Pub Date : 2021-12-01Epub Date: 2021-11-19DOI: 10.1086/717539
Peter C Doll, Vanessa Messmer, Sven Uthicke, Jason R Doyle, Ciemon F Caballes, Morgan S Pratchett
AbstractPopulation irruptions of the western Pacific crown-of-thorns sea star (Acanthaster sp.) are a perennial threat to coral reefs and may be initiated by fluctuations in reproductive or settlement success. However, the processes dictating their early life history, particularly larval settlement, remain poorly understood given limitations in sampling larvae and newly settled juveniles in the field. Here, we introduce an innovative method to measure crown-of-thorns sea star settlement, using artificial settlement collectors and droplet digital polymerase chain reaction based on crown-of-thorns sea star-specific mitochondrial DNA primers. This study demonstrated the utility of this method and explored temporal and spatial patterns of crown-of-thorns sea star settlement on the Great Barrier Reef from 2016 to 2020. Settlement varied considerably between sampling periods at Rib Reef and peaked between October 2016 and January 2017. Our results further suggest that crown-of-thorns sea star larvae readily settle in shallow reef environments, with no preferential settlement detected between depths tested (4-12 m). Substantial variation between Great Barrier Reef regions was revealed in 2019-2020, because collectors deployed on reefs in the central Great Barrier Reef were >10 times as likely to record newly settled crown-of-thorns sea stars as reefs in the northern Great Barrier Reef near Lizard Island. The trends reported here add to our understanding of this critical life-history stage; however, further method validation and larger-scale studies are needed to address pertinent information gaps, such as the stock-recruitment dynamics of this species. Most importantly, fluctuations in crown-of-thorns sea star settlement can now be detected using this sampling protocol, which demonstrates its utility in heralding new and renewed population irruptions of this destructive sea star.
{"title":"DNA-Based Detection and Patterns of Larval Settlement of the Corallivorous Crown-of-Thorns Sea Star (<i>Acanthaster</i> sp.).","authors":"Peter C Doll, Vanessa Messmer, Sven Uthicke, Jason R Doyle, Ciemon F Caballes, Morgan S Pratchett","doi":"10.1086/717539","DOIUrl":"https://doi.org/10.1086/717539","url":null,"abstract":"<p><p>AbstractPopulation irruptions of the western Pacific crown-of-thorns sea star (<i>Acanthaster</i> sp.) are a perennial threat to coral reefs and may be initiated by fluctuations in reproductive or settlement success. However, the processes dictating their early life history, particularly larval settlement, remain poorly understood given limitations in sampling larvae and newly settled juveniles in the field. Here, we introduce an innovative method to measure crown-of-thorns sea star settlement, using artificial settlement collectors and droplet digital polymerase chain reaction based on crown-of-thorns sea star-specific mitochondrial DNA primers. This study demonstrated the utility of this method and explored temporal and spatial patterns of crown-of-thorns sea star settlement on the Great Barrier Reef from 2016 to 2020. Settlement varied considerably between sampling periods at Rib Reef and peaked between October 2016 and January 2017. Our results further suggest that crown-of-thorns sea star larvae readily settle in shallow reef environments, with no preferential settlement detected between depths tested (4-12 m). Substantial variation between Great Barrier Reef regions was revealed in 2019-2020, because collectors deployed on reefs in the central Great Barrier Reef were >10 times as likely to record newly settled crown-of-thorns sea stars as reefs in the northern Great Barrier Reef near Lizard Island. The trends reported here add to our understanding of this critical life-history stage; however, further method validation and larger-scale studies are needed to address pertinent information gaps, such as the stock-recruitment dynamics of this species. Most importantly, fluctuations in crown-of-thorns sea star settlement can now be detected using this sampling protocol, which demonstrates its utility in heralding new and renewed population irruptions of this destructive sea star.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 3","pages":"271-285"},"PeriodicalIF":1.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39810492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Index to Volume 241, December 2021","authors":"","doi":"10.1086/718312","DOIUrl":"https://doi.org/10.1086/718312","url":null,"abstract":"","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48956766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01Epub Date: 2021-11-17DOI: 10.1086/716913
Thomas A Ebert
AbstractThe starfish family Asterinidae shows a diversity of reproductive modes, and a number of species have sufficient life-history data that can be used for analysis, using life-cycle graphs. These include four species that reproduce by fission (Aquilonastra yairi, Nepanthia belcheri, Aquilonastra burtonii, and Ailsastra heteractis), a viviparous species (Parvulastra vivipara), two species with benthic egg masses (Asterina gibbosa and Asterina phylactica), one with planktonic larvae that do not feed (Cryptasterina pentagona), and one with larvae that feed in the plankton (Patiria miniata). Species are compared using adult and first-year survival and, for some species, the age at first reproduction, number of offspring (eggs or newly released juveniles), and individual growth parameters of the von Bertalanffy model. The sensitivity of population growth, fitness, to changes in these traits is shown by elasticity analysis, which aids in understanding possible consequences of environmental forces as well as possible directions of selection.
{"title":"Life-History Analysis of Asterinid Starfishes.","authors":"Thomas A Ebert","doi":"10.1086/716913","DOIUrl":"https://doi.org/10.1086/716913","url":null,"abstract":"<p><p>AbstractThe starfish family Asterinidae shows a diversity of reproductive modes, and a number of species have sufficient life-history data that can be used for analysis, using life-cycle graphs. These include four species that reproduce by fission (<i>Aquilonastra yairi</i>, <i>Nepanthia belcheri</i>, <i>Aquilonastra burtonii</i>, and <i>Ailsastra heteractis</i>), a viviparous species (<i>Parvulastra vivipara</i>), two species with benthic egg masses (<i>Asterina gibbosa</i> and <i>Asterina phylactica</i>), one with planktonic larvae that do not feed (<i>Cryptasterina pentagona</i>), and one with larvae that feed in the plankton (<i>Patiria miniata</i>). Species are compared using adult and first-year survival and, for some species, the age at first reproduction, number of offspring (eggs or newly released juveniles), and individual growth parameters of the von Bertalanffy model. The sensitivity of population growth, fitness, to changes in these traits is shown by elasticity analysis, which aids in understanding possible consequences of environmental forces as well as possible directions of selection.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 3","pages":"231-242"},"PeriodicalIF":1.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39810491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01Epub Date: 2021-11-17DOI: 10.1086/717026
Morgan S Pratchett, Ciemon F Caballes, Christopher Cvitanovic, Maia L Raymundo, Russell C Babcock, Mary C Bonin, Yves-Marie Bozec, Deborah Burn, Maria Byrne, Carolina Castro-Sanguino, Carla C M Chen, Scott A Condie, Zara-Louise Cowan, Dione J Deaker, Amelia Desbiens, Lyndon M Devantier, Peter J Doherty, Peter C Doll, Jason R Doyle, Symon A Dworjanyn, Katharina E Fabricius, Michael D E Haywood, Karlo Hock, Anne K Hoggett, Lone Høj, John K Keesing, Richard A Kenchington, Bethan J Lang, Scott D Ling, Samuel A Matthews, Hamish I McCallum, Camille Mellin, Benjamin Mos, Cherie A Motti, Peter J Mumby, Richard J W Stump, Sven Uthicke, Lyle Vail, Kennedy Wolfe, Shaun K Wilson
AbstractCrown-of-thorns sea stars (Acanthaster sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of Acanthaster sp. Renewed efforts to advance understanding and management of Pacific crown-of-thorns sea stars (Acanthaster sp.) on Australia's Great Barrier Reef require explicit consideration of relevant and tractable knowledge gaps. Drawing on established horizon scanning methodologies, this study identified contemporary knowledge gaps by asking active and/or established crown-of-thorns sea star researchers to pose critical research questions that they believe should be addressed to improve the understanding and management of crown-of-thorns sea stars on the Great Barrier Reef. A total of 38 participants proposed 246 independent research questions, organized into 7 themes: feeding ecology, demography, distribution and abundance, predation, settlement, management, and environmental change. Questions were further assigned to 48 specific topics nested within the 7 themes. During this process, redundant questions were removed, which reduced the total number of distinct research questions to 172. Research questions posed were mostly related to themes of demography (46 questions) and management (48 questions). The dominant topics, meanwhile, were the incidence of population irruptions (16 questions), feeding ecology of larval sea stars (15 questions), effects of elevated water temperature on crown-of-thorns sea stars (13 questions), and predation on juveniles (12 questions). While the breadth of questions suggests that there is considerable research needed to improve understanding and management of crown-of-thorns sea stars on the Great Barrier Reef, the predominance of certain themes and topics suggests a major focus for new research while also providing a roadmap to guide future research efforts.
{"title":"Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-Thorns Sea Star <i>Acanthaster</i> sp. on Australia's Great Barrier Reef.","authors":"Morgan S Pratchett, Ciemon F Caballes, Christopher Cvitanovic, Maia L Raymundo, Russell C Babcock, Mary C Bonin, Yves-Marie Bozec, Deborah Burn, Maria Byrne, Carolina Castro-Sanguino, Carla C M Chen, Scott A Condie, Zara-Louise Cowan, Dione J Deaker, Amelia Desbiens, Lyndon M Devantier, Peter J Doherty, Peter C Doll, Jason R Doyle, Symon A Dworjanyn, Katharina E Fabricius, Michael D E Haywood, Karlo Hock, Anne K Hoggett, Lone Høj, John K Keesing, Richard A Kenchington, Bethan J Lang, Scott D Ling, Samuel A Matthews, Hamish I McCallum, Camille Mellin, Benjamin Mos, Cherie A Motti, Peter J Mumby, Richard J W Stump, Sven Uthicke, Lyle Vail, Kennedy Wolfe, Shaun K Wilson","doi":"10.1086/717026","DOIUrl":"https://doi.org/10.1086/717026","url":null,"abstract":"<p><p>AbstractCrown-of-thorns sea stars (<i>Acanthaster</i> sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of <i>Acanthaster</i> sp. Renewed efforts to advance understanding and management of Pacific crown-of-thorns sea stars (<i>Acanthaster</i> sp.) on Australia's Great Barrier Reef require explicit consideration of relevant and tractable knowledge gaps. Drawing on established horizon scanning methodologies, this study identified contemporary knowledge gaps by asking active and/or established crown-of-thorns sea star researchers to pose critical research questions that they believe should be addressed to improve the understanding and management of crown-of-thorns sea stars on the Great Barrier Reef. A total of 38 participants proposed 246 independent research questions, organized into 7 themes: feeding ecology, demography, distribution and abundance, predation, settlement, management, and environmental change. Questions were further assigned to 48 specific topics nested within the 7 themes. During this process, redundant questions were removed, which reduced the total number of distinct research questions to 172. Research questions posed were mostly related to themes of demography (46 questions) and management (48 questions). The dominant topics, meanwhile, were the incidence of population irruptions (16 questions), feeding ecology of larval sea stars (15 questions), effects of elevated water temperature on crown-of-thorns sea stars (13 questions), and predation on juveniles (12 questions). While the breadth of questions suggests that there is considerable research needed to improve understanding and management of crown-of-thorns sea stars on the Great Barrier Reef, the predominance of certain themes and topics suggests a major focus for new research while also providing a roadmap to guide future research efforts.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 3","pages":"330-346"},"PeriodicalIF":1.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39899626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01Epub Date: 2021-11-19DOI: 10.1086/716552
J Hodin, A Pearson-Lund, F P Anteau, P Kitaeff, S Cefalu
AbstractUntil recently, the sunflower star, Pycnopodia helianthoides, was a dominant and common predator in a wide variety of benthic habitats in the northeast Pacific. Then, in 2013, its populations began to plummet across its entire range as a result of the spread of a phenomenon known as sea star wasting disease, or sea star wasting. Although dozens of sea star species were impacted by this wasting event, P. helianthoides seems to have suffered the greatest losses and is now listed by the International Union for the Conservation of Nature as the first critically endangered sea star. In order to learn more about the life history of this endangered predator and to explore the potential for its restoration, we have initiated a captive rearing program to attempt complete life-cycle (egg-to-egg) culture for P. helianthoides. We report our observations on holding and distinguishing individual adults, reproductive seasonality, larval development, inducers of settlement, and early juvenile growth and feeding. These efforts will promote and help guide conservation interventions to protect remaining populations of this species in the wild and facilitate its ultimate return.
{"title":"Progress Toward Complete Life-Cycle Culturing of the Endangered Sunflower Star, <i>Pycnopodia helianthoides</i>.","authors":"J Hodin, A Pearson-Lund, F P Anteau, P Kitaeff, S Cefalu","doi":"10.1086/716552","DOIUrl":"https://doi.org/10.1086/716552","url":null,"abstract":"<p><p>AbstractUntil recently, the sunflower star, <i>Pycnopodia helianthoides</i>, was a dominant and common predator in a wide variety of benthic habitats in the northeast Pacific. Then, in 2013, its populations began to plummet across its entire range as a result of the spread of a phenomenon known as sea star wasting disease, or sea star wasting. Although dozens of sea star species were impacted by this wasting event, <i>P. helianthoides</i> seems to have suffered the greatest losses and is now listed by the International Union for the Conservation of Nature as the first critically endangered sea star. In order to learn more about the life history of this endangered predator and to explore the potential for its restoration, we have initiated a captive rearing program to attempt complete life-cycle (egg-to-egg) culture for <i>P. helianthoides</i>. We report our observations on holding and distinguishing individual adults, reproductive seasonality, larval development, inducers of settlement, and early juvenile growth and feeding. These efforts will promote and help guide conservation interventions to protect remaining populations of this species in the wild and facilitate its ultimate return.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 3","pages":"243-258"},"PeriodicalIF":1.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39899627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01Epub Date: 2021-11-19DOI: 10.1086/717293
Michael W Hart, Vanessa I Guerra, Jonathan D Allen, Maria Byrne
AbstractMany sea stars are well known for facultative or obligate asexual reproduction in both the adult and larval life-cycle stages. Some species and lineages are also capable of facultative or obligate hermaphroditic reproduction with self-fertilization. However, models of population genetic variation and empirical analyses of genetic data typically assume only sexual reproduction and outcrossing. A recent reanalysis of previously published empirical data (microsatellite genotypes) from two studies of one of the most well-known sea star species (the crown-of-thorns sea star; Acanthaster sp.) concluded that cloning and self-fertilization in that species are rare and contribute little to patterns of population genetic variation. Here we reconsider that conclusion by simulating the contribution of cloning and selfing to genetic variation in a series of models of sea star demography. Simulated variation in two simple models (analogous to previous analyses of empirical data) was consistent with high rates of cloning or selfing or both. More realistic scenarios that characterize population flux in sea stars of ecological significance, including outbreaks of crown-of-thorns sea stars that devastate coral reefs, invasions by Asterias amurensis, and epizootics of sea star wasting disease that kill Pisaster ochraceus, also showed significant but smaller effects of cloning and selfing on variation within subpopulations and differentiation between subpopulations. Future models or analyses of genetic variation in similar study systems might benefit from simulation modeling to characterize possible contributions of cloning or selfing to genetic variation in population samples or to understand the limits on inferring the effects of cloning or selfing in nature.
{"title":"Cloning and Selfing Affect Population Genetic Variation in Simulations of Outcrossing, Sexual Sea Stars.","authors":"Michael W Hart, Vanessa I Guerra, Jonathan D Allen, Maria Byrne","doi":"10.1086/717293","DOIUrl":"https://doi.org/10.1086/717293","url":null,"abstract":"<p><p>AbstractMany sea stars are well known for facultative or obligate asexual reproduction in both the adult and larval life-cycle stages. Some species and lineages are also capable of facultative or obligate hermaphroditic reproduction with self-fertilization. However, models of population genetic variation and empirical analyses of genetic data typically assume only sexual reproduction and outcrossing. A recent reanalysis of previously published empirical data (microsatellite genotypes) from two studies of one of the most well-known sea star species (the crown-of-thorns sea star; <i>Acanthaster</i> sp.) concluded that cloning and self-fertilization in that species are rare and contribute little to patterns of population genetic variation. Here we reconsider that conclusion by simulating the contribution of cloning and selfing to genetic variation in a series of models of sea star demography. Simulated variation in two simple models (analogous to previous analyses of empirical data) was consistent with high rates of cloning or selfing or both. More realistic scenarios that characterize population flux in sea stars of ecological significance, including outbreaks of crown-of-thorns sea stars that devastate coral reefs, invasions by <i>Asterias amurensis</i>, and epizootics of sea star wasting disease that kill <i>Pisaster ochraceus</i>, also showed significant but smaller effects of cloning and selfing on variation within subpopulations and differentiation between subpopulations. Future models or analyses of genetic variation in similar study systems might benefit from simulation modeling to characterize possible contributions of cloning or selfing to genetic variation in population samples or to understand the limits on inferring the effects of cloning or selfing in nature.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 3","pages":"286-302"},"PeriodicalIF":1.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39810490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01Epub Date: 2021-11-19DOI: 10.1086/716777
Dione J Deaker, Regina Balogh, Symon A Dworjanyn, Benjamin Mos, Maria Byrne
AbstractCrown-of-thorns sea stars are one of the most ecologically important tropical marine invertebrates, with boom-bust population dynamics that influence the community structure of coral reefs. Although predation is likely to influence the development of population outbreaks, little is known about the defensive behavior of crown-of-thorns sea stars. Righting behavior after being overturned, a key defensive response in echinoderms, was investigated for the newly settled herbivorous juvenile, the corallivorous juvenile, and adult stages of crown-of-thorns sea stars. The average righting time of the newly settled juveniles (0.3-1.0-mm diameter) was 2.74 minutes. For the coral-eating juveniles (15-55-mm diameter), the righting time (mean = 6.24 min) was faster in larger juveniles, and the mean righting time of the adults was 6.28 minutes. During righting and in response to being lifted off of the substrate, the juveniles and adults exhibited an arm curling response, during which their arms closed over their oral side, often forming a spine ball, a feature not known for other asteroids. The righting and curling responses of the corallivorous juveniles were influenced by the presence of a natural enemy, a coral guard crab, which caused the juveniles to spend more time with their arms curled. These behaviors indicate that crown-of-thorns sea stars use their spines to protect the soft tissue of their oral side. The highly defended morphology and behavioral adaptations of crown-of-thorns sea stars are likely to have evolved as antipredator mechanisms. This points to the potential importance of predators in regulating their populations, which may have decreased in recent times due to fishing, a factor that may contribute to outbreaks.
{"title":"Echidnas of the Sea: The Defensive Behavior of Juvenile and Adult Crown-of-Thorns Sea Stars.","authors":"Dione J Deaker, Regina Balogh, Symon A Dworjanyn, Benjamin Mos, Maria Byrne","doi":"10.1086/716777","DOIUrl":"https://doi.org/10.1086/716777","url":null,"abstract":"<p><p>AbstractCrown-of-thorns sea stars are one of the most ecologically important tropical marine invertebrates, with boom-bust population dynamics that influence the community structure of coral reefs. Although predation is likely to influence the development of population outbreaks, little is known about the defensive behavior of crown-of-thorns sea stars. Righting behavior after being overturned, a key defensive response in echinoderms, was investigated for the newly settled herbivorous juvenile, the corallivorous juvenile, and adult stages of crown-of-thorns sea stars. The average righting time of the newly settled juveniles (0.3-1.0-mm diameter) was 2.74 minutes. For the coral-eating juveniles (15-55-mm diameter), the righting time (mean = 6.24 min) was faster in larger juveniles, and the mean righting time of the adults was 6.28 minutes. During righting and in response to being lifted off of the substrate, the juveniles and adults exhibited an arm curling response, during which their arms closed over their oral side, often forming a spine ball, a feature not known for other asteroids. The righting and curling responses of the corallivorous juveniles were influenced by the presence of a natural enemy, a coral guard crab, which caused the juveniles to spend more time with their arms curled. These behaviors indicate that crown-of-thorns sea stars use their spines to protect the soft tissue of their oral side. The highly defended morphology and behavioral adaptations of crown-of-thorns sea stars are likely to have evolved as antipredator mechanisms. This points to the potential importance of predators in regulating their populations, which may have decreased in recent times due to fishing, a factor that may contribute to outbreaks.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 3","pages":"259-270"},"PeriodicalIF":1.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39899623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01Epub Date: 2021-11-16DOI: 10.1086/715843
Maria Byrne, Dan Minchin, Matthew Clements, Dione J Deaker
AbstractGrowth and recruitment of the sea star Marthasterias glacialis was followed over six years in Lough Hyne, southwest Ireland. Juveniles from a 2-mm radius were found on algae at <1-2-m depth following what appeared to be gregarious larval settlement. Data from Lough Hyne and Mulroy Bay (northwest Ireland) indicated that algal habitat serves as a nursery area for juveniles of M. glacialis. Successive size frequency modes of the juveniles at Lough Hyne indicated slow growth over 6 years, to a mean radius of 20 mm. The absence of additional recruitment allowed monitoring of a discrete population. Recruits in the nursery habitat over the six years remained as waiting stage juveniles, a Peter Pan group with delayed maturity subsisting on a diet of epibionts. An initial sharp decline in numbers indicated post-settlement mortality, with subsequent decline likely due to migration to the adjacent shelly habitat, where subadult M. glacialis (30-70-mm radius) lives. In this habitat, M. glacialis preys on small bivalves and eventually joins the adult (maximum radius = 280 mm) population on open sediment, where it feeds on large bivalves. Size frequency distributions of the juveniles and adults showed growth over the six years, with the waiting stage sea stars slowly merging in size with the adult population. It appears that the supply of new individuals into the adult population may take place six or more years following settlement. Strong connectivity between life stage habitats and prolonged recruitment into the adult population may contribute to balanced exploitation of infaunal prey.
{"title":"The Waiting Stage, Prolonged Residency in Nursery Habitats by Juveniles of the Predatory Sea Star <i>Marthasterias glacialis</i>.","authors":"Maria Byrne, Dan Minchin, Matthew Clements, Dione J Deaker","doi":"10.1086/715843","DOIUrl":"https://doi.org/10.1086/715843","url":null,"abstract":"<p><p>AbstractGrowth and recruitment of the sea star <i>Marthasterias glacialis</i> was followed over six years in Lough Hyne, southwest Ireland. Juveniles from a 2-mm radius were found on algae at <1-2-m depth following what appeared to be gregarious larval settlement. Data from Lough Hyne and Mulroy Bay (northwest Ireland) indicated that algal habitat serves as a nursery area for juveniles of <i>M. glacialis</i>. Successive size frequency modes of the juveniles at Lough Hyne indicated slow growth over 6 years, to a mean radius of 20 mm. The absence of additional recruitment allowed monitoring of a discrete population. Recruits in the nursery habitat over the six years remained as waiting stage juveniles, a Peter Pan group with delayed maturity subsisting on a diet of epibionts. An initial sharp decline in numbers indicated post-settlement mortality, with subsequent decline likely due to migration to the adjacent shelly habitat, where subadult <i>M. glacialis</i> (30-70-mm radius) lives. In this habitat, <i>M. glacialis</i> preys on small bivalves and eventually joins the adult (maximum radius = 280 mm) population on open sediment, where it feeds on large bivalves. Size frequency distributions of the juveniles and adults showed growth over the six years, with the waiting stage sea stars slowly merging in size with the adult population. It appears that the supply of new individuals into the adult population may take place six or more years following settlement. Strong connectivity between life stage habitats and prolonged recruitment into the adult population may contribute to balanced exploitation of infaunal prey.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 3","pages":"219-230"},"PeriodicalIF":1.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39899624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C Ka, S Gautam, S R Marshall, L P Tice, M Martinez-Bartolome, J L Fenner, R C Range
AbstractA combination of receptors, co-receptors, and secreted Wnt modulators form protein complexes at the cell surface that activate one or more of the three different Wnt signaling pathways (Wnt/β-catenin, Wnt/JNK, and Wnt/Ca2+). Two or more of these pathways are often active in the same cellular territories, forming Wnt signaling networks; however, the molecular mechanisms necessary to integrate information from these pathways in these situations are unclear in any in vivo model system. Recent studies have implicated two Wnt binding receptor tyrosine kinases, receptor tyrosine kinase-like orphan receptor (Ror) and related-to-receptor tyrosine kinase (Ryk), in the regulation of canonical and non-canonical Wnt signaling pathways, depending on the context; however, the spatiotemporal expression of these genes in relation to Wnt signaling components has not been well characterized in most deuterostome model systems. Here we use a combination of phylogenetic and spatiotemporal gene expression analyses to characterize Ror and Ryk orthologs in sea urchin embryos. Our phylogenetic analysis indicates that both ror1/2 and ryk originated as single genes from the metazoan ancestor. Expression analyses indicate that ror1/2 and ryk are expressed in the same domains of many Wnt ligands and Frizzled receptors essential for the specification and patterning of germ layers along the early anterior-posterior axis. In addition, both genes are co-expressed with Wnt signaling components in the gut, ventral ectoderm, and anterior neuroectoderm territories later in development. Together, our results indicate that Ror and Ryk have a complex evolutionary history and that their spatiotemporal expression suggests that they could contribute to the complexity of Wnt signaling in early sea urchin embryogenesis.
{"title":"Receptor Tyrosine Kinases ror1/2 and ryk Are Co-expressed with Multiple Wnt Signaling Components During Early Development of Sea Urchin Embryos.","authors":"C Ka, S Gautam, S R Marshall, L P Tice, M Martinez-Bartolome, J L Fenner, R C Range","doi":"10.1086/715237","DOIUrl":"10.1086/715237","url":null,"abstract":"<p><p>AbstractA combination of receptors, co-receptors, and secreted Wnt modulators form protein complexes at the cell surface that activate one or more of the three different Wnt signaling pathways (Wnt/<i>β</i>-catenin, Wnt/JNK, and Wnt/Ca<sup>2+</sup>). Two or more of these pathways are often active in the same cellular territories, forming Wnt signaling networks; however, the molecular mechanisms necessary to integrate information from these pathways in these situations are unclear in any <i>in vivo</i> model system. Recent studies have implicated two Wnt binding receptor tyrosine kinases, receptor tyrosine kinase-like orphan receptor (Ror) and related-to-receptor tyrosine kinase (Ryk), in the regulation of canonical and non-canonical Wnt signaling pathways, depending on the context; however, the spatiotemporal expression of these genes in relation to Wnt signaling components has not been well characterized in most deuterostome model systems. Here we use a combination of phylogenetic and spatiotemporal gene expression analyses to characterize Ror and Ryk orthologs in sea urchin embryos. Our phylogenetic analysis indicates that both <i>ror1/2</i> and <i>ryk</i> originated as single genes from the metazoan ancestor. Expression analyses indicate that <i>ror1/2</i> and <i>ryk</i> are expressed in the same domains of many Wnt ligands and Frizzled receptors essential for the specification and patterning of germ layers along the early anterior-posterior axis. In addition, both genes are co-expressed with Wnt signaling components in the gut, ventral ectoderm, and anterior neuroectoderm territories later in development. Together, our results indicate that Ror and Ryk have a complex evolutionary history and that their spatiotemporal expression suggests that they could contribute to the complexity of Wnt signaling in early sea urchin embryogenesis.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 2","pages":"140-157"},"PeriodicalIF":2.1,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10851223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01Epub Date: 2021-06-09DOI: 10.1086/714572
Samantha L Bock, Matthew D Hale, Thomas R Rainwater, Philip M Wilkinson, Benjamin B Parrott
AbstractThe environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (Alligator mississippiensis), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9-10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination.
{"title":"Incubation Temperature and Maternal Resource Provisioning, but Not Contaminant Exposure, Shape Hatchling Phenotypes in a Species with Temperature-Dependent Sex Determination.","authors":"Samantha L Bock, Matthew D Hale, Thomas R Rainwater, Philip M Wilkinson, Benjamin B Parrott","doi":"10.1086/714572","DOIUrl":"https://doi.org/10.1086/714572","url":null,"abstract":"<p><p>AbstractThe environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (<i>Alligator mississippiensis</i>), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9-10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 1","pages":"43-54"},"PeriodicalIF":1.6,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/714572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39347127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}