malignant progression, the mechanism of m6A-mediated lncRNA translational regulation in glioblastoma remains unclear. Herein, we profiled the transcriptomes, translatomes, and epitranscriptomics of glioma stem cells and differentiated glioma cells to investigate the role of m6A in lncRNA translation comprehensively. We found that lncRNAs with numerous m6A peaks exhibit reduced translation efficiency. Transcript-level expression analysis demonstrates an enrichment of m6A around short open reading frames (sORFs) of translatable lncRNA transcripts. Further comparison analysis of m6A modifications in different RNA regions indicates that m6A peaks downstream of sORFs inhibit lncRNA translation more than those upstream. Observations in glioma-associated lncRNAs H19, LINC00467, and GAS5 further confirm the negative effect of m6A methylation on lncRNA translation. Overall, these findings elucidate the dynamic profiles of the m6A methylome and enhance the understanding of the complexity of lncRNA translational regulation.

胶质母细胞瘤是人类致死率最高的脑部疾病之一。尽管最近的研究表明,N6-甲基腺苷(m6A)修饰和长非编码 RNA(lncRNA)在胶质瘤的发生和恶性进展中存在相互作用,但 m6A 介导的 lncRNA 在胶质母细胞瘤中的翻译调控机制仍不清楚。在此,我们分析了胶质瘤干细胞和分化胶质瘤细胞的转录组、翻译组和表转录组,以全面研究m6A在lncRNA翻译中的作用。我们发现,具有大量 m6A 峰的 lncRNA 翻译效率降低。转录本水平的表达分析表明,在可翻译的 lncRNA 转录本的短开放阅读框(sORF)周围富集了 m6A。对不同 RNA 区域的 m6A 修饰的进一步比较分析表明,sORFs 下游的 m6A 峰比上游的 m6A 峰更能抑制 lncRNA 的翻译。对胶质瘤相关 lncRNA H19、LINC00467 和 GAS5 的观察进一步证实了 m6A 甲基化对 lncRNA 翻译的负面影响。总之,这些发现阐明了 m6A 甲基化组的动态轮廓,加深了人们对 lncRNA 翻译调控复杂性的理解。
{"title":"Multi-omics integration analysis reveals the role of N6-methyladenosine in lncRNA translation during glioma stem cell differentiation.","authors":"Meng Zhang, Runqiu Cai, Jingjing Liu, Yulan Wang, Shan He, Quan Wang, Xiaofeng Song, Jing Wu, Jian Zhao","doi":"10.1093/bfgp/elae037","DOIUrl":"10.1093/bfgp/elae037","url":null,"abstract":"<p><p>Glioblastoma is one of the most lethal brain diseases in humans. Although recent studies have shown reciprocal interactions between N6-methyladenosine (m6A) modifications and long noncoding RNAs (lncRNAs) in gliomagenesis and malignant progression, the mechanism of m6A-mediated lncRNA translational regulation in glioblastoma remains unclear. Herein, we profiled the transcriptomes, translatomes, and epitranscriptomics of glioma stem cells and differentiated glioma cells to investigate the role of m6A in lncRNA translation comprehensively. We found that lncRNAs with numerous m6A peaks exhibit reduced translation efficiency. Transcript-level expression analysis demonstrates an enrichment of m6A around short open reading frames (sORFs) of translatable lncRNA transcripts. Further comparison analysis of m6A modifications in different RNA regions indicates that m6A peaks downstream of sORFs inhibit lncRNA translation more than those upstream. Observations in glioma-associated lncRNAs H19, LINC00467, and GAS5 further confirm the negative effect of m6A methylation on lncRNA translation. Overall, these findings elucidate the dynamic profiles of the m6A methylome and enhance the understanding of the complexity of lncRNA translational regulation.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"806-815"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using nanopore sequencing to identify bacterial infection in joint replacements: a preliminary study. 利用纳米孔测序鉴定关节置换术中的细菌感染:一项初步研究。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-27 DOI: 10.1093/bfgp/elae008
Hollie Wilkinson, Jamie McDonald, Helen S McCarthy, Jade Perry, Karina Wright, Charlotte Hulme, Paul Cool

This project investigates if third-generation genomic sequencing can be used to identify the species of bacteria causing prosthetic joint infections (PJIs) at the time of revision surgery. Samples of prosthetic fluid were taken during revision surgery from patients with known PJIs. Samples from revision surgeries from non-infected patients acted as negative controls. Genomic sequencing was performed using the MinION device and the rapid sequencing kit from Oxford Nanopore Technologies. Bioinformatic analysis pipelines to identify bacteria included Basic Local Alignment Search Tool, Kraken2 and MinION Detection Software, and the results were compared with standard of care microbiological cultures. Furthermore, there was an attempt to predict antibiotic resistance using computational tools including ResFinder, AMRFinderPlus and Comprehensive Antibiotic Resistance Database. Bacteria identified using microbiological cultures were successfully identified using bioinformatic analysis pipelines. Nanopore sequencing and genomic classification could be completed in the time it takes to perform joint revision surgery (2-3 h). Genomic sequencing in this study was not able to predict antibiotic resistance in this time frame, this is thought to be due to a short-read length and low read depth. It can be concluded that genomic sequencing can be useful to identify bacterial species in infected joint replacements. However, further work is required to investigate if it can be used to predict antibiotic resistance within clinically relevant timeframes.

该项目研究了第三代基因组测序是否可用于鉴定翻修手术时引起假体关节感染(PJI)的细菌种类。在翻修手术期间,从已知患有人工关节感染的患者身上采集了人工关节液样本。非感染患者的翻修手术样本作为阴性对照。使用牛津纳米孔技术公司(Oxford Nanopore Technologies)的 MinION 设备和快速测序试剂盒进行基因组测序。用于鉴定细菌的生物信息学分析管道包括基本局部比对搜索工具、Kraken2 和 MinION 检测软件,并将结果与标准护理微生物培养结果进行比较。此外,还尝试使用 ResFinder、AMRFinderPlus 和抗生素耐药性综合数据库等计算工具预测抗生素耐药性。使用生物信息学分析管道成功鉴定了微生物培养物鉴定出的细菌。纳米孔测序和基因组分类可在进行关节翻修手术(2-3 小时)的时间内完成。本研究中的基因组测序无法在此时间段内预测抗生素耐药性,这被认为是由于短读取长度和低读取深度造成的。由此可以得出结论,基因组测序可用于鉴定受感染关节置换术中的细菌种类。不过,还需要进一步研究基因组测序是否能在临床相关时限内预测抗生素耐药性。
{"title":"Using nanopore sequencing to identify bacterial infection in joint replacements: a preliminary study.","authors":"Hollie Wilkinson, Jamie McDonald, Helen S McCarthy, Jade Perry, Karina Wright, Charlotte Hulme, Paul Cool","doi":"10.1093/bfgp/elae008","DOIUrl":"10.1093/bfgp/elae008","url":null,"abstract":"<p><p>This project investigates if third-generation genomic sequencing can be used to identify the species of bacteria causing prosthetic joint infections (PJIs) at the time of revision surgery. Samples of prosthetic fluid were taken during revision surgery from patients with known PJIs. Samples from revision surgeries from non-infected patients acted as negative controls. Genomic sequencing was performed using the MinION device and the rapid sequencing kit from Oxford Nanopore Technologies. Bioinformatic analysis pipelines to identify bacteria included Basic Local Alignment Search Tool, Kraken2 and MinION Detection Software, and the results were compared with standard of care microbiological cultures. Furthermore, there was an attempt to predict antibiotic resistance using computational tools including ResFinder, AMRFinderPlus and Comprehensive Antibiotic Resistance Database. Bacteria identified using microbiological cultures were successfully identified using bioinformatic analysis pipelines. Nanopore sequencing and genomic classification could be completed in the time it takes to perform joint revision surgery (2-3 h). Genomic sequencing in this study was not able to predict antibiotic resistance in this time frame, this is thought to be due to a short-read length and low read depth. It can be concluded that genomic sequencing can be useful to identify bacterial species in infected joint replacements. However, further work is required to investigate if it can be used to predict antibiotic resistance within clinically relevant timeframes.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"509-516"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Machine learning applications on intratumoral heterogeneity in glioblastoma using single-cell RNA sequencing data. 修正:使用单细胞RNA测序数据的机器学习应用于胶质母细胞瘤的肿瘤内异质性。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-27 DOI: 10.1093/bfgp/elad022
{"title":"Correction to: Machine learning applications on intratumoral heterogeneity in glioblastoma using single-cell RNA sequencing data.","authors":"","doi":"10.1093/bfgp/elad022","DOIUrl":"10.1093/bfgp/elad022","url":null,"abstract":"","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"679"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9519047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. 草药基因组学与罂粟科:药用植物研究的一个有前途的组学视角。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-27 DOI: 10.1093/bfgp/elad050
Natalia Kielich, Oliwia Mazur, Oskar Musidlak, Joanna Gracz-Bernaciak, Robert Nawrot

Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.

草药在古代和现代社会被广泛用于治疗人类疾病。值得注意的是,Papaveraceae家族包括众所周知的物种,如Papaver somniferum和Chelidonium majus,由于它们的乳胶含量而具有药用特性。乳胶植物是多种生物活性化合物的丰富来源,其应用范围从麻醉剂到镇痛药和松弛剂。随着高通量技术的出现和测序工具的进步,有机会弥合草药遗传信息和其药用活动背后的监管网络之间的知识差距。这一新兴学科,被称为草药基因组学,将基因组信息与其他组学研究相结合,揭示遗传基础,包括基本基因功能和次级代谢物生物合成途径。此外,探索各种药用植物的基因组可以利用现代遗传操作技术,如聚集规则间隔短回文重复序列(CRISPR/Cas9)或RNA干扰。这一技术革命促进了模式草药的系统研究、药用植物的定向育种、基因库的建立和合成生物学方法的采用。本文综述了罂粟科植物基因组学、转录组学、蛋白质组学和代谢组学研究的最新进展。此外,它简要地探讨了-组学观点在制药工业和农业生物技术领域的潜在应用和关键机会。
{"title":"Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research.","authors":"Natalia Kielich, Oliwia Mazur, Oskar Musidlak, Joanna Gracz-Bernaciak, Robert Nawrot","doi":"10.1093/bfgp/elad050","DOIUrl":"10.1093/bfgp/elad050","url":null,"abstract":"<p><p>Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"579-594"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STAT3-dependent long non-coding RNA Lncenc1 contributes to mouse ES cells pluripotency via stabilizing Klf4 mRNA. STAT3依赖的长非编码RNA Lncenc1通过稳定KmRNA促进小鼠ES细胞的多能性。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-27 DOI: 10.1093/bfgp/elad045
Emanuele Monteleone, Paola Corrieri, Paolo Provero, Daniele Viavattene, Lorenzo Pulvirenti, Laura Raggi, Elena Carbognin, Marco E Bianchi, Graziano Martello, Salvatore Oliviero, Pier Paolo Pandolfi, Valeria Poli

Embryonic stem cells (ESCs) preserve the unique ability to differentiate into any somatic cell lineage while maintaining their self-renewal potential, relying on a complex interplay of extracellular signals regulating the expression/activity of pluripotency transcription factors and their targets. Leukemia inhibitory factor (LIF)-activated STAT3 drives ESCs' stemness by a number of mechanisms, including the transcriptional induction of pluripotency factors such as Klf4 and the maintenance of a stem-like epigenetic landscape. However, it is unknown if STAT3 directly controls stem-cell specific non-coding RNAs, crucial to balance pluripotency and differentiation. Applying a bioinformatic pipeline, here we identify Lncenc1 in mouse ESCs as an STAT3-dependent long non-coding RNA that supports pluripotency. Lncenc1 acts in the cytoplasm as a positive feedback regulator of the LIF-STAT3 axis by competing for the binding of microRNA-128 to the 3'UTR of the Klf4 core pluripotency factor mRNA, enhancing its expression. Our results unveil a novel non-coding RNA-based mechanism for LIF-STAT3-mediated pluripotency.

胚胎干细胞(ESCs)依靠调节多能性转录因子及其靶标的表达/活性的细胞外信号的复杂相互作用,在保持其自我更新潜力的同时,保持分化为任何体细胞谱系的独特能力。白血病抑制因子(LIF)激活的STAT3通过多种机制驱动ESCs的干性,包括Klf4等多能性因子的转录诱导和干细胞样表观遗传景观的维持。然而,尚不清楚STAT3是否直接控制干细胞特异性非编码RNA,这对平衡多能性和分化至关重要。应用生物信息学管道,我们将小鼠ESCs中的Lncenc1鉴定为支持多能性的STAT3依赖性长非编码RNA。Lncenc1在细胞质中作为LIF-STAT3轴的正反馈调节因子,通过竞争微小RNA-128与Klf4核心多能因子mRNA的3’UTR的结合,增强其表达。我们的研究结果揭示了一种新的基于非编码RNA的LIF-STAT3介导的多能性机制。
{"title":"STAT3-dependent long non-coding RNA Lncenc1 contributes to mouse ES cells pluripotency via stabilizing Klf4 mRNA.","authors":"Emanuele Monteleone, Paola Corrieri, Paolo Provero, Daniele Viavattene, Lorenzo Pulvirenti, Laura Raggi, Elena Carbognin, Marco E Bianchi, Graziano Martello, Salvatore Oliviero, Pier Paolo Pandolfi, Valeria Poli","doi":"10.1093/bfgp/elad045","DOIUrl":"10.1093/bfgp/elad045","url":null,"abstract":"<p><p>Embryonic stem cells (ESCs) preserve the unique ability to differentiate into any somatic cell lineage while maintaining their self-renewal potential, relying on a complex interplay of extracellular signals regulating the expression/activity of pluripotency transcription factors and their targets. Leukemia inhibitory factor (LIF)-activated STAT3 drives ESCs' stemness by a number of mechanisms, including the transcriptional induction of pluripotency factors such as Klf4 and the maintenance of a stem-like epigenetic landscape. However, it is unknown if STAT3 directly controls stem-cell specific non-coding RNAs, crucial to balance pluripotency and differentiation. Applying a bioinformatic pipeline, here we identify Lncenc1 in mouse ESCs as an STAT3-dependent long non-coding RNA that supports pluripotency. Lncenc1 acts in the cytoplasm as a positive feedback regulator of the LIF-STAT3 axis by competing for the binding of microRNA-128 to the 3'UTR of the Klf4 core pluripotency factor mRNA, enhancing its expression. Our results unveil a novel non-coding RNA-based mechanism for LIF-STAT3-mediated pluripotency.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"651-662"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscale marvels: unveiling the macroscopic significance of micropeptides in human health. 微观奇迹:揭示微肽对人类健康的宏观意义。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-27 DOI: 10.1093/bfgp/elae018
Deepyaman Das, Soumita Podder

Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.

非编码 RNA 通过位于 RNA 中的小型开放阅读框编码微肽。有趣的是,这些微肽参与了人体内的各种功能。它们正在成为体内复杂生物分子信号通路的拼图。最近的研究强调了小肽在调节 DNA 修复、基因表达、肌肉再生、免疫反应等重要生物过程中的关键作用。相反,微肽表达的改变也在心血管疾病、神经系统疾病和几种癌症(包括结肠直肠癌、肝癌、肺癌等)等各种疾病的发展过程中起着关键作用。这篇综述深入探讨了微肽对健康和病理的双重影响,探讨了它们在维持正常生理平衡中的关键作用,并探究了它们在疾病的诱发和发展中的参与。
{"title":"Microscale marvels: unveiling the macroscopic significance of micropeptides in human health.","authors":"Deepyaman Das, Soumita Podder","doi":"10.1093/bfgp/elae018","DOIUrl":"10.1093/bfgp/elae018","url":null,"abstract":"<p><p>Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"624-638"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: STAT3-dependent long non-coding RNA Lncenc1 contributes to mouse ES cells pluripotency via stabilizing Klf4 mRNA. 更正:STAT3依赖性长非编码RNA Lncenc1通过稳定Klf4 mRNA促进小鼠ES细胞的多能性。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-27 DOI: 10.1093/bfgp/elad047
{"title":"Correction to: STAT3-dependent long non-coding RNA Lncenc1 contributes to mouse ES cells pluripotency via stabilizing Klf4 mRNA.","authors":"","doi":"10.1093/bfgp/elad047","DOIUrl":"10.1093/bfgp/elad047","url":null,"abstract":"","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"682"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling aging dynamics in the hematopoietic system insights from single-cell technologies. 单细胞技术揭示造血系统的衰老动态
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-27 DOI: 10.1093/bfgp/elae019
Xinrong Jin, Ruohan Zhang, Yunqi Fu, Qiunan Zhu, Liquan Hong, Aiwei Wu, Hu Wang

As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.

随着人口结构向老龄化社会转变,旨在减缓或逆转老龄化进程的战略变得越来越重要。衰老是人类许多慢性疾病的主要诱发因素。造血系统包括血细胞及其相关的骨髓微环境,错综复杂地参与造血、凝血、免疫调节和其他生理现象。衰老过程会引发造血系统内的各种变化,成为造血疾病的一系列风险因素,包括克隆造血、免疫衰老、骨髓增殖性肿瘤和白血病。新兴的单细胞技术为了解造血系统与年龄有关的变化提供了新的视角。在这篇综述中,我们总结了最近利用单细胞技术剖析造血系统衰老的研究。我们从基因组学、转录组学、表观基因组学、蛋白质组学、代谢组学和空间多组学等层面讨论了造血系统衰老过程中发生的细胞变化。最后,我们对单细胞技术的未来前景进行了展望,强调了单细胞技术可能给造血系统衰老研究领域带来的影响。
{"title":"Unveiling aging dynamics in the hematopoietic system insights from single-cell technologies.","authors":"Xinrong Jin, Ruohan Zhang, Yunqi Fu, Qiunan Zhu, Liquan Hong, Aiwei Wu, Hu Wang","doi":"10.1093/bfgp/elae019","DOIUrl":"10.1093/bfgp/elae019","url":null,"abstract":"<p><p>As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"639-650"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Briefings in Functional Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1