首页 > 最新文献

Briefings in Functional Genomics最新文献

英文 中文
DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. 深度漫步感知图注意网络与 CNN 用于 circRNA-药物敏感性关联识别。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-19 DOI: 10.1093/bfgp/elad053
Guanghui Li, Youjun Li, Cheng Liang, Jiawei Luo

Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA-drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA-drug sensitivity associations.

环状 RNA(circRNA)是一类广泛存在于细胞中的非编码 RNA 分子。最新研究表明,环状 RNA 在人类健康和疾病治疗中发挥着重要作用。由于通过生物学研究预测潜在的 circRNA 和药物敏感性联系不仅耗时费钱,而且效果极差,因此遇到了一些限制。因此,迫切需要开发一种新型计算方法,以提高预测 circRNA 与药物敏感性之间关联的效率和准确性。在此,我们介绍一种基于深度学习的计算方法--DGATCCDA,用于circRNA-药物敏感性关联鉴定。在 DGATCCDA 中,我们首先根据 circRNA 和药物的原始特征信息构建多模态网络。然后,我们采用 DeepWalk 感知图注意网络,从多模态网络中充分提取特征信息,得到节点的嵌入表示。具体来说,我们将 DeepWalk 和图注意网络结合起来,形成了 DeepWalk 感知图注意网络,它能有效捕捉图结构的全局和局部信息。从多模态网络中提取的特征通过层注意进行融合,最终利用内积法构建出 circRNA 与药物的关联矩阵,用于预测。5 倍交叉验证设置下的最终实验结果表明,DGATCCDA 的接收者工作特征曲线下面积平均值达到 91.18%,优于目前最先进的五种计算方法。我们还进一步指导了一项案例研究,其优异的结果也表明,DGATCCDA 是一种探索潜在 circRNA 与药物敏感性关联的有效计算方法。
{"title":"DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification.","authors":"Guanghui Li, Youjun Li, Cheng Liang, Jiawei Luo","doi":"10.1093/bfgp/elad053","DOIUrl":"10.1093/bfgp/elad053","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA-drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA-drug sensitivity associations.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"418-428"},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138806429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personalized differential expression analysis in triple-negative breast cancer. 三阴性乳腺癌的个性化差异表达分析
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-19 DOI: 10.1093/bfgp/elad057
Hao Cai, Liangbo Chen, Shuxin Yang, Ronghong Jiang, You Guo, Ming He, Yun Luo, Guini Hong, Hongdong Li, Kai Song

Identification of individual-level differentially expressed genes (DEGs) is a pre-step for the analysis of disease-specific biological mechanisms and precision medicine. Previous algorithms cannot balance accuracy and sufficient statistical power. Herein, RankCompV2, designed for identifying population-level DEGs based on relative expression orderings, was adjusted to identify individual-level DEGs. Furthermore, an optimized version of individual-level RankCompV2, named as RankCompV2.1, was designed based on the assumption that the rank positions of genes and relative rank differences of gene pairs would influence the identification of individual-level DEGs. In comparison to other individualized analysis algorithms, RankCompV2.1 performed better on statistical power, computational efficiency, and acquired coequal accuracy in both simulation and real paired cancer-normal data from ten cancer types. Besides, single sample GSEA and Gene Set Variation Analysis analysis showed that pathways enriched with up-regulated and down-regulated genes presented higher and lower enrichment scores, respectively. Furthermore, we identified 16 genes that were universally deregulated in 966 triple-negative breast cancer (TNBC) samples and interacted with Food and Drug Administration (FDA)-approved drugs or antineoplastic agents, indicating notable therapeutic targets for TNBC. In addition, we also identified genes with highly variable deregulation status and used these genes to cluster TNBC samples into three subgroups with different prognoses. The subgroup with the poorest outcome was characterized by down-regulated immune-regulated pathways, signal transduction pathways, and apoptosis-related pathways. Protein-protein interaction network analysis revealed that OAS family genes may be promising drug targets to activate tumor immunity in this subgroup. In conclusion, RankCompV2.1 is capable of identifying individual-level DEGs with high accuracy and statistical power, analyzing mechanisms of carcinogenesis and exploring therapeutic strategy.

鉴定个体水平的差异表达基因(DEGs)是分析疾病特异性生物学机制和精准医疗的前奏。以往的算法无法兼顾准确性和足够的统计能力。在此,RankCompV2 被设计用于根据相对表达排序识别群体水平的 DEGs,并被调整用于识别个体水平的 DEGs。此外,基于基因的秩位置和基因对的相对秩差异会影响个体水平 DEGs 识别的假设,设计了个体水平 RankCompV2 的优化版本,命名为 RankCompV2.1。与其他个体化分析算法相比,RankCompV2.1 在统计能力、计算效率和十种癌症类型的真实癌症-正常配对数据中都有更好的表现。此外,单样本 GSEA 和基因组变异分析表明,富集了上调基因和下调基因的通路的富集得分分别较高和较低。此外,我们还在966个三阴性乳腺癌(TNBC)样本中发现了16个普遍失调的基因,这些基因与美国食品药品管理局(FDA)批准的药物或抗肿瘤药物有相互作用,表明TNBC有显著的治疗靶点。此外,我们还发现了脱调状态变化较大的基因,并利用这些基因将 TNBC 样本分为三个预后不同的亚组。预后最差的亚组的特点是免疫调节通路、信号转导通路和细胞凋亡相关通路下调。蛋白-蛋白相互作用网络分析显示,OAS家族基因可能是激活该亚组肿瘤免疫的药物靶点。总之,RankCompV2.1 能够以较高的准确度和统计能力识别个体水平的 DEGs,分析致癌机制并探索治疗策略。
{"title":"Personalized differential expression analysis in triple-negative breast cancer.","authors":"Hao Cai, Liangbo Chen, Shuxin Yang, Ronghong Jiang, You Guo, Ming He, Yun Luo, Guini Hong, Hongdong Li, Kai Song","doi":"10.1093/bfgp/elad057","DOIUrl":"10.1093/bfgp/elad057","url":null,"abstract":"<p><p>Identification of individual-level differentially expressed genes (DEGs) is a pre-step for the analysis of disease-specific biological mechanisms and precision medicine. Previous algorithms cannot balance accuracy and sufficient statistical power. Herein, RankCompV2, designed for identifying population-level DEGs based on relative expression orderings, was adjusted to identify individual-level DEGs. Furthermore, an optimized version of individual-level RankCompV2, named as RankCompV2.1, was designed based on the assumption that the rank positions of genes and relative rank differences of gene pairs would influence the identification of individual-level DEGs. In comparison to other individualized analysis algorithms, RankCompV2.1 performed better on statistical power, computational efficiency, and acquired coequal accuracy in both simulation and real paired cancer-normal data from ten cancer types. Besides, single sample GSEA and Gene Set Variation Analysis analysis showed that pathways enriched with up-regulated and down-regulated genes presented higher and lower enrichment scores, respectively. Furthermore, we identified 16 genes that were universally deregulated in 966 triple-negative breast cancer (TNBC) samples and interacted with Food and Drug Administration (FDA)-approved drugs or antineoplastic agents, indicating notable therapeutic targets for TNBC. In addition, we also identified genes with highly variable deregulation status and used these genes to cluster TNBC samples into three subgroups with different prognoses. The subgroup with the poorest outcome was characterized by down-regulated immune-regulated pathways, signal transduction pathways, and apoptosis-related pathways. Protein-protein interaction network analysis revealed that OAS family genes may be promising drug targets to activate tumor immunity in this subgroup. In conclusion, RankCompV2.1 is capable of identifying individual-level DEGs with high accuracy and statistical power, analyzing mechanisms of carcinogenesis and exploring therapeutic strategy.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"495-506"},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139405397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THGNCDA: circRNA-disease association prediction based on triple heterogeneous graph network. THGNCDA:基于三重异构图网络的circRNA疾病关联预测。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-19 DOI: 10.1093/bfgp/elad042
Yuwei Guo, Ming Yi

Circular RNAs (circRNAs) are a class of noncoding RNA molecules featuring a closed circular structure. They have been proved to play a significant role in the reduction of many diseases. Besides, many researches in clinical diagnosis and treatment of disease have revealed that circRNA can be considered as a potential biomarker. Therefore, understanding the association of circRNA and diseases can help to forecast some disorders of life activities. However, traditional biological experimental methods are time-consuming. The most common method for circRNA-disease association prediction on the basis of machine learning can avoid this, which relies on diverse data. Nevertheless, topological information of circRNA and disease usually is not involved in these methods. Moreover, circRNAs can be associated with diseases through miRNAs. With these considerations, we proposed a novel method, named THGNCDA, to predict the association between circRNAs and diseases. Specifically, for a certain pair of circRNA and disease, we employ a graph neural network with attention to learn the importance of its each neighbor. In addition, we use a multilayer convolutional neural network to explore the relationship of a circRNA-disease pair based on their attributes. When calculating embeddings, we introduce the information of miRNAs. The results of experiments show that THGNCDA outperformed the SOTA methods. In addition, it can be observed that our method gives a better recall rate. To confirm the significance of attention, we conducted extensive ablation studies. Case studies on Urinary Bladder and Prostatic Neoplasms further show THGNCDA's ability in discovering known relationships between circRNA candidates and diseases.

环状核糖核酸(circRNAs)是一类具有闭合环状结构的非编码核糖核酸分子。它们已被证明在减少许多疾病方面发挥着重要作用。此外,许多临床诊断和治疗疾病的研究表明,circRNA可以被认为是一种潜在的生物标志物。因此,了解circRNA与疾病的关系有助于预测一些生活活动障碍。然而,传统的生物实验方法是耗时的。基于机器学习的circRNA疾病关联预测最常见的方法可以避免这种情况,因为它依赖于不同的数据。然而,circRNA和疾病的拓扑信息通常不涉及这些方法。此外,circRNA可以通过miRNA与疾病相关。考虑到这些因素,我们提出了一种新的方法,命名为THGNCDA,来预测circRNA与疾病之间的关联。具体来说,对于某对circRNA和疾病,我们使用一个有注意力的图神经网络来学习其每个邻居的重要性。此外,我们使用多层卷积神经网络来探索基于circRNA疾病对属性的关系。在计算嵌入时,我们引入了miRNA的信息。实验结果表明,THGNCDA优于SOTA方法。此外,可以观察到,我们的方法给出了更好的召回率。为了确认注意力的重要性,我们进行了广泛的消融研究。膀胱和前列腺肿瘤的案例研究进一步表明,THGNCDA有能力发现circRNA候选物与疾病之间的已知关系。
{"title":"THGNCDA: circRNA-disease association prediction based on triple heterogeneous graph network.","authors":"Yuwei Guo, Ming Yi","doi":"10.1093/bfgp/elad042","DOIUrl":"10.1093/bfgp/elad042","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a class of noncoding RNA molecules featuring a closed circular structure. They have been proved to play a significant role in the reduction of many diseases. Besides, many researches in clinical diagnosis and treatment of disease have revealed that circRNA can be considered as a potential biomarker. Therefore, understanding the association of circRNA and diseases can help to forecast some disorders of life activities. However, traditional biological experimental methods are time-consuming. The most common method for circRNA-disease association prediction on the basis of machine learning can avoid this, which relies on diverse data. Nevertheless, topological information of circRNA and disease usually is not involved in these methods. Moreover, circRNAs can be associated with diseases through miRNAs. With these considerations, we proposed a novel method, named THGNCDA, to predict the association between circRNAs and diseases. Specifically, for a certain pair of circRNA and disease, we employ a graph neural network with attention to learn the importance of its each neighbor. In addition, we use a multilayer convolutional neural network to explore the relationship of a circRNA-disease pair based on their attributes. When calculating embeddings, we introduce the information of miRNAs. The results of experiments show that THGNCDA outperformed the SOTA methods. In addition, it can be observed that our method gives a better recall rate. To confirm the significance of attention, we conducted extensive ablation studies. Case studies on Urinary Bladder and Prostatic Neoplasms further show THGNCDA's ability in discovering known relationships between circRNA candidates and diseases.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"384-394"},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic analysis and characterization of long non-coding RNA genes in inflammatory bowel disease. 炎症性肠病中长非编码RNA基因的系统分析和表征。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-19 DOI: 10.1093/bfgp/elad044
Rania Velissari, Mirolyuba Ilieva, James Dao, Henry E Miller, Jens Hedelund Madsen, Jan Gorodkin, Masanori Aikawa, Hideshi Ishii, Shizuka Uchida

The cases of inflammatory bowel disease (IBD) are increasing rapidly around the world. Due to the multifactorial causes of IBD, there is an urgent need to understand the pathogenesis of IBD. As such, the usage of high-throughput techniques to profile genetic mutations, microbiome environments, transcriptome and proteome (e.g. lipidome) is increasing to understand the molecular changes associated with IBD, including two major etiologies of IBD: Crohn disease (CD) and ulcerative colitis (UC). In the case of transcriptome data, RNA sequencing (RNA-seq) technique is used frequently. However, only protein-coding genes are analyzed, leaving behind all other RNAs, including non-coding RNAs (ncRNAs) to be unexplored. Among these ncRNAs, long non-coding RNAs (lncRNAs) may hold keys to understand the pathogenesis of IBD as lncRNAs are expressed in a cell/tissue-specific manner and dysregulated in a disease, such as IBD. However, it is rare that RNA-seq data are analyzed for lncRNAs. To fill this gap in knowledge, we re-analyzed RNA-seq data of CD and UC patients compared with the healthy donors to dissect the expression profiles of lncRNA genes. As inflammation plays key roles in the pathogenesis of IBD, we conducted loss-of-function experiments to provide functional data of IBD-specific lncRNA, lung cancer associated transcript 1 (LUCAT1), in an in vitro model of macrophage polarization. To further facilitate the lncRNA research in IBD, we built a web database, IBDB (https://ibd-db.shinyapps.io/IBDB/), to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in IBD patients compared with healthy donors.

炎症性肠病(IBD)的病例在世界各地迅速增加。由于IBD的多因素原因,迫切需要了解IBD的发病机制。因此,越来越多地使用高通量技术来分析基因突变、微生物组环境、转录组和蛋白质组(如脂质体),以了解与IBD相关的分子变化,包括IBD的两个主要病因:克罗恩病(CD)和溃疡性结肠炎(UC)。在转录组数据的情况下,经常使用RNA测序(RNA-seq)技术。然而,只有蛋白质编码基因被分析,留下了所有其他RNA,包括非编码RNA(ncRNA)有待探索。在这些ncRNA中,长非编码RNA(lncRNA)可能是理解IBD发病机制的关键,因为lncRNA以细胞/组织特异性方式表达,并在疾病(如IBD)中失调。然而,很少对RNA-seq数据进行lncRNA分析。为了填补这一知识空白,我们重新分析了CD和UC患者与健康供体相比的RNA-seq数据,以剖析lncRNA基因的表达谱。由于炎症在IBD的发病机制中起着关键作用,我们进行了功能缺失实验,以在巨噬细胞极化的体外模型中提供IBD特异性lncRNA,即肺癌相关转录物1(LUCAT1)的功能数据。为了进一步促进IBD中lncRNA的研究,我们建立了一个网络数据库IBDB(https://ibd-db.shinyapps.io/IBDB/),为IBD患者与健康供体相比蛋白质编码和lncRNA基因的表达谱分析提供一站式服务。
{"title":"Systematic analysis and characterization of long non-coding RNA genes in inflammatory bowel disease.","authors":"Rania Velissari, Mirolyuba Ilieva, James Dao, Henry E Miller, Jens Hedelund Madsen, Jan Gorodkin, Masanori Aikawa, Hideshi Ishii, Shizuka Uchida","doi":"10.1093/bfgp/elad044","DOIUrl":"10.1093/bfgp/elad044","url":null,"abstract":"<p><p>The cases of inflammatory bowel disease (IBD) are increasing rapidly around the world. Due to the multifactorial causes of IBD, there is an urgent need to understand the pathogenesis of IBD. As such, the usage of high-throughput techniques to profile genetic mutations, microbiome environments, transcriptome and proteome (e.g. lipidome) is increasing to understand the molecular changes associated with IBD, including two major etiologies of IBD: Crohn disease (CD) and ulcerative colitis (UC). In the case of transcriptome data, RNA sequencing (RNA-seq) technique is used frequently. However, only protein-coding genes are analyzed, leaving behind all other RNAs, including non-coding RNAs (ncRNAs) to be unexplored. Among these ncRNAs, long non-coding RNAs (lncRNAs) may hold keys to understand the pathogenesis of IBD as lncRNAs are expressed in a cell/tissue-specific manner and dysregulated in a disease, such as IBD. However, it is rare that RNA-seq data are analyzed for lncRNAs. To fill this gap in knowledge, we re-analyzed RNA-seq data of CD and UC patients compared with the healthy donors to dissect the expression profiles of lncRNA genes. As inflammation plays key roles in the pathogenesis of IBD, we conducted loss-of-function experiments to provide functional data of IBD-specific lncRNA, lung cancer associated transcript 1 (LUCAT1), in an in vitro model of macrophage polarization. To further facilitate the lncRNA research in IBD, we built a web database, IBDB (https://ibd-db.shinyapps.io/IBDB/), to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in IBD patients compared with healthy donors.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"395-405"},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41157627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of deep learning-based variant calling methods. 基于深度学习的变体调用方法综述。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-19 DOI: 10.1093/bfgp/elae003
Ren Junjun, Zhang Zhengqian, Wu Ying, Wang Jialiang, Liu Yongzhuang

Genome sequencing data have become increasingly important in the field of personalized medicine and diagnosis. However, accurately detecting genomic variations remains a challenging task. Traditional variation detection methods rely on manual inspection or predefined rules, which can be time-consuming and prone to errors. Consequently, deep learning-based approaches for variation detection have gained attention due to their ability to automatically learn genomic features that distinguish between variants. In our review, we discuss the recent advancements in deep learning-based algorithms for detecting small variations and structural variations in genomic data, as well as their advantages and limitations.

基因组测序数据在个性化医疗和诊断领域变得越来越重要。然而,准确检测基因组变异仍然是一项具有挑战性的任务。传统的变异检测方法依赖于人工检测或预定义规则,既耗时又容易出错。因此,基于深度学习的变异检测方法因其能够自动学习区分变异的基因组特征而备受关注。在综述中,我们将讨论基于深度学习的算法在检测基因组数据中的微小变异和结构变异方面的最新进展,以及它们的优势和局限性。
{"title":"A comprehensive review of deep learning-based variant calling methods.","authors":"Ren Junjun, Zhang Zhengqian, Wu Ying, Wang Jialiang, Liu Yongzhuang","doi":"10.1093/bfgp/elae003","DOIUrl":"10.1093/bfgp/elae003","url":null,"abstract":"<p><p>Genome sequencing data have become increasingly important in the field of personalized medicine and diagnosis. However, accurately detecting genomic variations remains a challenging task. Traditional variation detection methods rely on manual inspection or predefined rules, which can be time-consuming and prone to errors. Consequently, deep learning-based approaches for variation detection have gained attention due to their ability to automatically learn genomic features that distinguish between variants. In our review, we discuss the recent advancements in deep learning-based algorithms for detecting small variations and structural variations in genomic data, as well as their advantages and limitations.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"303-313"},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting drug synergy using a network propagation inspired machine learning framework. 利用网络传播启发的机器学习框架预测药物协同作用。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-19 DOI: 10.1093/bfgp/elad056
Qing Jin, Xianze Zhang, Diwei Huo, Hongbo Xie, Denan Zhang, Lei Liu, Yashuang Zhao, Xiujie Chen

Combination therapy is a promising strategy for cancers, increasing therapeutic options and reducing drug resistance. Yet, systematic identification of efficacious drug combinations is limited by the combinatorial explosion caused by a large number of possible drug pairs and diseases. At present, machine learning techniques have been widely applied to predict drug combinations, but most studies rely on the response of drug combinations to specific cell lines and are not entirely satisfactory in terms of mechanism interpretability and model scalability. Here, we proposed a novel network propagation-based machine learning framework to predict synergistic drug combinations. Based on the topological information of a comprehensive drug-drug association network, we innovatively introduced an affinity score between drug pairs as one of the features to train machine learning models. We applied network-based strategy to evaluate their therapeutic potential to different cancer types. Finally, we identified 17 specific-, 21 general- and 40 broad-spectrum antitumor drug combinations, in which 69% drug combinations were validated by vitro cellular experiments, 83% drug combinations were validated by literature reports and 100% drug combinations were validated by biological function analyses. By quantifying the network relationships between drug targets and cancer-related driver genes in the human protein-protein interactome, we show the existence of four distinct patterns of drug-drug-disease relationships. We also revealed that 32 biological pathways were correlated with the synergistic mechanism of broad-spectrum antitumor drug combinations. Overall, our model offers a powerful scalable screening framework for cancer treatments.

联合疗法是一种很有前景的癌症治疗策略,它能增加治疗选择并减少耐药性。然而,由于存在大量可能的药物配对和疾病,导致组合爆炸,从而限制了有效药物组合的系统识别。目前,机器学习技术已被广泛应用于预测药物组合,但大多数研究依赖于药物组合对特定细胞系的反应,在机制可解释性和模型可扩展性方面并不完全令人满意。在此,我们提出了一种新颖的基于网络传播的机器学习框架来预测协同药物组合。基于全面的药物关联网络的拓扑信息,我们创新性地引入了药物对之间的亲和力得分作为训练机器学习模型的特征之一。我们应用基于网络的策略来评估它们对不同癌症类型的治疗潜力。最后,我们确定了17种特异性抗肿瘤药物组合、21种一般性抗肿瘤药物组合和40种广谱抗肿瘤药物组合,其中69%的药物组合通过体外细胞实验验证,83%的药物组合通过文献报道验证,100%的药物组合通过生物功能分析验证。通过量化人类蛋白质-蛋白质相互作用组中药物靶点与癌症相关驱动基因之间的网络关系,我们发现存在四种不同的药物-药物-疾病关系模式。我们还揭示了 32 条生物通路与广谱抗肿瘤药物组合的协同机制相关。总之,我们的模型为癌症治疗提供了一个强大的可扩展筛选框架。
{"title":"Predicting drug synergy using a network propagation inspired machine learning framework.","authors":"Qing Jin, Xianze Zhang, Diwei Huo, Hongbo Xie, Denan Zhang, Lei Liu, Yashuang Zhao, Xiujie Chen","doi":"10.1093/bfgp/elad056","DOIUrl":"10.1093/bfgp/elad056","url":null,"abstract":"<p><p>Combination therapy is a promising strategy for cancers, increasing therapeutic options and reducing drug resistance. Yet, systematic identification of efficacious drug combinations is limited by the combinatorial explosion caused by a large number of possible drug pairs and diseases. At present, machine learning techniques have been widely applied to predict drug combinations, but most studies rely on the response of drug combinations to specific cell lines and are not entirely satisfactory in terms of mechanism interpretability and model scalability. Here, we proposed a novel network propagation-based machine learning framework to predict synergistic drug combinations. Based on the topological information of a comprehensive drug-drug association network, we innovatively introduced an affinity score between drug pairs as one of the features to train machine learning models. We applied network-based strategy to evaluate their therapeutic potential to different cancer types. Finally, we identified 17 specific-, 21 general- and 40 broad-spectrum antitumor drug combinations, in which 69% drug combinations were validated by vitro cellular experiments, 83% drug combinations were validated by literature reports and 100% drug combinations were validated by biological function analyses. By quantifying the network relationships between drug targets and cancer-related driver genes in the human protein-protein interactome, we show the existence of four distinct patterns of drug-drug-disease relationships. We also revealed that 32 biological pathways were correlated with the synergistic mechanism of broad-spectrum antitumor drug combinations. Overall, our model offers a powerful scalable screening framework for cancer treatments.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"429-440"},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139106947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competing endogenous RNAs in head and neck squamous cell carcinoma: a review. 头颈部鳞状细胞癌中竞争性内源性RNA的研究进展。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-19 DOI: 10.1093/bfgp/elad049
Avantika Agrawal, Vaibhav Vindal

Our understanding of RNA biology has evolved with recent advances in research from it being a non-functional product to molecules of the genome with specific regulatory functions. Competitive endogenous RNA (ceRNA), which has gained prominence over time as an essential part of post-transcriptional regulatory mechanism, is one such example. The ceRNA biology hypothesis states that coding RNA and non-coding RNA co-regulate each other using microRNA (miRNA) response elements. The ceRNA components include long non-coding RNAs, pseudogene and circular RNAs that exert their effect by interacting with miRNA and regulate the expression level of its target genes. Emerging evidence has revealed that the dysregulation of the ceRNA network is attributed to the pathogenesis of various cancers, including the head and neck squamous cell carcinoma (HNSCC). This is the most prevalent cancer developed from the mucosal epithelium in the lip, oral cavity, larynx and pharynx. Although many efforts have been made to comprehend the cause and subsequent treatment of HNSCC, the morbidity and mortality rate remains high. Hence, there is an urgent need to understand the holistic progression of HNSCC, mediated by ceRNA, that can have immense relevance in identifying novel biomarkers with a defined therapeutic intervention. In this review, we have made an effort to highlight the ceRNA biology hypothesis with a focus on its involvement in the progression of HNSCC. For the identification of such ceRNAs, we have additionally highlighted a number of databases and tools.

我们对RNA生物学的理解随着研究的最新进展而发展,从一种非功能性产物到具有特定调节功能的基因组分子。竞争性内源性RNA(ceRNA)就是这样一个例子,随着时间的推移,它作为转录后调控机制的重要组成部分而日益突出。ceRNA生物学假说指出,编码RNA和非编码RNA利用微小RNA(miRNA)反应元件相互协同调节。ceRNA成分包括长的非编码RNA、假基因和环状RNA,它们通过与miRNA相互作用发挥作用并调节其靶基因的表达水平。新出现的证据表明,ceRNA网络的失调可归因于各种癌症的发病机制,包括头颈部鳞状细胞癌(HNSCC)。这是最常见的癌症,由唇、口腔、喉部和咽部的粘膜上皮发展而来。尽管已经做出了许多努力来理解HNSCC的病因和随后的治疗,但发病率和死亡率仍然很高。因此,迫切需要了解由ceRNA介导的HNSCC的整体进展,这在确定具有明确治疗干预的新生物标志物方面具有巨大的相关性。在这篇综述中,我们努力强调ceRNA生物学假说,重点关注其在HNSCC进展中的作用。为了识别这种ceRNA,我们还强调了一些数据库和工具。
{"title":"Competing endogenous RNAs in head and neck squamous cell carcinoma: a review.","authors":"Avantika Agrawal, Vaibhav Vindal","doi":"10.1093/bfgp/elad049","DOIUrl":"10.1093/bfgp/elad049","url":null,"abstract":"<p><p>Our understanding of RNA biology has evolved with recent advances in research from it being a non-functional product to molecules of the genome with specific regulatory functions. Competitive endogenous RNA (ceRNA), which has gained prominence over time as an essential part of post-transcriptional regulatory mechanism, is one such example. The ceRNA biology hypothesis states that coding RNA and non-coding RNA co-regulate each other using microRNA (miRNA) response elements. The ceRNA components include long non-coding RNAs, pseudogene and circular RNAs that exert their effect by interacting with miRNA and regulate the expression level of its target genes. Emerging evidence has revealed that the dysregulation of the ceRNA network is attributed to the pathogenesis of various cancers, including the head and neck squamous cell carcinoma (HNSCC). This is the most prevalent cancer developed from the mucosal epithelium in the lip, oral cavity, larynx and pharynx. Although many efforts have been made to comprehend the cause and subsequent treatment of HNSCC, the morbidity and mortality rate remains high. Hence, there is an urgent need to understand the holistic progression of HNSCC, mediated by ceRNA, that can have immense relevance in identifying novel biomarkers with a defined therapeutic intervention. In this review, we have made an effort to highlight the ceRNA biology hypothesis with a focus on its involvement in the progression of HNSCC. For the identification of such ceRNAs, we have additionally highlighted a number of databases and tools.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"335-348"},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crosstalk between genomic variants and DNA methylation in FLT3 mutant acute myeloid leukemia. FLT3突变型急性髓性白血病中基因组变异与DNA甲基化之间的相互关系
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-30 DOI: 10.1093/bfgp/elae028
Bac Dao, Van Ngu Trinh, Huy V Nguyen, Hoa L Nguyen, Thuc Duy Le, Phuc Loi Luu

Acute myeloid leukemia (AML) is a type of blood cancer with diverse genetic variations and DNA methylation alterations. By studying the interaction of gene mutations, expression, and DNA methylation, we aimed to gain valuable insights into the processes that lead to block differentiation in AML. We analyzed TCGA-LAML data (173 samples) with RNA sequencing and DNA methylation arrays, comparing FLT3 mutant (48) and wild-type (125) cases. We conducted differential gene expression analysis using cBioPortal, identified DNA methylation differences with ChAMP tool, and correlated them with gene expression changes. Gene set enrichment analysis (g:Profiler) revealed significant biological processes and pathways. ShinyGo and GeneCards were used to find potential transcription factors and their binding sites among significant genes. We found significant differentially expressed genes (DEGs) negatively correlated with their most significant methylation probes (Pearson correlation coefficient of -0.49, P-value <0.001) between FLT3 mutant and wild-type groups. Moreover, our exploration of 450 k CpG sites uncovered a global hypo-methylated status in 168 DEGs. Notably, these methylation changes were enriched in the promoter regions of Homebox superfamily gene, which are crucial in transcriptional-regulating pathways in blood cancer. Furthermore, in FLT3 mutant AML patient samples, we observed overexpress of WT1, a transcription factor known to bind homeobox gene family. This finding suggests a potential mechanism by which WT1 recruits TET2 to demethylate specific genomic regions. Integrating gene expression and DNA methylation analyses shed light on the impact of FLT3 mutations on cancer cell development and differentiation, supporting a two-hit model in AML. This research advances understanding of AML and fosters targeted therapeutic strategy development.

急性髓性白血病(AML)是一种具有多种基因变异和DNA甲基化改变的血癌。通过研究基因突变、表达和DNA甲基化之间的相互作用,我们旨在获得有关导致急性髓细胞白血病分化受阻过程的宝贵见解。我们用RNA测序和DNA甲基化阵列分析了TCGA-LAML数据(173个样本),比较了FLT3突变型(48个)和野生型(125个)病例。我们使用 cBioPortal 进行了差异基因表达分析,使用 ChAMP 工具确定了 DNA 甲基化差异,并将其与基因表达变化相关联。基因组富集分析(g:Profiler)揭示了重要的生物过程和通路。我们使用 ShinyGo 和 GeneCards 寻找重要基因中的潜在转录因子及其结合位点。我们发现重要的差异表达基因(DEGs)与其最重要的甲基化探针呈负相关(Pearson 相关系数为 -0.49,P-value 为
{"title":"Crosstalk between genomic variants and DNA methylation in FLT3 mutant acute myeloid leukemia.","authors":"Bac Dao, Van Ngu Trinh, Huy V Nguyen, Hoa L Nguyen, Thuc Duy Le, Phuc Loi Luu","doi":"10.1093/bfgp/elae028","DOIUrl":"https://doi.org/10.1093/bfgp/elae028","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a type of blood cancer with diverse genetic variations and DNA methylation alterations. By studying the interaction of gene mutations, expression, and DNA methylation, we aimed to gain valuable insights into the processes that lead to block differentiation in AML. We analyzed TCGA-LAML data (173 samples) with RNA sequencing and DNA methylation arrays, comparing FLT3 mutant (48) and wild-type (125) cases. We conducted differential gene expression analysis using cBioPortal, identified DNA methylation differences with ChAMP tool, and correlated them with gene expression changes. Gene set enrichment analysis (g:Profiler) revealed significant biological processes and pathways. ShinyGo and GeneCards were used to find potential transcription factors and their binding sites among significant genes. We found significant differentially expressed genes (DEGs) negatively correlated with their most significant methylation probes (Pearson correlation coefficient of -0.49, P-value <0.001) between FLT3 mutant and wild-type groups. Moreover, our exploration of 450 k CpG sites uncovered a global hypo-methylated status in 168 DEGs. Notably, these methylation changes were enriched in the promoter regions of Homebox superfamily gene, which are crucial in transcriptional-regulating pathways in blood cancer. Furthermore, in FLT3 mutant AML patient samples, we observed overexpress of WT1, a transcription factor known to bind homeobox gene family. This finding suggests a potential mechanism by which WT1 recruits TET2 to demethylate specific genomic regions. Integrating gene expression and DNA methylation analyses shed light on the impact of FLT3 mutations on cancer cell development and differentiation, supporting a two-hit model in AML. This research advances understanding of AML and fosters targeted therapeutic strategy development.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. 探索 RNA 中 N4-乙酰胞嘧啶修饰对非肿瘤性疾病的影响:揭示其在发病机制中的作用和治疗机会。
IF 4 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-06 DOI: 10.1093/bfgp/elae020
Keyu Wan, Tiantian Nie, Wenhao Ouyang, Yunjing Xiong, Jing Bian, Ying Huang, Li Ling, Zhenjun Huang, Xianhua Zhu

RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving "writers," "readers," and "erasers" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.

RNA 修饰不仅包括甲基化修饰(如 m6A),还包括乙酰化修饰,它们构成了一种复杂的相互作用,涉及 "写者"、"读者 "和 "擦除者",在生长、遗传和疾病中发挥着至关重要的作用。N4-乙酰胞苷(ac4C)是一种古老而高度保守的 RNA 修饰,在多种疾病的发病机制中发挥着深远的作用。本综述深入探讨了 ac4C 修饰在疾病中的功能性影响,并为疾病治疗提供了新的视角。这些研究为了解转录后 RNA 修饰的生物学功能及其在疾病机制中的潜在作用提供了重要见解,为疾病治疗提供了新的视角和策略。
{"title":"Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities.","authors":"Keyu Wan, Tiantian Nie, Wenhao Ouyang, Yunjing Xiong, Jing Bian, Ying Huang, Li Ling, Zhenjun Huang, Xianhua Zhu","doi":"10.1093/bfgp/elae020","DOIUrl":"https://doi.org/10.1093/bfgp/elae020","url":null,"abstract":"<p><p>RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving \"writers,\" \"readers,\" and \"erasers\" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting gastric cancer tumor mutational burden from histopathological images using multimodal deep learning. 利用多模态深度学习从组织病理学图像预测胃癌肿瘤突变负荷
IF 4 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-15 DOI: 10.1093/bfgp/elad032
Jing Li, Haiyan Liu, Wei Liu, Peijun Zong, Kaimei Huang, Zibo Li, Haigang Li, Ting Xiong, Geng Tian, Chun Li, Jialiang Yang

Tumor mutational burden (TMB) is a significant predictive biomarker for selecting patients that may benefit from immune checkpoint inhibitor therapy. Whole exome sequencing is a common method for measuring TMB; however, its clinical application is limited by the high cost and time-consuming wet-laboratory experiments and bioinformatics analysis. To address this challenge, we downloaded multimodal data of 326 gastric cancer patients from The Cancer Genome Atlas, including histopathological images, clinical data and various molecular data. Using these data, we conducted a comprehensive analysis to investigate the relationship between TMB, clinical factors, gene expression and image features extracted from hematoxylin and eosin images. We further explored the feasibility of predicting TMB levels, i.e. high and low TMB, by utilizing a residual network (Resnet)-based deep learning algorithm for histopathological image analysis. Moreover, we developed a multimodal fusion deep learning model that combines histopathological images with omics data to predict TMB levels. We evaluated the performance of our models against various state-of-the-art methods using different TMB thresholds and obtained promising results. Specifically, our histopathological image analysis model achieved an area under curve (AUC) of 0.749. Notably, the multimodal fusion model significantly outperformed the model that relied only on histopathological images, with the highest AUC of 0.971. Our findings suggest that histopathological images could be used with reasonable accuracy to predict TMB levels in gastric cancer patients, while multimodal deep learning could achieve even higher levels of accuracy. This study sheds new light on predicting TMB in gastric cancer patients.

肿瘤突变负荷(TMB)是选择可能从免疫检查点抑制剂治疗中获益的患者的重要预测性生物标志物。全外显子组测序是测量TMB的常用方法;然而,其临床应用受到了高成本、耗时的湿实验室实验和生物信息学分析的限制。为了应对这一挑战,我们从癌症基因组图谱中下载了 326 例胃癌患者的多模态数据,包括组织病理学图像、临床数据和各种分子数据。利用这些数据,我们进行了综合分析,研究 TMB、临床因素、基因表达以及从苏木精和伊红图像中提取的图像特征之间的关系。我们进一步探索了利用基于残差网络(Resnet)的深度学习算法进行组织病理学图像分析,从而预测 TMB 水平(即高 TMB 和低 TMB)的可行性。此外,我们还开发了一种多模态融合深度学习模型,将组织病理学图像与omics数据结合起来预测TMB水平。我们使用不同的 TMB 阈值评估了我们的模型与各种最先进方法的性能,并取得了令人满意的结果。具体来说,我们的组织病理学图像分析模型的曲线下面积(AUC)达到了 0.749。值得注意的是,多模态融合模型的表现明显优于仅依赖组织病理学图像的模型,AUC 最高,达到 0.971。我们的研究结果表明,组织病理学图像可用于预测胃癌患者的 TMB 水平,且准确度较高,而多模态深度学习可达到更高的准确度。这项研究为预测胃癌患者的 TMB 带来了新的启示。
{"title":"Predicting gastric cancer tumor mutational burden from histopathological images using multimodal deep learning.","authors":"Jing Li, Haiyan Liu, Wei Liu, Peijun Zong, Kaimei Huang, Zibo Li, Haigang Li, Ting Xiong, Geng Tian, Chun Li, Jialiang Yang","doi":"10.1093/bfgp/elad032","DOIUrl":"10.1093/bfgp/elad032","url":null,"abstract":"<p><p>Tumor mutational burden (TMB) is a significant predictive biomarker for selecting patients that may benefit from immune checkpoint inhibitor therapy. Whole exome sequencing is a common method for measuring TMB; however, its clinical application is limited by the high cost and time-consuming wet-laboratory experiments and bioinformatics analysis. To address this challenge, we downloaded multimodal data of 326 gastric cancer patients from The Cancer Genome Atlas, including histopathological images, clinical data and various molecular data. Using these data, we conducted a comprehensive analysis to investigate the relationship between TMB, clinical factors, gene expression and image features extracted from hematoxylin and eosin images. We further explored the feasibility of predicting TMB levels, i.e. high and low TMB, by utilizing a residual network (Resnet)-based deep learning algorithm for histopathological image analysis. Moreover, we developed a multimodal fusion deep learning model that combines histopathological images with omics data to predict TMB levels. We evaluated the performance of our models against various state-of-the-art methods using different TMB thresholds and obtained promising results. Specifically, our histopathological image analysis model achieved an area under curve (AUC) of 0.749. Notably, the multimodal fusion model significantly outperformed the model that relied only on histopathological images, with the highest AUC of 0.971. Our findings suggest that histopathological images could be used with reasonable accuracy to predict TMB levels in gastric cancer patients, while multimodal deep learning could achieve even higher levels of accuracy. This study sheds new light on predicting TMB in gastric cancer patients.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"228-238"},"PeriodicalIF":4.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9965530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Briefings in Functional Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1