首页 > 最新文献

Applied Mathematics Letters最新文献

英文 中文
Wave fronts for a class of delayed Fisher–KPP equations 一类延迟费雪-KPP方程的波前沿
IF 3.7 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-29 DOI: 10.1016/j.aml.2024.109406
Jinrui Zhang, Haijun Hu, Chuangxia Huang
In this paper, we consider a class of Fisher–KPP equations with delays appearing in both diffusion and reaction terms. By employing some differential inequality analyses, we prove that the delayed Fisher–KPP equation possesses a pair of quasi-upper and quasi-lower solutions which have absolutely continuous derivatives. Based on this, we apply the monotone iteration method and the Perron’s theorem to establish a sufficient criterion ensuring the existence of wave fronts. Our proof corrects the previous related research.
{"title":"Wave fronts for a class of delayed Fisher–KPP equations","authors":"Jinrui Zhang, Haijun Hu, Chuangxia Huang","doi":"10.1016/j.aml.2024.109406","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109406","url":null,"abstract":"In this paper, we consider a class of Fisher–KPP equations with delays appearing in both diffusion and reaction terms. By employing some differential inequality analyses, we prove that the delayed Fisher–KPP equation possesses a pair of quasi-upper and quasi-lower solutions which have absolutely continuous derivatives. Based on this, we apply the monotone iteration method and the Perron’s theorem to establish a sufficient criterion ensuring the existence of wave fronts. Our proof corrects the previous related research.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlocal ∂̄ formalism for the three-spatial-dimensions Kaup–Kuperschmidt equation with two temporal variables
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-28 DOI: 10.1016/j.aml.2024.109404
Huanhuan Lu , Yufeng Zhang
By complexifying the independent variables of the Kaup–Kuperschmidt (KK) equation, we derive the 4+2 integrable extension of the KK equation and its Lax pair. The construction of the associated nonlinear Fourier transform pair comprising both direct and inverse transforms is accomplished by conducting a spectral analysis of the t-independent part of the Lax pair. In the final section, the nonlinear Fourier transform pair will be used, after also taking into account the appropriate time evolution, for solving the Cauchy initial value problem of the three-spatial-dimensions KK equation with two temporal variables.
{"title":"Nonlocal ∂̄ formalism for the three-spatial-dimensions Kaup–Kuperschmidt equation with two temporal variables","authors":"Huanhuan Lu ,&nbsp;Yufeng Zhang","doi":"10.1016/j.aml.2024.109404","DOIUrl":"10.1016/j.aml.2024.109404","url":null,"abstract":"<div><div>By complexifying the independent variables of the Kaup–Kuperschmidt (KK) equation, we derive the 4+2 integrable extension of the KK equation and its Lax pair. The construction of the associated nonlinear Fourier transform pair comprising both direct and inverse transforms is accomplished by conducting a spectral analysis of the <span><math><mi>t</mi></math></span>-independent part of the Lax pair. In the final section, the nonlinear Fourier transform pair will be used, after also taking into account the appropriate time evolution, for solving the Cauchy initial value problem of the three-spatial-dimensions KK equation with two temporal variables.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109404"},"PeriodicalIF":2.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A transmission problem for wave equations in infinite waveguides
IF 3.7 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-28 DOI: 10.1016/j.aml.2024.109405
Reinhard Racke, Shuji Yoshikawa
We prove a decay estimate for solutions to a transmission problem for wave equations with different propagation speeds in an infinite waveguide. The problem represents the wave propagation in unbounded and layered composite materials in which different properties are given. It is a new composition of a waveguide problem and a transmission problem, motivated by a unit cell model for CFRP. The proof is based on splitting variables, partial eigenfunction expansions in the bounded cross section, and on an explicit Weyl type estimate for the eigenvalues.
{"title":"A transmission problem for wave equations in infinite waveguides","authors":"Reinhard Racke, Shuji Yoshikawa","doi":"10.1016/j.aml.2024.109405","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109405","url":null,"abstract":"We prove a decay estimate for solutions to a transmission problem for wave equations with different propagation speeds in an infinite waveguide. The problem represents the wave propagation in unbounded and layered composite materials in which different properties are given. It is a new composition of a waveguide problem and a transmission problem, motivated by a unit cell model for CFRP. The proof is based on splitting variables, partial eigenfunction expansions in the bounded cross section, and on an explicit Weyl type estimate for the eigenvalues.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"82 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Legendre spectral volume methods for Allen–Cahn equations by the direct discontinuous Galerkin formula
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-26 DOI: 10.1016/j.aml.2024.109382
Chaoyue Guan, Yuli Sun, Jing Niu
In this paper, we introduce novel class of Legendre spectral volume (LSV) methods for solving Allen–Cahn equations. Each spectral volume (SV) is refined with k Gauss–Legendre points to define an arbitrary order control volume (CV). Moreover, the second derivative is handled using the direct discontinuous Galerkin (DDG) approach. Furthermore, four numerical experiments are detailed including 1D and 2D Allen–Cahn equations with Neumann and periodic boundary conditions. These experiments demonstrate the stability and accuracy in capturing phase transitions of the approach. Meanwhile, we also show the LSV methods can maintain physical properties such as energy dissipation and uniform boundedness. It is worth mentioning that we observe that the LSV methods achieve both optimal convergence and superconvergence as the numerical flux parameter is carefully selected.
{"title":"Legendre spectral volume methods for Allen–Cahn equations by the direct discontinuous Galerkin formula","authors":"Chaoyue Guan,&nbsp;Yuli Sun,&nbsp;Jing Niu","doi":"10.1016/j.aml.2024.109382","DOIUrl":"10.1016/j.aml.2024.109382","url":null,"abstract":"<div><div>In this paper, we introduce novel class of Legendre spectral volume (LSV) methods for solving Allen–Cahn equations. Each spectral volume (SV) is refined with <span><math><mi>k</mi></math></span> Gauss–Legendre points to define an arbitrary order control volume (CV). Moreover, the second derivative is handled using the direct discontinuous Galerkin (DDG) approach. Furthermore, four numerical experiments are detailed including 1D and 2D Allen–Cahn equations with Neumann and periodic boundary conditions. These experiments demonstrate the stability and accuracy in capturing phase transitions of the approach. Meanwhile, we also show the LSV methods can maintain physical properties such as energy dissipation and uniform boundedness. It is worth mentioning that we observe that the LSV methods achieve both optimal convergence and superconvergence as the numerical flux parameter is carefully selected.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109382"},"PeriodicalIF":2.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new error analysis of a linearized Euler Galerkin scheme for Schrödinger equation with cubic nonlinearity 具有立方非线性的薛定谔方程的线性化欧拉 Galerkin 方案的新误差分析
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-25 DOI: 10.1016/j.aml.2024.109401
Huaijun Yang
In this paper, a linearized Euler Galerkin scheme is studied and the unconditionally optimal error estimate in L2-norm is obtained for Schrödinger equation with cubic nonlinearity without any time-step restriction. The key to the analysis is to bound the H1-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.
本文研究了线性化欧拉 Galerkin 方案,并在无任何时间步长限制的情况下,为具有立方非线性的薛定谔方程获得了 L2 规范下的无条件最优误差估计。分析的关键在于通过数学归纳法对两种情况下的数值解与精确解的里兹投影之间的 H1 规范进行约束,而不是之前工作中使用的误差分割技术。最后,我们给出了一些数值结果来证实理论分析。
{"title":"A new error analysis of a linearized Euler Galerkin scheme for Schrödinger equation with cubic nonlinearity","authors":"Huaijun Yang","doi":"10.1016/j.aml.2024.109401","DOIUrl":"10.1016/j.aml.2024.109401","url":null,"abstract":"<div><div>In this paper, a linearized Euler Galerkin scheme is studied and the unconditionally optimal error estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm is obtained for Schrödinger equation with cubic nonlinearity without any time-step restriction. The key to the analysis is to bound the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109401"},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnack type inequality and Liouville theorem for subcritical fully nonlinear equations
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-25 DOI: 10.1016/j.aml.2024.109402
Wei Zhang , Jialing Zhang
<div><div>We consider this equation <span><span><span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mfenced><mrow><mi>p</mi><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfenced><mi>k</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>∈</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. Here <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> denotes the <span><math><mi>k</mi></math></span>th elementary symmetric function of the eigenvalues of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>u</mi></mrow></msup></math></span>, and <span><span><span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>=</mo><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><mo>∇</mo><mi>u</mi><mo>⊗</mo><mo>∇</mo><mi>u</mi><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>I</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mo>∇</mo><mi>u</mi></mrow></math></span> denotes the gradient of <span><math><mi>u</mi></math></span> and <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> denotes the Hessian of <span><math><mi>u</mi></math></span>. This equation has fruitful backgrounds in geometry and physics. We then obtain Schoen’s Harnack type inequality in Euclidean balls, and asymptotic behavior of an entire solution. Based on the asymptotic behavior, we give another proof of the Liouville theorem obtained by A. Li and Y
{"title":"Harnack type inequality and Liouville theorem for subcritical fully nonlinear equations","authors":"Wei Zhang ,&nbsp;Jialing Zhang","doi":"10.1016/j.aml.2024.109402","DOIUrl":"10.1016/j.aml.2024.109402","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We consider this equation &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Here &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; denotes the &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th elementary symmetric function of the eigenvalues of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;⊗&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the gradient of &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the Hessian of &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. This equation has fruitful backgrounds in geometry and physics. We then obtain Schoen’s Harnack type inequality in Euclidean balls, and asymptotic behavior of an entire solution. Based on the asymptotic behavior, we give another proof of the Liouville theorem obtained by A. Li and Y","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109402"},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On decomposition of collocation matrices for the Cauchy–Bernstein basis and applications
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-24 DOI: 10.1016/j.aml.2024.109391
Zhao Yang , Tao Chen , Sanyang Liu
In this paper, we show that collocation matrices of the Cauchy–Bernstein basis can be decomposed as products of a Cauchy–Vandermonde matrix and a block diagonal matrix. A useful application of this result is that the explicit expression of the determinant for the collocation matrices is presented. Consequently, an algorithm is provided to accurately compute the determinants. Numerical experiments confirm the high accuracy of the algorithm.
{"title":"On decomposition of collocation matrices for the Cauchy–Bernstein basis and applications","authors":"Zhao Yang ,&nbsp;Tao Chen ,&nbsp;Sanyang Liu","doi":"10.1016/j.aml.2024.109391","DOIUrl":"10.1016/j.aml.2024.109391","url":null,"abstract":"<div><div>In this paper, we show that collocation matrices of the Cauchy–Bernstein basis can be decomposed as products of a Cauchy–Vandermonde matrix and a block diagonal matrix. A useful application of this result is that the explicit expression of the determinant for the collocation matrices is presented. Consequently, an algorithm is provided to accurately compute the determinants. Numerical experiments confirm the high accuracy of the algorithm.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109391"},"PeriodicalIF":2.9,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAV unconditional stable estimate of parallel decoupled stabilized finite element algorithm for the fully mixed Stokes–Darcy problems 针对完全混合斯托克斯-达西问题的并行解耦稳定有限元算法的 SAV 无条件稳定估计
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-23 DOI: 10.1016/j.aml.2024.109393
Chunchi Liu , Yizhong Sun , Jiaping Yu
This paper investigates a fully parallel decoupled approach of the discrete stabilized finite element method for the time-dependent Stokes–Darcy problem. By introducing an auxiliary function, we rigorously demonstrate that the parallel algorithm is unconditionally stable.
本文研究了针对时变斯托克斯-达西问题的离散稳定有限元法的完全并行解耦方法。通过引入辅助函数,我们严格证明了并行算法是无条件稳定的。
{"title":"SAV unconditional stable estimate of parallel decoupled stabilized finite element algorithm for the fully mixed Stokes–Darcy problems","authors":"Chunchi Liu ,&nbsp;Yizhong Sun ,&nbsp;Jiaping Yu","doi":"10.1016/j.aml.2024.109393","DOIUrl":"10.1016/j.aml.2024.109393","url":null,"abstract":"<div><div>This paper investigates a fully parallel decoupled approach of the discrete stabilized finite element method for the time-dependent Stokes–Darcy problem. By introducing an auxiliary function, we rigorously demonstrate that the parallel algorithm is unconditionally stable.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109393"},"PeriodicalIF":2.9,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple solutions of the Ambrosetti–Rabinowitz problem 安布罗塞蒂-拉宾诺维茨问题的多种解决方案
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-23 DOI: 10.1016/j.aml.2024.109390
Ziliang Yang , Jiabao Su , Mingzheng Sun
In this paper, we consider the following elliptic problem Δu=f(x,u),inΩ,u=0,onΩ,(P) where the nonlinearity f satisfies the Ambrosetti–Rabinowitz condition. Using an additional growth condition of f at a bounded region, we can obtain five nontrivial solutions of (P) by applying homological linking arguments and Morse theory.
本文考虑以下椭圆问题 -Δu=f(x,u),inΩ,u=0,on∂Ω,(P) 其中非线性 f 满足 Ambrosetti-Rabinowitz 条件。利用 f 在有界区域的附加增长条件,我们可以通过应用同调联系论证和莫尔斯理论得到 (P) 的五个非微观解。
{"title":"Multiple solutions of the Ambrosetti–Rabinowitz problem","authors":"Ziliang Yang ,&nbsp;Jiabao Su ,&nbsp;Mingzheng Sun","doi":"10.1016/j.aml.2024.109390","DOIUrl":"10.1016/j.aml.2024.109390","url":null,"abstract":"<div><div>In this paper, we consider the following elliptic problem <span><math><mrow><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mspace></mspace><mi>∂</mi><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> where the nonlinearity <span><math><mi>f</mi></math></span> satisfies the Ambrosetti–Rabinowitz condition. Using an additional growth condition of <span><math><mi>f</mi></math></span> at a bounded region, we can obtain five nontrivial solutions of <span><math><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></math></span> by applying homological linking arguments and Morse theory.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109390"},"PeriodicalIF":2.9,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qualitative analysis and analytical solution for higher dimensional gas-filled hyper-spherical bubbles in an ideal fluid 理想流体中高维气体填充超球形气泡的定性分析和解析解
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-23 DOI: 10.1016/j.aml.2024.109392
Yupeng Qin , Zhen Wang , Li Zou
The present work concerns with the higher dimensional Rayleigh–Plesset equation for describing the nonlinear dynamics of gas-filled hyper-spherical bubbles in an ideal fluid. A strict qualitative analysis is made by means of the bifurcation theory of dynamic system, indicating that the bubble oscillation type is periodic. An analytical approach based on elliptic function is suggested to construct parametric analytical solution with arbitrary space dimension N, polytropic exponent κ and surface tension σ to the normalized higher dimensional Rayleigh–Plesset equation. The new obtained analytical solution extends the known ones for arbitrary (or some special cases of) N and κ without considering the effect of surface tension. In addition, we also discuss the dynamic characteristics for the oscillating hyper-spherical bubbles.
本研究涉及描述理想流体中充满气体的超球形气泡非线性动力学的高维瑞利-普莱塞特方程。通过动态系统的分岔理论进行了严格的定性分析,表明气泡的振荡类型是周期性的。提出了一种基于椭圆函数的分析方法,为归一化高维瑞利-普莱塞特方程构建了具有任意空间维数 N、多向指数 κ 和表面张力 σ 的参数分析解。在不考虑表面张力影响的情况下,新得到的解析解扩展了已知的任意(或某些特殊情况)N 和 κ 的解析解。此外,我们还讨论了振荡超球形气泡的动态特性。
{"title":"Qualitative analysis and analytical solution for higher dimensional gas-filled hyper-spherical bubbles in an ideal fluid","authors":"Yupeng Qin ,&nbsp;Zhen Wang ,&nbsp;Li Zou","doi":"10.1016/j.aml.2024.109392","DOIUrl":"10.1016/j.aml.2024.109392","url":null,"abstract":"<div><div>The present work concerns with the higher dimensional Rayleigh–Plesset equation for describing the nonlinear dynamics of gas-filled hyper-spherical bubbles in an ideal fluid. A strict qualitative analysis is made by means of the bifurcation theory of dynamic system, indicating that the bubble oscillation type is periodic. An analytical approach based on elliptic function is suggested to construct parametric analytical solution with arbitrary space dimension <span><math><mi>N</mi></math></span>, polytropic exponent <span><math><mi>κ</mi></math></span> and surface tension <span><math><mi>σ</mi></math></span> to the normalized higher dimensional Rayleigh–Plesset equation. The new obtained analytical solution extends the known ones for arbitrary (or some special cases of) <span><math><mi>N</mi></math></span> and <span><math><mi>κ</mi></math></span> without considering the effect of surface tension. In addition, we also discuss the dynamic characteristics for the oscillating hyper-spherical bubbles.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109392"},"PeriodicalIF":2.9,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Mathematics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1