Mohamed Azzam, Ziyang Xu, Ruobing Liu, Lie Li, Kah Meng Soh, Kishore B Challagundla, Shibiao Wan, Jieqiong Wang
The study of brain age has emerged over the past decade, aiming to estimate a person's age based on brain imaging scans. Ideally, predicted brain age should match chronological age in healthy individuals. However, brain structure and function change in the presence of brain-related diseases. Consequently, brain age also changes in affected individuals, making the brain age gap (BAG)-the difference between brain age and chronological age-a potential biomarker for brain health, early screening, and identifying age-related cognitive decline and disorders. With the recent successes of artificial intelligence in healthcare, it is essential to track the latest advancements and highlight promising directions. This review paper presents recent machine learning techniques used in brain age estimation (BAE) studies. Typically, BAE models involve developing a machine learning regression model to capture age-related variations in brain structure from imaging scans of healthy individuals and automatically predict brain age for new subjects. The process also involves estimating BAG as a measure of brain health. While we discuss recent clinical applications of BAE methods, we also review studies of biological age that can be integrated into BAE research. Finally, we point out the current limitations of BAE's studies.
{"title":"A review of artificial intelligence-based brain age estimation and its applications for related diseases.","authors":"Mohamed Azzam, Ziyang Xu, Ruobing Liu, Lie Li, Kah Meng Soh, Kishore B Challagundla, Shibiao Wan, Jieqiong Wang","doi":"10.1093/bfgp/elae042","DOIUrl":"10.1093/bfgp/elae042","url":null,"abstract":"<p><p>The study of brain age has emerged over the past decade, aiming to estimate a person's age based on brain imaging scans. Ideally, predicted brain age should match chronological age in healthy individuals. However, brain structure and function change in the presence of brain-related diseases. Consequently, brain age also changes in affected individuals, making the brain age gap (BAG)-the difference between brain age and chronological age-a potential biomarker for brain health, early screening, and identifying age-related cognitive decline and disorders. With the recent successes of artificial intelligence in healthcare, it is essential to track the latest advancements and highlight promising directions. This review paper presents recent machine learning techniques used in brain age estimation (BAE) studies. Typically, BAE models involve developing a machine learning regression model to capture age-related variations in brain structure from imaging scans of healthy individuals and automatically predict brain age for new subjects. The process also involves estimating BAG as a measure of brain health. While we discuss recent clinical applications of BAE methods, we also review studies of biological age that can be integrated into BAE research. Finally, we point out the current limitations of BAE's studies.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bac Dao, Van Ngu Trinh, Huy V Nguyen, Hoa L Nguyen, Thuc Duy Le, Phuc Loi Luu
Acute myeloid leukemia (AML) is a type of blood cancer with diverse genetic variations and DNA methylation alterations. By studying the interaction of gene mutations, expression, and DNA methylation, we aimed to gain valuable insights into the processes that lead to block differentiation in AML. We analyzed TCGA-LAML data (173 samples) with RNA sequencing and DNA methylation arrays, comparing FLT3 mutant (48) and wild-type (125) cases. We conducted differential gene expression analysis using cBioPortal, identified DNA methylation differences with ChAMP tool, and correlated them with gene expression changes. Gene set enrichment analysis (g:Profiler) revealed significant biological processes and pathways. ShinyGo and GeneCards were used to find potential transcription factors and their binding sites among significant genes. We found significant differentially expressed genes (DEGs) negatively correlated with their most significant methylation probes (Pearson correlation coefficient of -0.49, P-value <0.001) between FLT3 mutant and wild-type groups. Moreover, our exploration of 450 k CpG sites uncovered a global hypo-methylated status in 168 DEGs. Notably, these methylation changes were enriched in the promoter regions of Homebox superfamily gene, which are crucial in transcriptional-regulating pathways in blood cancer. Furthermore, in FLT3 mutant AML patient samples, we observed overexpress of WT1, a transcription factor known to bind homeobox gene family. This finding suggests a potential mechanism by which WT1 recruits TET2 to demethylate specific genomic regions. Integrating gene expression and DNA methylation analyses shed light on the impact of FLT3 mutations on cancer cell development and differentiation, supporting a two-hit model in AML. This research advances understanding of AML and fosters targeted therapeutic strategy development.
{"title":"Crosstalk between genomic variants and DNA methylation in FLT3 mutant acute myeloid leukemia.","authors":"Bac Dao, Van Ngu Trinh, Huy V Nguyen, Hoa L Nguyen, Thuc Duy Le, Phuc Loi Luu","doi":"10.1093/bfgp/elae028","DOIUrl":"10.1093/bfgp/elae028","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a type of blood cancer with diverse genetic variations and DNA methylation alterations. By studying the interaction of gene mutations, expression, and DNA methylation, we aimed to gain valuable insights into the processes that lead to block differentiation in AML. We analyzed TCGA-LAML data (173 samples) with RNA sequencing and DNA methylation arrays, comparing FLT3 mutant (48) and wild-type (125) cases. We conducted differential gene expression analysis using cBioPortal, identified DNA methylation differences with ChAMP tool, and correlated them with gene expression changes. Gene set enrichment analysis (g:Profiler) revealed significant biological processes and pathways. ShinyGo and GeneCards were used to find potential transcription factors and their binding sites among significant genes. We found significant differentially expressed genes (DEGs) negatively correlated with their most significant methylation probes (Pearson correlation coefficient of -0.49, P-value <0.001) between FLT3 mutant and wild-type groups. Moreover, our exploration of 450 k CpG sites uncovered a global hypo-methylated status in 168 DEGs. Notably, these methylation changes were enriched in the promoter regions of Homebox superfamily gene, which are crucial in transcriptional-regulating pathways in blood cancer. Furthermore, in FLT3 mutant AML patient samples, we observed overexpress of WT1, a transcription factor known to bind homeobox gene family. This finding suggests a potential mechanism by which WT1 recruits TET2 to demethylate specific genomic regions. Integrating gene expression and DNA methylation analyses shed light on the impact of FLT3 mutations on cancer cell development and differentiation, supporting a two-hit model in AML. This research advances understanding of AML and fosters targeted therapeutic strategy development.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Functional genomics in the era of cancer immunotherapy: challenges and clinical implications.","authors":"","doi":"10.1093/bfgp/elae053","DOIUrl":"https://doi.org/10.1093/bfgp/elae053","url":null,"abstract":"","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":"24 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keyu Wan, Tiantian Nie, Wenhao Ouyang, Yunjing Xiong, Jing Bian, Ying Huang, Li Ling, Zhenjun Huang, Xianhua Zhu
RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving "writers," "readers," and "erasers" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.
{"title":"Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities.","authors":"Keyu Wan, Tiantian Nie, Wenhao Ouyang, Yunjing Xiong, Jing Bian, Ying Huang, Li Ling, Zhenjun Huang, Xianhua Zhu","doi":"10.1093/bfgp/elae020","DOIUrl":"10.1093/bfgp/elae020","url":null,"abstract":"<p><p>RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving \"writers,\" \"readers,\" and \"erasers\" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar performance, and their use depends on time-consuming parameter adjustments. To address these limitations, in this article, we propose a reference-free, lossless sequence compressor called GraSS (Grammatical, Statistical, and Substitution Rule-Based). GraSS compresses sequences more effectively by taking advantage of certain characteristics seen in DNA and RNA sequences. It supports various formats, including raw, FASTA, and multi-FASTA, commonly found in GenBank DNA and RNA files. We evaluate GraSS's performance using ten benchmark DNA sequences with reduced number of repeats, two highly repetitive RNA sequences, and fifteen raw DNA sequences. Test results indicate that the weighted average compression ratios (WACR) for DNA and RNA sequences are 4.5 and 19.6, respectively. Additionally, the entire DNA sequence corpus has a total compression time (TCT) of 246.8 seconds (s). These results demonstrate that the proposed compression method performs better than several advanced algorithms specifically designed to handle various levels of sequence redundancy. The decompression times, memory usage, and CPU usage are also very competitive. Contact: anirban@klyuniv.ac.in.
{"title":"A lossless reference-free sequence compression algorithm leveraging grammatical, statistical, and substitution rules.","authors":"Subhankar Roy, Dilip Kumar Maity, Anirban Mukhopadhyay","doi":"10.1093/bfgp/elae050","DOIUrl":"10.1093/bfgp/elae050","url":null,"abstract":"<p><p>Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar performance, and their use depends on time-consuming parameter adjustments. To address these limitations, in this article, we propose a reference-free, lossless sequence compressor called GraSS (Grammatical, Statistical, and Substitution Rule-Based). GraSS compresses sequences more effectively by taking advantage of certain characteristics seen in DNA and RNA sequences. It supports various formats, including raw, FASTA, and multi-FASTA, commonly found in GenBank DNA and RNA files. We evaluate GraSS's performance using ten benchmark DNA sequences with reduced number of repeats, two highly repetitive RNA sequences, and fifteen raw DNA sequences. Test results indicate that the weighted average compression ratios (WACR) for DNA and RNA sequences are 4.5 and 19.6, respectively. Additionally, the entire DNA sequence corpus has a total compression time (TCT) of 246.8 seconds (s). These results demonstrate that the proposed compression method performs better than several advanced algorithms specifically designed to handle various levels of sequence redundancy. The decompression times, memory usage, and CPU usage are also very competitive. Contact: anirban@klyuniv.ac.in.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The CRISPR/Cas9 system developed from Streptococcus pyogenes (SpCas9) has high potential in gene editing. However, its successful application is hindered by the considerable variability in target efficiencies across different single guide RNAs (sgRNAs). Although several deep learning models have been created to predict sgRNA on-target activity, the intrinsic mechanisms of these models are difficult to explain, and there is still scope for improvement in prediction performance. To overcome these issues, we propose an ensemble interpretable model termed DeepMEns based on deep learning to predict sgRNA on-target activity. By using five different training and validation datasets, we constructed five sub-regressors, each comprising three parts. The first part uses one-hot encoding, wherein 0-1 representation of the secondary structure is used as the input to the convolutional neural network (CNN) with Transformer encoder. The second part uses the DNA shape feature matrix as the input to the CNN with Transformer encoder. The third part uses positional encoding feature matrices as the proposed input into a long short-term memory network with an attention mechanism. These three parts are concatenated through the flattened layer, and the final prediction result is the average of the five sub-regressors. Extensive benchmarking experiments indicated that DeepMEns achieved the highest Spearman correlation coefficient for 6 of 10 independent test datasets as compared to previous predictors, this finding confirmed that DeepMEns can accomplish state-of-the-art performance. Moreover, the ablation analysis also indicated that the ensemble strategy may improve the performance of the prediction model.
{"title":"DeepMEns: an ensemble model for predicting sgRNA on-target activity based on multiple features.","authors":"Shumei Ding, Jia Zheng, Cangzhi Jia","doi":"10.1093/bfgp/elae043","DOIUrl":"10.1093/bfgp/elae043","url":null,"abstract":"<p><p>The CRISPR/Cas9 system developed from Streptococcus pyogenes (SpCas9) has high potential in gene editing. However, its successful application is hindered by the considerable variability in target efficiencies across different single guide RNAs (sgRNAs). Although several deep learning models have been created to predict sgRNA on-target activity, the intrinsic mechanisms of these models are difficult to explain, and there is still scope for improvement in prediction performance. To overcome these issues, we propose an ensemble interpretable model termed DeepMEns based on deep learning to predict sgRNA on-target activity. By using five different training and validation datasets, we constructed five sub-regressors, each comprising three parts. The first part uses one-hot encoding, wherein 0-1 representation of the secondary structure is used as the input to the convolutional neural network (CNN) with Transformer encoder. The second part uses the DNA shape feature matrix as the input to the CNN with Transformer encoder. The third part uses positional encoding feature matrices as the proposed input into a long short-term memory network with an attention mechanism. These three parts are concatenated through the flattened layer, and the final prediction result is the average of the five sub-regressors. Extensive benchmarking experiments indicated that DeepMEns achieved the highest Spearman correlation coefficient for 6 of 10 independent test datasets as compared to previous predictors, this finding confirmed that DeepMEns can accomplish state-of-the-art performance. Moreover, the ablation analysis also indicated that the ensemble strategy may improve the performance of the prediction model.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.
在当前的生物信息学研究中,空间转录组学(ST)作为一种快速发展的技术正逐渐受到研究人员的广泛关注。空间域是基因表达和组织学在空间上一致的区域,检测空间域可以更好地了解组织的组织和功能分布。空间域识别是 ST 数据解读过程中的基础步骤,也是 ST 分析中的一大挑战。因此,开发更准确、高效、通用的空间域识别方法已成为一个重要而紧迫的研究方向。本文旨在回顾空间域识别研究的现状和进展,探讨现有方法的优势和局限,并为未来工具的开发提供建议和方向。
{"title":"A comprehensive review of approaches for spatial domain recognition of spatial transcriptomes.","authors":"Ziyi Wang, Aoyun Geng, Hao Duan, Feifei Cui, Quan Zou, Zilong Zhang","doi":"10.1093/bfgp/elae040","DOIUrl":"10.1093/bfgp/elae040","url":null,"abstract":"<p><p>In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"702-712"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute myeloid leukemia (AML) is one of the leading leukemic malignancies in adults. The heterogeneity of the disease makes the diagnosis and treatment extremely difficult. With the advent of next-generation sequencing (NGS) technologies, exploration at the molecular level for the identification of biomarkers and drug targets has been the focus for the researchers to come up with novel therapies for better prognosis and survival outcomes of AML patients. However, the huge amount of data from NGS platforms requires a comprehensive AML platform to streamline literature mining efforts and save time. To facilitate this, we developed AMLdb, an interactive multi-omics platform that allows users to query, visualize, retrieve, and analyse AML related multi-omics data. AMLdb contains 86 datasets for gene expression profiles, 15 datasets for methylation profiles, CRISPR-Cas9 knockout screens of 26 AML cell lines, sensitivity of 26 AML cell lines to 288 drugs, mutations in 41 unique genes in 23 AML cell lines, and information on 41 experimentally validated biomarkers. In this study, we have reported five genes, i.e. CBFB, ENO1, IMPDH2, SEPHS2, and MYH9 identified via our analysis using AMLdb. ENO1 is uniquely identified gene which requires further investigation as a novel potential target while other reported genes have been previously confirmed as targets through experimental studies. Top of form we believe that these findings utilizing AMLdb can make it an invaluable resource to accelerate the development of effective therapies for AML and assisting the research community in advancing their understanding of AML pathogenesis. AMLdb is freely available at https://project.iith.ac.in/cgntlab/amldb.
急性髓性白血病(AML)是成人主要的白血病恶性肿瘤之一。这种疾病的异质性给诊断和治疗带来了极大的困难。随着下一代测序(NGS)技术的出现,在分子水平上探索生物标志物和药物靶点已成为研究人员的工作重点,以便提出新的疗法,改善急性髓细胞白血病患者的预后和生存状况。然而,来自 NGS 平台的海量数据需要一个全面的 AML 平台来简化文献挖掘工作并节省时间。为此,我们开发了一个交互式多组学平台 AMLdb,允许用户查询、可视化、检索和分析 AML 相关的多组学数据。AMLdb 包含 86 个基因表达谱数据集、15 个甲基化谱数据集、26 个 AML 细胞系的 CRISPR-Cas9 基因敲除筛选、26 个 AML 细胞系对 288 种药物的敏感性、23 个 AML 细胞系中 41 个独特基因的突变以及 41 个实验验证生物标志物的信息。在本研究中,我们报告了通过 AMLdb 分析发现的五个基因,即 CBFB、ENO1、IMPDH2、SEPHS2 和 MYH9。ENO1是唯一被发现的基因,作为一个新的潜在靶点还需要进一步研究,而其他报告的基因之前已通过实验研究证实为靶点。最重要的是,我们相信利用 AMLdb 的这些发现可以使其成为加快开发急性髓细胞性白血病有效疗法的宝贵资源,并帮助研究界加深对急性髓细胞性白血病发病机制的了解。AMLdb 可在 https://project.iith.ac.in/cgntlab/amldb 免费获取。
{"title":"AMLdb: a comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukemia.","authors":"Keerthana Vinod Kumar, Ambuj Kumar, Kavita Kundal, Avik Sengupta, Kunjulakshmi R, Subashani Singh, Bhanu Teja Korra, Simran Sharma, Vandana Suresh, Mayilaadumveettil Nishana, Rahul Kumar","doi":"10.1093/bfgp/elae024","DOIUrl":"10.1093/bfgp/elae024","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is one of the leading leukemic malignancies in adults. The heterogeneity of the disease makes the diagnosis and treatment extremely difficult. With the advent of next-generation sequencing (NGS) technologies, exploration at the molecular level for the identification of biomarkers and drug targets has been the focus for the researchers to come up with novel therapies for better prognosis and survival outcomes of AML patients. However, the huge amount of data from NGS platforms requires a comprehensive AML platform to streamline literature mining efforts and save time. To facilitate this, we developed AMLdb, an interactive multi-omics platform that allows users to query, visualize, retrieve, and analyse AML related multi-omics data. AMLdb contains 86 datasets for gene expression profiles, 15 datasets for methylation profiles, CRISPR-Cas9 knockout screens of 26 AML cell lines, sensitivity of 26 AML cell lines to 288 drugs, mutations in 41 unique genes in 23 AML cell lines, and information on 41 experimentally validated biomarkers. In this study, we have reported five genes, i.e. CBFB, ENO1, IMPDH2, SEPHS2, and MYH9 identified via our analysis using AMLdb. ENO1 is uniquely identified gene which requires further investigation as a novel potential target while other reported genes have been previously confirmed as targets through experimental studies. Top of form we believe that these findings utilizing AMLdb can make it an invaluable resource to accelerate the development of effective therapies for AML and assisting the research community in advancing their understanding of AML pathogenesis. AMLdb is freely available at https://project.iith.ac.in/cgntlab/amldb.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"798-805"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferroptosis, a commonly observed type of programmed cell death caused by abnormal metabolic and biochemical mechanisms, is frequently triggered by cellular stress. The occurrence of ferroptosis is predominantly linked to pathophysiological conditions due to the substantial impact of various metabolic pathways, including fatty acid metabolism and iron regulation, on cellular reactions to lipid peroxidation and ferroptosis. This mode of cell death serves as a fundamental factor in the development of numerous diseases, thereby presenting a range of therapeutic targets. Single-cell sequencing technology provides insights into the cellular and molecular characteristics of individual cells, as opposed to bulk sequencing, which provides data in a more generalized manner. Single-cell sequencing has found extensive application in the field of cancer research. This paper reviews the progress made in ferroptosis-associated cancer research using single-cell sequencing, including ferroptosis-associated pathways, immune checkpoints, biomarkers, and the identification of cell clusters associated with ferroptosis in tumors. In general, the utilization of single-cell sequencing technology has the potential to contribute significantly to the investigation of the mechanistic regulatory pathways linked to ferroptosis. Moreover, it can shed light on the intricate connection between ferroptosis and cancer. This technology holds great promise in advancing tumor-wide diagnosis, targeted therapy, and prognosis prediction.
{"title":"Advances in integrating single-cell sequencing data to unravel the mechanism of ferroptosis in cancer.","authors":"Zhaolan Du, Yi Shi, Jianjun Tan","doi":"10.1093/bfgp/elae025","DOIUrl":"10.1093/bfgp/elae025","url":null,"abstract":"<p><p>Ferroptosis, a commonly observed type of programmed cell death caused by abnormal metabolic and biochemical mechanisms, is frequently triggered by cellular stress. The occurrence of ferroptosis is predominantly linked to pathophysiological conditions due to the substantial impact of various metabolic pathways, including fatty acid metabolism and iron regulation, on cellular reactions to lipid peroxidation and ferroptosis. This mode of cell death serves as a fundamental factor in the development of numerous diseases, thereby presenting a range of therapeutic targets. Single-cell sequencing technology provides insights into the cellular and molecular characteristics of individual cells, as opposed to bulk sequencing, which provides data in a more generalized manner. Single-cell sequencing has found extensive application in the field of cancer research. This paper reviews the progress made in ferroptosis-associated cancer research using single-cell sequencing, including ferroptosis-associated pathways, immune checkpoints, biomarkers, and the identification of cell clusters associated with ferroptosis in tumors. In general, the utilization of single-cell sequencing technology has the potential to contribute significantly to the investigation of the mechanistic regulatory pathways linked to ferroptosis. Moreover, it can shed light on the intricate connection between ferroptosis and cancer. This technology holds great promise in advancing tumor-wide diagnosis, targeted therapy, and prognosis prediction.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"713-725"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristina Santucci, Yuning Cheng, Si-Mei Xu, Michael Janitz
Long-read sequencing technologies can capture entire RNA transcripts in a single sequencing read, reducing the ambiguity in constructing and quantifying transcript models in comparison to more common and earlier methods, such as short-read sequencing. Recent improvements in the accuracy of long-read sequencing technologies have expanded the scope for novel splice isoform detection and have also enabled a far more accurate reconstruction of complex splicing patterns and transcriptomes. Additionally, the incorporation and advancements of machine learning and deep learning algorithms in bioinformatic software have significantly improved the reliability of long-read sequencing transcriptomic studies. However, there is a lack of consensus on what bioinformatic tools and pipelines produce the most precise and consistent results. Thus, this review aims to discuss and compare the performance of available methods for novel isoform discovery with long-read sequencing technologies, with 25 tools being presented. Furthermore, this review intends to demonstrate the need for developing standard analytical pipelines, tools, and transcript model conventions for novel isoform discovery and transcriptomic studies.
{"title":"Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches.","authors":"Kristina Santucci, Yuning Cheng, Si-Mei Xu, Michael Janitz","doi":"10.1093/bfgp/elae031","DOIUrl":"10.1093/bfgp/elae031","url":null,"abstract":"<p><p>Long-read sequencing technologies can capture entire RNA transcripts in a single sequencing read, reducing the ambiguity in constructing and quantifying transcript models in comparison to more common and earlier methods, such as short-read sequencing. Recent improvements in the accuracy of long-read sequencing technologies have expanded the scope for novel splice isoform detection and have also enabled a far more accurate reconstruction of complex splicing patterns and transcriptomes. Additionally, the incorporation and advancements of machine learning and deep learning algorithms in bioinformatic software have significantly improved the reliability of long-read sequencing transcriptomic studies. However, there is a lack of consensus on what bioinformatic tools and pipelines produce the most precise and consistent results. Thus, this review aims to discuss and compare the performance of available methods for novel isoform discovery with long-read sequencing technologies, with 25 tools being presented. Furthermore, this review intends to demonstrate the need for developing standard analytical pipelines, tools, and transcript model conventions for novel isoform discovery and transcriptomic studies.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"683-694"},"PeriodicalIF":2.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}