首页 > 最新文献

Applied Mathematics Letters最新文献

英文 中文
A study in Alzheimer’s disease model for pathological effect of oligomers on the interplay between β-amyloid and Ca2+ 阿尔茨海默病模型中低聚物对[公式省略]-淀粉样蛋白和Ca2+相互作用的病理影响的研究
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-30 DOI: 10.1016/j.aml.2024.109407
Mingyan Dong , Yongxin Zhang , Gui-Quan Sun , Zun-Guang Guo , Jiao Zhang
Alzheimer’s disease (AD) is characterized by the progressive deposition of β-amyloid (Aβ) plaques in the brain, where the Aβ oligomers have been confirmed to produce the critical cytotoxicity during the disease process. In this study, a model is established to describe the effect of Aβ oligomers on the interplay between Aβ and Ca2+. Mathematical analysis demonstrates the existence and stability of the equilibria and the conditions under which backward bifurcation and saddle–node bifurcation occur are proposed. In addition, the aggregate reproduction number R0 is introduced to characterize the progression of AD. These results may offer valuable insights for studying AD-related medical strategies.
阿尔茨海默病(AD)的特征是大脑中β-淀粉样蛋白(Aβ)斑块的进行性沉积,其中Aβ低聚物已被证实在疾病过程中产生关键的细胞毒性。在本研究中,我们建立了一个模型来描述a β低聚物对a β和Ca2+相互作用的影响。数学分析证明了平衡点的存在性和稳定性,并给出了发生后向分岔和鞍节点分岔的条件。此外,引入总繁殖数R0来表征AD的进展。这些结果可能为研究ad相关的医疗策略提供有价值的见解。
{"title":"A study in Alzheimer’s disease model for pathological effect of oligomers on the interplay between β-amyloid and Ca2+","authors":"Mingyan Dong ,&nbsp;Yongxin Zhang ,&nbsp;Gui-Quan Sun ,&nbsp;Zun-Guang Guo ,&nbsp;Jiao Zhang","doi":"10.1016/j.aml.2024.109407","DOIUrl":"10.1016/j.aml.2024.109407","url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is characterized by the progressive deposition of <span><math><mi>β</mi></math></span>-amyloid (A<span><math><mi>β</mi></math></span>) plaques in the brain, where the A<span><math><mi>β</mi></math></span> oligomers have been confirmed to produce the critical cytotoxicity during the disease process. In this study, a model is established to describe the effect of A<span><math><mi>β</mi></math></span> oligomers on the interplay between A<span><math><mi>β</mi></math></span> and Ca<sup>2+</sup>. Mathematical analysis demonstrates the existence and stability of the equilibria and the conditions under which backward bifurcation and saddle–node bifurcation occur are proposed. In addition, the aggregate reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is introduced to characterize the progression of AD. These results may offer valuable insights for studying AD-related medical strategies.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109407"},"PeriodicalIF":2.9,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New asymptotic study on the non-autonomous NFDEs involving Haddock conjecture 涉及Haddock猜想的非自治nfde的新渐近研究
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-30 DOI: 10.1016/j.aml.2024.109410
Qian Wang
The classical Haddock conjecture is extended to a kind of non-autonomous neutral functional differential equations (NFDEs) incorporating time-varying delays in this paper. By using the Dini derivative theory and inequality analyses, without requiring the strictly monotonically increasing property of the delay feedback function, it is demonstrated that every solution of the considered NFDEs is bounded and converges to a constant, which fully refines and generalizes the existing findings.
本文将经典Haddock猜想推广到一类含时变时滞的非自治中立型泛函微分方程。利用Dini导数理论和不等式分析,在不要求时滞反馈函数的严格单调递增性质的情况下,证明了所考虑的NFDEs的每一个解都是有界的,并收敛于一个常数,充分完善和推广了已有的研究结果。
{"title":"New asymptotic study on the non-autonomous NFDEs involving Haddock conjecture","authors":"Qian Wang","doi":"10.1016/j.aml.2024.109410","DOIUrl":"10.1016/j.aml.2024.109410","url":null,"abstract":"<div><div>The classical Haddock conjecture is extended to a kind of non-autonomous neutral functional differential equations (NFDEs) incorporating time-varying delays in this paper. By using the Dini derivative theory and inequality analyses, without requiring the strictly monotonically increasing property of the delay feedback function, it is demonstrated that every solution of the considered NFDEs is bounded and converges to a constant, which fully refines and generalizes the existing findings.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109410"},"PeriodicalIF":2.9,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave fronts for a class of delayed Fisher–KPP equations 一类延迟费雪-KPP方程的波前沿
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-29 DOI: 10.1016/j.aml.2024.109406
Jinrui Zhang , Haijun Hu , Chuangxia Huang
In this paper, we consider a class of Fisher–KPP equations with delays appearing in both diffusion and reaction terms. By employing some differential inequality analyses, we prove that the delayed Fisher–KPP equation possesses a pair of quasi-upper and quasi-lower solutions which have absolutely continuous derivatives. Based on this, we apply the monotone iteration method and the Perron’s theorem to establish a sufficient criterion ensuring the existence of wave fronts. Our proof corrects the previous related research.
本文考虑了一类扩散项和反应项均有时滞的Fisher-KPP方程。利用微分不等式分析,证明了时滞Fisher-KPP方程具有一对具有绝对连续导数的拟上、拟下解。在此基础上,应用单调迭代法和Perron定理建立了波前存在的充分判据。我们的论证纠正了以往的相关研究。
{"title":"Wave fronts for a class of delayed Fisher–KPP equations","authors":"Jinrui Zhang ,&nbsp;Haijun Hu ,&nbsp;Chuangxia Huang","doi":"10.1016/j.aml.2024.109406","DOIUrl":"10.1016/j.aml.2024.109406","url":null,"abstract":"<div><div>In this paper, we consider a class of Fisher–KPP equations with delays appearing in both diffusion and reaction terms. By employing some differential inequality analyses, we prove that the delayed Fisher–KPP equation possesses a pair of quasi-upper and quasi-lower solutions which have absolutely continuous derivatives. Based on this, we apply the monotone iteration method and the Perron’s theorem to establish a sufficient criterion ensuring the existence of wave fronts. Our proof corrects the previous related research.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109406"},"PeriodicalIF":2.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlocal ∂̄ formalism for the three-spatial-dimensions Kaup–Kuperschmidt equation with two temporal variables 具有两个时间变量的三维kup - kuperschmidt方程的非局部形式
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-28 DOI: 10.1016/j.aml.2024.109404
Huanhuan Lu , Yufeng Zhang
By complexifying the independent variables of the Kaup–Kuperschmidt (KK) equation, we derive the 4+2 integrable extension of the KK equation and its Lax pair. The construction of the associated nonlinear Fourier transform pair comprising both direct and inverse transforms is accomplished by conducting a spectral analysis of the t-independent part of the Lax pair. In the final section, the nonlinear Fourier transform pair will be used, after also taking into account the appropriate time evolution, for solving the Cauchy initial value problem of the three-spatial-dimensions KK equation with two temporal variables.
通过复化kap - kuperschmidt (KK)方程的自变量,得到了KK方程及其Lax对的4+2可积扩展。通过对Lax对的t无关部分进行频谱分析,构建了包含正变换和反变换的相关非线性傅里叶变换对。在最后一节中,在考虑到适当的时间演化之后,将使用非线性傅立叶变换对来解决具有两个时间变量的三维空间KK方程的柯西初值问题。
{"title":"Nonlocal ∂̄ formalism for the three-spatial-dimensions Kaup–Kuperschmidt equation with two temporal variables","authors":"Huanhuan Lu ,&nbsp;Yufeng Zhang","doi":"10.1016/j.aml.2024.109404","DOIUrl":"10.1016/j.aml.2024.109404","url":null,"abstract":"<div><div>By complexifying the independent variables of the Kaup–Kuperschmidt (KK) equation, we derive the 4+2 integrable extension of the KK equation and its Lax pair. The construction of the associated nonlinear Fourier transform pair comprising both direct and inverse transforms is accomplished by conducting a spectral analysis of the <span><math><mi>t</mi></math></span>-independent part of the Lax pair. In the final section, the nonlinear Fourier transform pair will be used, after also taking into account the appropriate time evolution, for solving the Cauchy initial value problem of the three-spatial-dimensions KK equation with two temporal variables.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109404"},"PeriodicalIF":2.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A transmission problem for wave equations in infinite waveguides 无限波导中波动方程的传输问题
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-28 DOI: 10.1016/j.aml.2024.109405
Reinhard Racke , Shuji Yoshikawa
We prove a decay estimate for solutions to a transmission problem for wave equations with different propagation speeds in an infinite waveguide. The problem represents the wave propagation in unbounded and layered composite materials in which different properties are given. It is a new composition of a waveguide problem and a transmission problem, motivated by a unit cell model for CFRP. The proof is based on splitting variables, partial eigenfunction expansions in the bounded cross section, and on an explicit Weyl type estimate for the eigenvalues.
我们证明了无限波导中具有不同传播速度的波方程的传输问题解的衰减估计。该问题描述了波在具有不同性质的无界层状复合材料中的传播。它是由CFRP的单胞模型驱动的波导问题和传输问题的新组合。该证明是基于分裂变量,在有界截面上的部分特征函数展开式,以及特征值的显式Weyl型估计。
{"title":"A transmission problem for wave equations in infinite waveguides","authors":"Reinhard Racke ,&nbsp;Shuji Yoshikawa","doi":"10.1016/j.aml.2024.109405","DOIUrl":"10.1016/j.aml.2024.109405","url":null,"abstract":"<div><div>We prove a decay estimate for solutions to a transmission problem for wave equations with different propagation speeds in an infinite waveguide. The problem represents the wave propagation in unbounded and layered composite materials in which different properties are given. It is a new composition of a waveguide problem and a transmission problem, motivated by a unit cell model for CFRP. The proof is based on splitting variables, partial eigenfunction expansions in the bounded cross section, and on an explicit Weyl type estimate for the eigenvalues.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109405"},"PeriodicalIF":2.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Legendre spectral volume methods for Allen–Cahn equations by the direct discontinuous Galerkin formula 用直接不连续伽辽金公式求解Allen-Cahn方程的勒让德谱体积法
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-26 DOI: 10.1016/j.aml.2024.109382
Chaoyue Guan, Yuli Sun, Jing Niu
In this paper, we introduce novel class of Legendre spectral volume (LSV) methods for solving Allen–Cahn equations. Each spectral volume (SV) is refined with k Gauss–Legendre points to define an arbitrary order control volume (CV). Moreover, the second derivative is handled using the direct discontinuous Galerkin (DDG) approach. Furthermore, four numerical experiments are detailed including 1D and 2D Allen–Cahn equations with Neumann and periodic boundary conditions. These experiments demonstrate the stability and accuracy in capturing phase transitions of the approach. Meanwhile, we also show the LSV methods can maintain physical properties such as energy dissipation and uniform boundedness. It is worth mentioning that we observe that the LSV methods achieve both optimal convergence and superconvergence as the numerical flux parameter is carefully selected.
本文引入了一类新的求解Allen-Cahn方程的Legendre谱体积(LSV)方法。每个光谱体积(SV)用k个高斯-勒让德点进行细化,以定义任意阶控制体积(CV)。此外,采用直接不连续伽辽金(DDG)方法处理二阶导数。此外,还详细介绍了具有Neumann和周期边界条件的一维和二维Allen-Cahn方程的四个数值实验。这些实验证明了该方法在捕获相变方面的稳定性和准确性。同时,我们还证明了LSV方法可以保持能量耗散和均匀有界等物理性质。值得注意的是,我们观察到LSV方法既能达到最优收敛,也能达到超收敛。
{"title":"Legendre spectral volume methods for Allen–Cahn equations by the direct discontinuous Galerkin formula","authors":"Chaoyue Guan,&nbsp;Yuli Sun,&nbsp;Jing Niu","doi":"10.1016/j.aml.2024.109382","DOIUrl":"10.1016/j.aml.2024.109382","url":null,"abstract":"<div><div>In this paper, we introduce novel class of Legendre spectral volume (LSV) methods for solving Allen–Cahn equations. Each spectral volume (SV) is refined with <span><math><mi>k</mi></math></span> Gauss–Legendre points to define an arbitrary order control volume (CV). Moreover, the second derivative is handled using the direct discontinuous Galerkin (DDG) approach. Furthermore, four numerical experiments are detailed including 1D and 2D Allen–Cahn equations with Neumann and periodic boundary conditions. These experiments demonstrate the stability and accuracy in capturing phase transitions of the approach. Meanwhile, we also show the LSV methods can maintain physical properties such as energy dissipation and uniform boundedness. It is worth mentioning that we observe that the LSV methods achieve both optimal convergence and superconvergence as the numerical flux parameter is carefully selected.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109382"},"PeriodicalIF":2.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnack type inequality and Liouville theorem for subcritical fully nonlinear equations 次临界完全非线性方程的Harnack型不等式和Liouville定理
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-25 DOI: 10.1016/j.aml.2024.109402
Wei Zhang , Jialing Zhang
<div><div>We consider this equation <span><span><span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mfenced><mrow><mi>p</mi><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfenced><mi>k</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>∈</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. Here <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> denotes the <span><math><mi>k</mi></math></span>th elementary symmetric function of the eigenvalues of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>u</mi></mrow></msup></math></span>, and <span><span><span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>=</mo><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><mo>∇</mo><mi>u</mi><mo>⊗</mo><mo>∇</mo><mi>u</mi><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>I</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mo>∇</mo><mi>u</mi></mrow></math></span> denotes the gradient of <span><math><mi>u</mi></math></span> and <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> denotes the Hessian of <span><math><mi>u</mi></math></span>. This equation has fruitful backgrounds in geometry and physics. We then obtain Schoen’s Harnack type inequality in Euclidean balls, and asymptotic behavior of an entire solution. Based on the asymptotic behavior, we give another proof of the Liouville theorem obtained by A. Li and Y
我们考虑方程σk(Au)=up - n+2n - 2k,其中n≥3,p∈nn−2,n+2n−2。其中σk表示Au本征值的第k个初等对称函数,Au= - 2n−2u−n+2n−2D2u+2n(n−2)2u−2nn−2∇u⊗∇u−2(n−2)2u−2nn−2|∇u|2I,其中∇u表示u的梯度,D2u表示u的Hessian。该方程具有丰富的几何和物理背景。然后我们得到了欧氏球上的Schoen’s Harnack型不等式,以及整个解的渐近性质。基于渐近性,我们给出了A. Li和yyy Li(2005)的Liouville定理的另一个证明。
{"title":"Harnack type inequality and Liouville theorem for subcritical fully nonlinear equations","authors":"Wei Zhang ,&nbsp;Jialing Zhang","doi":"10.1016/j.aml.2024.109402","DOIUrl":"10.1016/j.aml.2024.109402","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We consider this equation &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Here &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; denotes the &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th elementary symmetric function of the eigenvalues of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;⊗&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the gradient of &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the Hessian of &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. This equation has fruitful backgrounds in geometry and physics. We then obtain Schoen’s Harnack type inequality in Euclidean balls, and asymptotic behavior of an entire solution. Based on the asymptotic behavior, we give another proof of the Liouville theorem obtained by A. Li and Y","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109402"},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new error analysis of a linearized Euler Galerkin scheme for Schrödinger equation with cubic nonlinearity 具有立方非线性的薛定谔方程的线性化欧拉 Galerkin 方案的新误差分析
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-25 DOI: 10.1016/j.aml.2024.109401
Huaijun Yang
In this paper, a linearized Euler Galerkin scheme is studied and the unconditionally optimal error estimate in L2-norm is obtained for Schrödinger equation with cubic nonlinearity without any time-step restriction. The key to the analysis is to bound the H1-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.
本文研究了线性化欧拉 Galerkin 方案,并在无任何时间步长限制的情况下,为具有立方非线性的薛定谔方程获得了 L2 规范下的无条件最优误差估计。分析的关键在于通过数学归纳法对两种情况下的数值解与精确解的里兹投影之间的 H1 规范进行约束,而不是之前工作中使用的误差分割技术。最后,我们给出了一些数值结果来证实理论分析。
{"title":"A new error analysis of a linearized Euler Galerkin scheme for Schrödinger equation with cubic nonlinearity","authors":"Huaijun Yang","doi":"10.1016/j.aml.2024.109401","DOIUrl":"10.1016/j.aml.2024.109401","url":null,"abstract":"<div><div>In this paper, a linearized Euler Galerkin scheme is studied and the unconditionally optimal error estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm is obtained for Schrödinger equation with cubic nonlinearity without any time-step restriction. The key to the analysis is to bound the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109401"},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A product integration method for nonlinear second kind Volterra integral equations with a weakly singular kernel (with application to fractional differential equations)
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-25 DOI: 10.1016/j.aml.2024.109403
R. Katani , S. McKee
This paper presents a novel product integration method that provides an appropriate numerical solution for nonlinear weakly singular Volterra integral equations (WSVIEs). Extensive research in the literature has focused on studying the existence and uniqueness of solutions to these equations. However, when solving the WSVIEs, the solution may exhibit a singular behavior near the initial point of the integration interval, which can pose challenges for numerical computation. In these cases, we propose a smoothing change of variables that transforms the equation into one with a smooth solution, while still being weakly singular. We provide a convergence analysis and determine the order of convergence. The effectiveness of the proposed method is then demonstrated through the solution of various test problems.
{"title":"A product integration method for nonlinear second kind Volterra integral equations with a weakly singular kernel (with application to fractional differential equations)","authors":"R. Katani ,&nbsp;S. McKee","doi":"10.1016/j.aml.2024.109403","DOIUrl":"10.1016/j.aml.2024.109403","url":null,"abstract":"<div><div>This paper presents a novel product integration method that provides an appropriate numerical solution for nonlinear weakly singular Volterra integral equations (WSVIEs). Extensive research in the literature has focused on studying the existence and uniqueness of solutions to these equations. However, when solving the WSVIEs, the solution may exhibit a singular behavior near the initial point of the integration interval, which can pose challenges for numerical computation. In these cases, we propose a smoothing change of variables that transforms the equation into one with a smooth solution, while still being weakly singular. We provide a convergence analysis and determine the order of convergence. The effectiveness of the proposed method is then demonstrated through the solution of various test problems.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109403"},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On decomposition of collocation matrices for the Cauchy–Bernstein basis and applications Cauchy-Bernstein基下配置矩阵的分解及其应用
IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-24 DOI: 10.1016/j.aml.2024.109391
Zhao Yang , Tao Chen , Sanyang Liu
In this paper, we show that collocation matrices of the Cauchy–Bernstein basis can be decomposed as products of a Cauchy–Vandermonde matrix and a block diagonal matrix. A useful application of this result is that the explicit expression of the determinant for the collocation matrices is presented. Consequently, an algorithm is provided to accurately compute the determinants. Numerical experiments confirm the high accuracy of the algorithm.
本文证明了Cauchy-Bernstein基的搭配矩阵可以分解为Cauchy-Vandermonde矩阵和块对角矩阵的乘积。该结果的一个有用的应用是给出了配置矩阵行列式的显式表达式。因此,提供了一种精确计算行列式的算法。数值实验证明了该算法具有较高的精度。
{"title":"On decomposition of collocation matrices for the Cauchy–Bernstein basis and applications","authors":"Zhao Yang ,&nbsp;Tao Chen ,&nbsp;Sanyang Liu","doi":"10.1016/j.aml.2024.109391","DOIUrl":"10.1016/j.aml.2024.109391","url":null,"abstract":"<div><div>In this paper, we show that collocation matrices of the Cauchy–Bernstein basis can be decomposed as products of a Cauchy–Vandermonde matrix and a block diagonal matrix. A useful application of this result is that the explicit expression of the determinant for the collocation matrices is presented. Consequently, an algorithm is provided to accurately compute the determinants. Numerical experiments confirm the high accuracy of the algorithm.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109391"},"PeriodicalIF":2.9,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Mathematics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1