首页 > 最新文献

Biochimica et Biophysica Acta-Gene Regulatory Mechanisms最新文献

英文 中文
Isolation and characterisation of promoters from mouse genome to drive post-meiotic germ cell-specific robust gene expression for functional genomics studies 从小鼠基因组中分离和鉴定启动子,以驱动减数分裂后生殖细胞特异性健壮基因表达,用于功能基因组学研究。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-11 DOI: 10.1016/j.bbagrm.2023.194994
Abhishek Das , Srimoyee Koner , Subeer S. Majumdar , Nirmalya Ganguli

The generation of spermatozoa from developing germ cells through mitotic and meiotic divisions is a highly regulated and complex process. Any defect in this process, may lead to subfertility/infertility. The role of different transcripts (mRNA/miRNA/lncRNA) in regulation of the pre-meiotic, meiotic, and post-meiotic stages of spermatogenesis are being proposed based on various multiomics based approaches. Such differential gene-expression is regulated by promoter elements that are activated in a stage specific manner. To determine the role of these differentially expressed transcripts in the process of meiosis, a robust post-meiotic germ cell specific promoter is required. In the present study, we have isolated and characterized the expression of the mouse Proacrosin, SP10, and ELP promoters for driving post-meiotic germ cell specific gene-expression. Promoter regions of all these 3 genes were isolated and cloned to generate mammalian expression vector. The transgene expression in post-meiotic germ cells was assessed in mice using the testicular electroporation method in vitro as well as in vivo, using above promoters. It was also validated in goat seminiferous tubules, in vitro. We have also carried out a comparative analysis of the strength of these promoters to confirm their robustness that indicated Proacrosin to be the most robust promoter that can be useful for diving post-meiotic germ cells specific gene-expression. These promoters can be used to alter gene-expression specifically in post-meiotic germ cells for deciphering the role(s) of germ cell genes in spermatogenic progression or for expressing various genome editing tools for engineering the germ cell genome to understand basis of subfertility/infertility.

发育中的生殖细胞通过有丝分裂和减数分裂产生精子是一个高度调控和复杂的过程。这一过程中的任何缺陷都可能导致生育能力低下/不孕。不同的转录物(mRNA/miRNA/lncRNA)在精子发生的减数分裂前、减数分裂前和减数分裂后阶段的调控作用正在基于各种基于多组学的方法被提出。这种差异基因表达是由启动子元件以特定阶段的方式激活来调节的。为了确定这些差异表达转录本在减数分裂过程中的作用,需要一个强大的减数分裂后生殖细胞特异性启动子。在本研究中,我们分离并表征了小鼠Proacrosin, SP10和ELP启动子的表达,以驱动减数分裂后生殖细胞特异性基因的表达。分离并克隆了这3个基因的启动子区,构建了哺乳动物表达载体。利用上述启动子,采用体外和体内睾丸电穿孔法对小鼠减数分裂后生殖细胞中的转基因表达进行了评估。它也在体外的山羊精管中得到了验证。我们还对这些启动子的强度进行了比较分析,以确认它们的稳健性,表明Proacrosin是最稳健性的启动子,可用于潜水减数分裂后生殖细胞特异性基因表达。这些启动子可用于改变减数分裂后生殖细胞中的基因表达,以破译生殖细胞基因在生精过程中的作用,或用于表达用于工程生殖细胞基因组的各种基因组编辑工具,以了解低生育能力/不孕症的基础。
{"title":"Isolation and characterisation of promoters from mouse genome to drive post-meiotic germ cell-specific robust gene expression for functional genomics studies","authors":"Abhishek Das ,&nbsp;Srimoyee Koner ,&nbsp;Subeer S. Majumdar ,&nbsp;Nirmalya Ganguli","doi":"10.1016/j.bbagrm.2023.194994","DOIUrl":"10.1016/j.bbagrm.2023.194994","url":null,"abstract":"<div><p><span>The generation of spermatozoa from developing germ cells through mitotic and meiotic divisions is a highly regulated and complex process. Any defect in this process, may lead to subfertility/infertility. The role of different transcripts (mRNA/miRNA/lncRNA) in regulation of the pre-meiotic, meiotic, and post-meiotic stages of spermatogenesis<span> are being proposed based on various multiomics based approaches. Such differential gene-expression is regulated by promoter elements that are activated in a stage specific manner. To determine the role of these differentially expressed transcripts in the process of meiosis, a robust post-meiotic germ cell specific promoter is required. In the present study, we have isolated and characterized the expression of the mouse Proacrosin, SP10, and ELP<span> promoters for driving post-meiotic germ cell specific gene-expression. Promoter regions of all these 3 genes were isolated and cloned to generate mammalian expression vector. The transgene expression in post-meiotic germ cells was assessed in mice using the testicular electroporation method </span></span></span><em>in vitro</em> as well as <em>in vivo</em><span>, using above promoters. It was also validated in goat seminiferous tubules, </span><em>in vitro</em>. We have also carried out a comparative analysis of the strength of these promoters to confirm their robustness that indicated Proacrosin to be the most robust promoter that can be useful for diving post-meiotic germ cells specific gene-expression. These promoters can be used to alter gene-expression specifically in post-meiotic germ cells for deciphering the role(s) of germ cell genes in spermatogenic progression or for expressing various genome editing tools for engineering the germ cell genome to understand basis of subfertility/infertility.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1867 1","pages":"Article 194994"},"PeriodicalIF":4.7,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92157398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The functions of FOXP transcription factors and their regulation by post-translational modifications FOXP转录因子的功能及其通过翻译后修饰的调节。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-04 DOI: 10.1016/j.bbagrm.2023.194992
Congwen Gao , Honglin Zhu , Peng Gong , Chen Wu , Xingzhi Xu , Xuefei Zhu

The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, FOXP2, FOXP3, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, O-GlcNAcylation, and methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.

转录因子的叉头盒亚家族P(FOXP)由FOXP1、FOXP2、FOXP3和FOXP4组成,参与多系统功能的调节。FOXP蛋白转录活性的破坏导致神经发育障碍和免疫疾病,以及抑制或促进致癌作用。FOXP蛋白的转录活性直接或间接受到各种翻译后修饰的调节,包括磷酸化、泛素化、SUMO化、乙酰化、O-GlcNAcylation和甲基化。在此,我们讨论了翻译后修饰如何调节FOXP蛋白的多种功能,并研究了其对肿瘤发生和癌症治疗的影响。
{"title":"The functions of FOXP transcription factors and their regulation by post-translational modifications","authors":"Congwen Gao ,&nbsp;Honglin Zhu ,&nbsp;Peng Gong ,&nbsp;Chen Wu ,&nbsp;Xingzhi Xu ,&nbsp;Xuefei Zhu","doi":"10.1016/j.bbagrm.2023.194992","DOIUrl":"10.1016/j.bbagrm.2023.194992","url":null,"abstract":"<div><p><span><span>The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, </span>FOXP2, </span>FOXP3<span><span>, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, </span>SUMOylation<span><span>, acetylation, O-GlcNAcylation, and </span>methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.</span></span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194992"},"PeriodicalIF":4.7,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41156288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DDX5 (p68) orchestrates β-catenin, RelA and SP1 mediated MGMT gene expression in human colon cancer cells: Implication in TMZ chemoresistance DDX5(p68)在人结肠癌癌症细胞中协调β-连环蛋白、RelA和SP1介导的MGMT基因表达:TMZ化疗耐药性的意义。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-02 DOI: 10.1016/j.bbagrm.2023.194991
Rajni Shaw , Subhajit Karmakar , Malini Basu , Mrinal K. Ghosh

DDX5 (p68) upregulation has been linked with various cancers of different origins, especially Colon Adenocarcinomas. Similarly, across cancers, MGMT has been identified as the major contributor of chemoresistance against DNA alkylating agents like Temozolomide (TMZ). TMZ is an emerging potent chemotherapeutic agent across cancers under the arena of drug repurposing. Recent studies have established that patients with open MGMT promoters are prone to be innately resistant or acquire resistance against TMZ compared to its closed conformation. However, not much is known about the transcriptional regulation of MGMT gene in the context of colon cancer. This necessitates studying MGMT gene regulation which directly impacts the cellular potential to develop chemoresistance against alkylating agents. Our study aims to uncover an unidentified mechanism of DDX5-mediated MGMT gene regulation. Experimentally, we found that both mRNA and protein expression levels of MGMT were elevated in response to p68 overexpression in multiple human colon cancer cell lines and vice-versa. Since p68 cannot directly interact with the MGMT promoter, transcription factors viz., β-catenin, RelA (p65) and SP1 were also studied as reported contributors. Through co-immunoprecipitation and GST-pull-down studies, p68 was established as an interacting partner of SP1 in addition to β-catenin and NF-κB (p50-p65). Mechanistically, luciferase reporter and chromatin-immunoprecipitation assays demonstrated that p68 interacts with the MGMT promoter via TCF4-LEF, RelA and SP1 sites to enhance its transcription. To the best of our knowledge, this is the first report of p68 as a transcriptional co-activator of MGMT promoter and our study identifies p68 as a novel and master regulator of MGMT gene expression.

DDX5(p68)的上调与各种不同来源的癌症有关,尤其是结肠腺癌。同样,在各种癌症中,MGMT已被确定为对DNA烷化剂(如替莫唑胺(TMZ))产生化学耐药性的主要因素。TMZ是一种新兴的强效化疗药物,在药物再利用的舞台上治疗癌症。最近的研究已经证实,与TMZ的闭合构象相比,具有开放性MGMT启动子的患者倾向于天生对TMZ具有耐药性或获得耐药性。然而,关于MGMT基因在结肠癌中的转录调控,目前尚不清楚。这就需要研究MGMT基因调控,它直接影响细胞对烷化剂产生化学抗性的潜力。我们的研究旨在揭示DDX5介导的MGMT基因调控的未知机制。在实验中,我们发现在多个人类结肠癌癌症细胞系中,MGMT的mRNA和蛋白质表达水平均因p68过表达而升高,反之亦然。由于p68不能直接与MGMT启动子相互作用,转录因子即β-连环蛋白、RelA(p65)和SP1也被研究为报道的贡献者。通过共免疫沉淀和GST下拉研究,p68被确定为SP1与β-连环蛋白和NF-κB(p50-p65)的相互作用伴侣。从机制上讲,荧光素酶报告基因和染色质免疫沉淀分析表明,p68通过TCF4-LEF、RelA和SP1位点与MGMT启动子相互作用,以增强其转录。据我们所知,这是p68作为MGMT启动子的转录共激活剂的首次报道,我们的研究确定p68是MGMT基因表达的新的主调控因子。
{"title":"DDX5 (p68) orchestrates β-catenin, RelA and SP1 mediated MGMT gene expression in human colon cancer cells: Implication in TMZ chemoresistance","authors":"Rajni Shaw ,&nbsp;Subhajit Karmakar ,&nbsp;Malini Basu ,&nbsp;Mrinal K. Ghosh","doi":"10.1016/j.bbagrm.2023.194991","DOIUrl":"10.1016/j.bbagrm.2023.194991","url":null,"abstract":"<div><p><span><span>DDX5 (p68) upregulation has been linked with various cancers of different origins, especially Colon Adenocarcinomas. Similarly, across cancers, </span>MGMT<span> has been identified as the major contributor of chemoresistance against DNA alkylating agents like Temozolomide (TMZ). TMZ is an emerging potent chemotherapeutic agent across cancers under the arena of drug repurposing. Recent studies have established that patients with open MGMT promoters are prone to be innately resistant or acquire resistance against TMZ compared to its closed conformation. However, not much is known about the transcriptional regulation of </span></span><em>MGMT</em> gene in the context of colon cancer. This necessitates studying <em>MGMT</em><span> gene regulation which directly impacts the cellular potential to develop chemoresistance against alkylating agents. Our study aims to uncover an unidentified mechanism of DDX5-mediated </span><em>MGMT</em> gene regulation. Experimentally, we found that both mRNA and protein expression levels of MGMT were elevated in response to p68 overexpression in multiple human colon cancer cell lines and <em>vice-versa</em>. Since p68 cannot directly interact with the MGMT promoter, transcription factors <em>viz.</em><span>, β-catenin, RelA (p65) and SP1 were also studied as reported contributors. Through co-immunoprecipitation and GST-pull-down studies, p68 was established as an interacting partner of SP1 in addition to β-catenin and NF-κB (p50-p65). Mechanistically, luciferase reporter and chromatin-immunoprecipitation assays demonstrated that p68 interacts with the MGMT promoter </span><em>via</em> TCF4-LEF, RelA and SP1 sites to enhance its transcription. To the best of our knowledge, this is the first report of p68 as a transcriptional co-activator of MGMT promoter and our study identifies p68 as a novel and master regulator of <em>MGMT</em> gene expression.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194991"},"PeriodicalIF":4.7,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41154520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the battle for lysine: A review of the competition among post-translational modifications 揭开赖氨酸之战:翻译后修饰之间的竞争综述。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-24 DOI: 10.1016/j.bbagrm.2023.194990
Ali H. Shukri , Valentina Lukinović , François Charih , Kyle K. Biggar

Proteins play a critical role as key regulators in various biological systems, influencing crucial processes such as gene expression, cell cycle progression, and cellular proliferation. However, the functions of proteins can be further modified through post-translational modifications (PTMs), which expand their roles and contribute to disease progression when dysregulated. In this review, we delve into the methodologies employed for the characterization of PTMs, shedding light on the techniques and tools utilized to help unravel their complexity. Furthermore, we explore the prevalence of crosstalk and competition that occurs between different types of PTMs, specifically focusing on both histone and non-histone proteins. The intricate interplay between different modifications adds an additional layer of regulation to protein function and cellular processes. To gain insights into the competition for lysine residues among various modifications, computational systems such as MethylSight have been developed, allowing for a comprehensive analysis of the modification landscape. Additionally, we provide an overview of the exciting developments in the field of inhibitors or drugs targeting PTMs, highlighting their potential in combatting prevalent diseases. The discovery and development of drugs that modulate PTMs present promising avenues for therapeutic interventions, offering new strategies to address complex diseases. As research progresses in this rapidly evolving field, we anticipate remarkable advancements in our understanding of PTMs and their roles in health and disease, ultimately paving the way for innovative treatment approaches.

蛋白质作为各种生物系统中的关键调节因子发挥着关键作用,影响着基因表达、细胞周期进展和细胞增殖等关键过程。然而,蛋白质的功能可以通过翻译后修饰(PTMs)进一步修饰,翻译后修饰扩大了它们的作用,并在失调时导致疾病进展。在这篇综述中,我们深入研究了用于表征PTM的方法,揭示了用于帮助揭示其复杂性的技术和工具。此外,我们还探讨了不同类型PTM之间发生串扰和竞争的普遍性,特别关注组蛋白和非组蛋白。不同修饰之间错综复杂的相互作用为蛋白质功能和细胞过程增加了一层额外的调节。为了深入了解赖氨酸残基在各种修饰中的竞争,已经开发了MethylSight等计算系统,以便对修饰景观进行全面分析。此外,我们还概述了靶向PTMs的抑制剂或药物领域的令人兴奋的发展,强调了它们在对抗流行疾病方面的潜力。调节PTMs的药物的发现和开发为治疗干预提供了有希望的途径,为解决复杂疾病提供了新的策略。随着这一快速发展的领域的研究进展,我们预计我们对PTM及其在健康和疾病中的作用的理解将取得显著进展,最终为创新的治疗方法铺平道路。
{"title":"Unraveling the battle for lysine: A review of the competition among post-translational modifications","authors":"Ali H. Shukri ,&nbsp;Valentina Lukinović ,&nbsp;François Charih ,&nbsp;Kyle K. Biggar","doi":"10.1016/j.bbagrm.2023.194990","DOIUrl":"10.1016/j.bbagrm.2023.194990","url":null,"abstract":"<div><p>Proteins play a critical role as key regulators in various biological systems, influencing crucial processes such as gene expression, cell cycle progression<span>, and cellular proliferation<span>. However, the functions of proteins can be further modified through post-translational modifications (PTMs), which expand their roles and contribute to disease progression when dysregulated. In this review, we delve into the methodologies employed for the characterization of PTMs, shedding light on the techniques and tools utilized to help unravel their complexity. Furthermore, we explore the prevalence of crosstalk and competition that occurs between different types of PTMs, specifically focusing on both histone<span> and non-histone proteins. The intricate interplay between different modifications adds an additional layer of regulation to protein function and cellular processes. To gain insights into the competition for lysine residues among various modifications, computational systems such as MethylSight have been developed, allowing for a comprehensive analysis of the modification landscape. Additionally, we provide an overview of the exciting developments in the field of inhibitors or drugs targeting PTMs, highlighting their potential in combatting prevalent diseases. The discovery and development of drugs that modulate PTMs present promising avenues for therapeutic interventions, offering new strategies to address complex diseases. As research progresses in this rapidly evolving field, we anticipate remarkable advancements in our understanding of PTMs and their roles in health and disease, ultimately paving the way for innovative treatment approaches.</span></span></span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194990"},"PeriodicalIF":4.7,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-translational modifications in stress granule and their implications in neurodegenerative diseases 应激颗粒的翻译后修饰及其在神经退行性疾病中的意义。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-24 DOI: 10.1016/j.bbagrm.2023.194989
Zhangshun Wang , Chen'ang Zhang , Chengyu Fan, Yanfen Liu

Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.

应激颗粒(SG)是在应激过程中响应翻译起始抑制而形成的信使核糖核酸和蛋白质。这些动态隔室通过液-液相分离(LLPS)采用流体性质,表现出在细胞环境中不断变化的组成。研究揭示了SG蛋白上发生的一系列翻译后修饰(PTM),它们错综复杂地协调着SG动力学。在神经退行性疾病领域,病理性突变蛋白与许多SG蛋白一起聚集成不溶性聚集体,表现出抵抗分解的弹性。特定的PTM显著地标记这些聚集体,指定它们进行后续降解。通过PTMs对异常SG进行策略性操作是一种很有前途的治疗干预途径。这篇综述发现了最近在理解PTM对LLPS行为和SG组装/拆卸动力学的影响方面取得的进展。通过深入研究PTMs在调节SG动力学中的作用,我们增强了对神经退行性变分子基础的认识。此外,我们为神经退行性疾病的潜在治疗干预靶点提供了宝贵的见解,包括肌萎缩侧索硬化症和额颞叶痴呆等疾病。
{"title":"Post-translational modifications in stress granule and their implications in neurodegenerative diseases","authors":"Zhangshun Wang ,&nbsp;Chen'ang Zhang ,&nbsp;Chengyu Fan,&nbsp;Yanfen Liu","doi":"10.1016/j.bbagrm.2023.194989","DOIUrl":"10.1016/j.bbagrm.2023.194989","url":null,"abstract":"<div><p>Stress granules<span> (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.</span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194989"},"PeriodicalIF":4.7,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41107119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders MAPK途径与基因表达的纠缠及其在癌症和神经退行性疾病病因中的普遍存在。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-21 DOI: 10.1016/j.bbagrm.2023.194988
Joydeep Chakraborty , Sayan Chakraborty , Sohag Chakraborty , Mahesh N. Narayan

Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS–RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.

丝裂原活化蛋白激酶(MAPK)是最具特征的细胞信号通路之一,控制包括增殖、分化和凋亡在内的基本细胞过程。这些细胞功能是受MAP激酶信号级联影响和调节的调节基因转录的结果。MAP激酶成分,如受体酪氨酸激酶(RTKs)感知外部线索或配体,并通过多种蛋白质复合物(如RAS-RAF、MEK和ERKs)传递这些信号,最终调节细胞核内的转录因子,以诱导转录和其他调节功能。异常激活、这种信号通路的失调以及这些成分中任何一种的基因改变都会导致发育障碍、癌症和神经退行性疾病。多年来,MAPK通路一直是治疗复杂人类疾病的主要药理靶点,这些疾病与遗传有关,如癌症、阿尔茨海默病、帕金森病和肌萎缩性脊髓侧索硬化症。本文对MAPK通路在基因表达调控中的作用机制进行了综述。此外,从疾病的角度讨论了MAPK成分的机制理解的最新进展。
{"title":"Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders","authors":"Joydeep Chakraborty ,&nbsp;Sayan Chakraborty ,&nbsp;Sohag Chakraborty ,&nbsp;Mahesh N. Narayan","doi":"10.1016/j.bbagrm.2023.194988","DOIUrl":"10.1016/j.bbagrm.2023.194988","url":null,"abstract":"<div><p><span><span>Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized </span>cellular signaling<span> pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple </span></span>protein complexes<span><span> such as RAS–RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in </span>gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.</span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194988"},"PeriodicalIF":4.7,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Inflammation-induced nitric oxide suppresses PPARα expression and function via downregulation of Sp1 transcriptional activity in adipocytes 炎症诱导的一氧化氮通过下调脂肪细胞中Sp1转录活性来抑制PPARα的表达和功能。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-20 DOI: 10.1016/j.bbagrm.2023.194987
Jungin Kwon , Yumeko Aoki , Haruya Takahashi , Rieko Nakata , Satoko Kawarasaki , Zheng Ni , Rina Yu , Hiroyasu Inoue , Kazuo Inoue , Teruo Kawada , Tsuyoshi Goto

The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that Ppara gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses Ppara expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed Ppara mRNA expression in 10T1/2 adipocytes. In addition, Ppara transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on Ppara gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the Ppara gene, which might partially result from the reduced Sp1 expression levels by NO. This study delineated the molecular mechanism that modulates Ppara gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of Ppara in WAT under obese conditions.

过氧化物酶体增殖物激活受体α(PPARα)是一种调节脂质氧化相关基因的配体依赖性转录因子,其激活已被用于治疗高脂血症。新出现的证据表明,在肥胖条件下,脂肪组织中Ppara基因的表达减少;然而,潜在的分子机制仍然难以捉摸。在这里,我们证明一氧化氮(NO)通过抑制脂肪细胞中特异性蛋白1(Sp1)的转录活性来调节其启动子活性,从而抑制Ppara的表达。来源于脂多糖(LPS)激活的巨噬细胞或NO供体(NOR5)处理的NO抑制了10T1/2脂肪细胞中Ppara mRNA的表达。此外,在急性和慢性炎症小鼠模型中,白色脂肪组织(WAT)中的Ppara转录物水平均降低;然而,这种抑制作用通过一氧化氮合酶2(NOS2)抑制剂减弱。内质网(ER)应激抑制剂减弱了NO诱导的对10T1/2脂肪细胞中Ppara基因表达的抑制作用。启动子突变和染色质免疫沉淀分析显示,NO降低了Ppara基因近端启动子区的Sp1占有率,这可能部分是由于NO降低了Sp1表达水平。本研究描述了在白色脂肪细胞中NO刺激时调节Ppara转录的分子机制,提示肥胖条件下WAT中Ppara转录下调的可能机制。
{"title":"Inflammation-induced nitric oxide suppresses PPARα expression and function via downregulation of Sp1 transcriptional activity in adipocytes","authors":"Jungin Kwon ,&nbsp;Yumeko Aoki ,&nbsp;Haruya Takahashi ,&nbsp;Rieko Nakata ,&nbsp;Satoko Kawarasaki ,&nbsp;Zheng Ni ,&nbsp;Rina Yu ,&nbsp;Hiroyasu Inoue ,&nbsp;Kazuo Inoue ,&nbsp;Teruo Kawada ,&nbsp;Tsuyoshi Goto","doi":"10.1016/j.bbagrm.2023.194987","DOIUrl":"10.1016/j.bbagrm.2023.194987","url":null,"abstract":"<div><p><span>The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that </span><em>Ppara</em><span> gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses </span><em>Ppara</em><span><span> expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from </span>lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed </span><em>Ppara</em> mRNA expression in 10T1/2 adipocytes. In addition, <em>Ppara</em> transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on <em>Ppara</em><span> gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the </span><em>Ppara</em> gene, which might partially result from the reduced <em>Sp1</em> expression levels by NO. This study delineated the molecular mechanism that modulates <em>Ppara</em><span> gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of </span><em>Ppara</em> in WAT under obese conditions.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194987"},"PeriodicalIF":4.7,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of SARS-CoV-2 infection and antiviral innate immunity by ubiquitination and ubiquitin-like conjugation 通过泛素化和泛素样结合调节严重急性呼吸系统综合征冠状病毒2型感染和抗病毒先天免疫。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-17 DOI: 10.1016/j.bbagrm.2023.194984
Yi Zheng , Huiyu Yang , Xuejing Zhang , Chengjiang Gao

A global pandemic COVID-19 resulting from SARS-CoV-2 has affected a significant portion of the human population. Antiviral innate immunity is critical for controlling and eliminating the viral infection. Ubiquitination is extensively involved in antiviral signaling, and recent studies suggest that ubiquitin-like proteins (Ubls) modifications also participate in innate antiviral pathways such as RLR and cGAS-STING pathways. Notably, virus infection harnesses ubiquitination and Ubls modifications to facilitate viral replication and counteract innate antiviral immunity. These observations indicate that ubiquitination and Ubls modifications are critical checkpoints for the tug-of-war between virus and host. This review discusses the current progress regarding the modulation of the SARS-CoV-2 life cycle and antiviral innate immune pathways by ubiquitination and Ubls modifications. This paper emphasizes the arising concept that ubiquitination and Ubls modifications are powerful modulators of virus and host interaction and potential drug targets for treating the infection of SARS-CoV-2.

由严重急性呼吸系统综合征冠状病毒2型引起的全球大流行新冠肺炎影响了相当一部分人口。抗病毒先天免疫对于控制和消除病毒感染至关重要。泛素化广泛参与抗病毒信号传导,最近的研究表明,泛素样蛋白(Ubls)修饰也参与先天抗病毒途径,如RLR和cGAS-STING途径。值得注意的是,病毒感染利用泛素化和Ubls修饰来促进病毒复制并对抗先天抗病毒免疫。这些观察结果表明,泛素化和Ubls修饰是病毒和宿主之间拉锯战的关键检查点。这篇综述讨论了通过泛素化和Ubls修饰调节严重急性呼吸系统综合征冠状病毒2型生命周期和抗病毒先天免疫途径的最新进展。本文强调了一个新概念,即泛素化和Ubls修饰是病毒和宿主相互作用的强大调节剂,也是治疗严重急性呼吸系统综合征冠状病毒2型感染的潜在药物靶点。
{"title":"Regulation of SARS-CoV-2 infection and antiviral innate immunity by ubiquitination and ubiquitin-like conjugation","authors":"Yi Zheng ,&nbsp;Huiyu Yang ,&nbsp;Xuejing Zhang ,&nbsp;Chengjiang Gao","doi":"10.1016/j.bbagrm.2023.194984","DOIUrl":"10.1016/j.bbagrm.2023.194984","url":null,"abstract":"<div><p><span>A global pandemic COVID-19 resulting from SARS-CoV-2 has affected a significant portion of the human population. Antiviral innate immunity is critical for controlling and eliminating the viral infection. Ubiquitination is extensively involved in antiviral signaling, and recent studies suggest that ubiquitin-like proteins (Ubls) modifications also participate in innate antiviral pathways such as </span>RLR and cGAS-STING pathways. Notably, virus infection harnesses ubiquitination and Ubls modifications to facilitate viral replication and counteract innate antiviral immunity. These observations indicate that ubiquitination and Ubls modifications are critical checkpoints for the tug-of-war between virus and host. This review discusses the current progress regarding the modulation of the SARS-CoV-2 life cycle and antiviral innate immune pathways by ubiquitination and Ubls modifications. This paper emphasizes the arising concept that ubiquitination and Ubls modifications are powerful modulators of virus and host interaction and potential drug targets for treating the infection of SARS-CoV-2.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194984"},"PeriodicalIF":4.7,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10339041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post translational modifications at the verge of plant-geminivirus interaction 植物双子病毒相互作用边缘的翻译后修饰。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-17 DOI: 10.1016/j.bbagrm.2023.194983
Ashish Prasad , Shambhavi Sharma , Manoj Prasad

Plant-virus interaction is a complex phenomenon and involves the communication between plant and viral factors. Viruses have very limited coding ability yet, they are able to cause infection which results in huge agro-economic losses throughout the globe each year. Post-translational modifications (PTMs) are covalent modifications of proteins that have a drastic effect on their conformation, stability and function. Like the host proteins, geminiviral proteins are also subject to PTMs and these modifications greatly expand the diversity of their functions. Additionally, these viral proteins can also interact with the components of PTM pathways and modulate them. Several studies have highlighted the importance of PTMs such as phosphorylation, ubiquitination, SUMOylation, myristoylation, S-acylation, acetylation and methylation in plant-geminivirus interaction. PTMs also regulate epigenetic modifications during geminivirus infection which determines viral gene expression. In this review, we have summarized the role of PTMs in regulating geminiviral protein function, influence of PTMs on viral gene expression and how geminiviral proteins interact with the components of PTM pathways to modulate their function.

植物与病毒的相互作用是一种复杂的现象,涉及植物与病毒因子之间的交流。病毒的编码能力非常有限,但它们能够引起感染,每年在全球范围内造成巨大的农业经济损失。翻译后修饰是蛋白质的共价修饰,对蛋白质的构象、稳定性和功能有很大影响。与宿主蛋白一样,双子蛋白也会受到PTM的影响,这些修饰极大地扩大了其功能的多样性。此外,这些病毒蛋白还可以与PTM途径的成分相互作用并调节它们。一些研究强调了PTMs的重要性,如磷酸化、泛素化、SUMO化、肉豆蔻酰化、S-酰化、乙酰化和甲基化在植物双子病毒相互作用中的重要性。PTMs还调节双子病毒感染期间的表观遗传学修饰,从而决定病毒基因的表达。在这篇综述中,我们总结了PTMs在调节双子蛋白功能中的作用,PTMs对病毒基因表达的影响,以及双子蛋白如何与PTM通路的成分相互作用以调节其功能。
{"title":"Post translational modifications at the verge of plant-geminivirus interaction","authors":"Ashish Prasad ,&nbsp;Shambhavi Sharma ,&nbsp;Manoj Prasad","doi":"10.1016/j.bbagrm.2023.194983","DOIUrl":"10.1016/j.bbagrm.2023.194983","url":null,"abstract":"<div><p><span>Plant-virus interaction is a complex phenomenon and involves the communication between plant and viral factors. Viruses have very limited coding ability yet, they are able to cause infection which results in huge agro-economic losses throughout the globe each year. Post-translational modifications (PTMs) are covalent modifications of proteins that have a drastic effect on their conformation, stability and function. Like the host proteins, geminiviral proteins are also subject to PTMs and these modifications greatly expand the diversity of their functions. Additionally, these viral proteins<span><span><span> can also interact with the components of PTM pathways and modulate them. Several studies have highlighted the importance of PTMs such as phosphorylation, ubiquitination, </span>SUMOylation, </span>myristoylation<span>, S-acylation, acetylation and </span></span></span>methylation<span><span> in plant-geminivirus interaction. PTMs also regulate epigenetic modifications during </span>geminivirus infection which determines viral gene expression. In this review, we have summarized the role of PTMs in regulating geminiviral protein function, influence of PTMs on viral gene expression and how geminiviral proteins interact with the components of PTM pathways to modulate their function.</span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194983"},"PeriodicalIF":4.7,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10651925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mechanism of UP1 binding and unfolding of human telomeric DNA G-quadruplex 人端粒DNA G-四链体UP1结合和去折叠的机制。
IF 4.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-16 DOI: 10.1016/j.bbagrm.2023.194985
Xiaobin Ling , Yuqi Yao , Lei Ding , Jinbiao Ma

The human telomere contains multiple copies of the DNA sequence d(TTAGGG) which can fold into higher order intramolecular G-quadruplexes and regulate the maintenance of telomere length and chromosomal integrity. The nucleic acid binding protein heteronuclear ribonucleoprotein A1 (hnRNP A1) and its N-terminus proteolytic product UP1 have been shown to efficiently bind and unfold telomeric DNA G-quadruplex. However, the understanding of the molecular mechanism of the UP1 binding and unfolding telomeric G-quadruplexes is still limited. Here, we performed biochemical and biophysical characterizations of UP1 binding and unfolding of human telomeric DNA G-quadruplex d[AGGG(TTAGGG)3], and in combination of systematic site-direct mutagenesis of two tandem RNA recognition motifs (RRMs) in UP1, revealed that RRM1 is responsible for initial binding and unfolding, whereas RRM2 assists RRM1 to complete the unfolding of G-quadruplex. Isothermal titration calorimetry (ITC) and circular dichroism (CD) studies of the interactions between UP1 and DNA G-quadruplex variants indicate that the “TAG” binding motif in Loop2 of telomeric G-quadruplex is critical for UP1 recognition and G-quadruplex unfolding initiation. Together we depict a model for molecular mechanism of hnRNP A1 (UP1) binding and unfolding of the human telomeric DNA G-quadruplex.

人类端粒包含DNA序列d(TTAGGG)的多个拷贝,该序列可以折叠成更高阶的分子内G-四链体,并调节端粒长度和染色体完整性的维持。核酸结合蛋白异核核糖核蛋白A1(hnRNP A1)及其N-末端蛋白水解产物UP1已被证明能有效地结合和展开端粒DNA G-四链体。然而,对UP1结合和去折叠端粒G-四链体的分子机制的理解仍然有限。在这里,我们对人端粒DNA G-quadruplex d[AGGG(TTAGGG)3]的UP1结合和去折叠进行了生化和生物物理表征,并结合UP1中两个串联RNA识别基序(RRM)的系统位点直接诱变,发现RRM1负责初始结合和去展开,而RRM2协助RRM1完成G-quadryplex的去折叠。对UP1和DNA G-quadruplex变体之间相互作用的等温滴定量热法(ITC)和圆二色性(CD)研究表明,端粒G-quadrupplex的环2中的“TAG”结合基序对UP1识别和G-quadryplex展开起始至关重要。我们一起描述了人类端粒DNA G-四链体的hnRNP A1(UP1)结合和去折叠的分子机制模型。
{"title":"The mechanism of UP1 binding and unfolding of human telomeric DNA G-quadruplex","authors":"Xiaobin Ling ,&nbsp;Yuqi Yao ,&nbsp;Lei Ding ,&nbsp;Jinbiao Ma","doi":"10.1016/j.bbagrm.2023.194985","DOIUrl":"10.1016/j.bbagrm.2023.194985","url":null,"abstract":"<div><p><span><span><span>The human telomere contains multiple copies of the </span>DNA sequence d(TTAGGG) which can fold into higher order intramolecular G-quadruplexes and regulate the maintenance of </span>telomere length<span><span> and chromosomal integrity. The nucleic acid binding protein heteronuclear </span>ribonucleoprotein<span> A1 (hnRNP A1) and its N-terminus proteolytic product UP1 have been shown to efficiently bind and unfold telomeric DNA G-quadruplex. However, the understanding of the molecular mechanism of the UP1 binding and unfolding telomeric G-quadruplexes is still limited. Here, we performed biochemical and biophysical characterizations of UP1 binding and unfolding of human telomeric DNA G-quadruplex d[AGGG(TTAGGG)</span></span></span><sub>3</sub><span><span><span><span>], and in combination of systematic site-direct mutagenesis of two tandem </span>RNA recognition motifs<span> (RRMs) in UP1, revealed that RRM1 is responsible for initial binding and unfolding, whereas </span></span>RRM2<span> assists RRM1 to complete the unfolding of G-quadruplex. Isothermal titration calorimetry (ITC) and </span></span>circular dichroism (CD) studies of the interactions between UP1 and DNA G-quadruplex variants indicate that the “TAG” binding motif in Loop2 of telomeric G-quadruplex is critical for UP1 recognition and G-quadruplex unfolding initiation. Together we depict a model for molecular mechanism of hnRNP A1 (UP1) binding and unfolding of the human telomeric DNA G-quadruplex.</span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194985"},"PeriodicalIF":4.7,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10634108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biochimica et Biophysica Acta-Gene Regulatory Mechanisms
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1