首页 > 最新文献

Applied and Computational Harmonic Analysis最新文献

英文 中文
The metaplectic action on modulation spaces 调制空间上的变形作用
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-11-08 DOI: 10.1016/j.acha.2023.101604
Hartmut Führ , Irina Shafkulovska

We study the mapping properties of metaplectic operators SˆMp(2d,R) on modulation spaces of the type Mmp,q(Rd). Our main result is a full characterization of the pairs (Sˆ,Mp,q(Rd)) for which the operator Sˆ:Mp,q(Rd)Mp,q(Rd) is (i) well-defined, (ii) bounded. It turns out that these two properties are equivalent, and they entail that Sˆ is a Banach space automorphism. For polynomially bounded weight functions, we provide a simple sufficient criterion to determine whether the well-definedness (boundedness) of Sˆ:Mp,q(Rd)Mp,q(Rd) transfers to Sˆ:Mmp,q(Rd)Mmp,q(Rd).

研究了广义算子S∈Mp(2d,R)在Mmp,q(Rd)型调制空间上的映射性质。我们的主要结果是对(S´,Mp,q(Rd))的完整刻划,其中算子S´:Mp,q(Rd)→Mp,q(Rd)是(i)定义良好的,(ii)有界的。结果证明这两个性质是等价的,它们推导出S是一个巴拿赫空间自同构。对于多项式有界权函数,我们提供了一个简单充分的判别准则,以确定S°:Mp,q(Rd)→Mp,q(Rd)的自定义性(有界性)是否转移到S°:Mmp,q(Rd)→Mmp,q(Rd)。
{"title":"The metaplectic action on modulation spaces","authors":"Hartmut Führ ,&nbsp;Irina Shafkulovska","doi":"10.1016/j.acha.2023.101604","DOIUrl":"10.1016/j.acha.2023.101604","url":null,"abstract":"<div><p>We study the mapping properties of metaplectic operators <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mrow><mi>Mp</mi></mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> on modulation spaces of the type <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. Our main result is a full characterization of the pairs <span><math><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> for which the operator <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is <em>(i)</em> well-defined, <em>(ii)</em> bounded. It turns out that these two properties are equivalent, and they entail that <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is a Banach space automorphism. For polynomially bounded weight functions, we provide a simple sufficient criterion to determine whether the well-definedness (boundedness) of <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> transfers to <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101604"},"PeriodicalIF":2.5,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S106352032300091X/pdfft?md5=0769848d44f7ddda38eab0321ccdd78e&pid=1-s2.0-S106352032300091X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72364681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Exponential bases for partitions of intervals 区间划分的指数基
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-29 DOI: 10.1016/j.acha.2023.101607
Götz Pfander , Shauna Revay , David Walnut

For a partition of [0,1] into intervals I1,,In we prove the existence of a partition of Z into Λ1,,Λn such that the complex exponential functions with frequencies in Λk form a Riesz basis for L2(Ik), and furthermore, that for any J{1,2,,n}, the exponential functions with frequencies in jJΛj form a Riesz basis for L2(I) for any interval I with length |I|=jJ|Ij|. The construction extends to infinite partitions of [0,1], but with size limitations on the subsets JZ; it combines the ergodic properties of subsequences of Z known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.

对于[0,1]划分为区间I1,…,在中,我们证明了Z划分为∧1,…,∧n的存在性,使得频率在∧k中的复指数函数形成L2(Ik)的Riesz基,此外,对于任何J⊆{1,2,……,n},频率在⋃J∈J∧J中的指数函数形成长度为|I|=∑J∈J|Ij|的任何区间I的L2(I)的Riesz基。该构造扩展到[0,1]的无限分区,但在子集J⊆Z上有大小限制;它将称为Beatty-Fraenkel序列的Z子序列的遍历性质与指数Riesz基上的Avdonin定理相结合。
{"title":"Exponential bases for partitions of intervals","authors":"Götz Pfander ,&nbsp;Shauna Revay ,&nbsp;David Walnut","doi":"10.1016/j.acha.2023.101607","DOIUrl":"10.1016/j.acha.2023.101607","url":null,"abstract":"<div><p>For a partition of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> into intervals <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> we prove the existence of a partition of <span><math><mi>Z</mi></math></span> into <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the complex exponential functions with frequencies in <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> form a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, and furthermore, that for any <span><math><mi>J</mi><mo>⊆</mo><mo>{</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>2</mn><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>}</mo></math></span>, the exponential functions with frequencies in <span><math><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>J</mi></mrow></msub><msub><mrow><mi>Λ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> form a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>I</mi><mo>)</mo></math></span> for any interval <em>I</em> with length <span><math><mo>|</mo><mi>I</mi><mo>|</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>J</mi></mrow></msub><mo>|</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></math></span>. The construction extends to infinite partitions of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, but with size limitations on the subsets <span><math><mi>J</mi><mo>⊆</mo><mi>Z</mi></math></span>; it combines the ergodic properties of subsequences of <span><math><mi>Z</mi></math></span> known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101607"},"PeriodicalIF":2.5,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71514551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A multivariate Riesz basis of ReLU neural networks ReLU神经网络的多元Riesz基
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-20 DOI: 10.1016/j.acha.2023.101605
Cornelia Schneider , Jan Vybíral

We consider the trigonometric-like system of piecewise linear functions introduced recently by Daubechies, DeVore, Foucart, Hanin, and Petrova. We provide an alternative proof that this system forms a Riesz basis of L2([0,1]) based on the Gershgorin theorem. We also generalize this system to higher dimensions d>1 by a construction, which avoids using (tensor) products. As a consequence, the functions from the new Riesz basis of L2([0,1]d) can be easily represented by neural networks. Moreover, the Riesz constants of this system are independent of d, making it an attractive building block regarding future multivariate analysis of neural networks.

我们考虑Daubechies、DeVore、Foucart、Hanin和Petrova最近提出的分段线性函数的类三角系统。基于Gershgorin定理,我们提供了另一个证明,证明该系统形成了L2([0,1])的Riesz基。我们还将该系统推广到更高维度d>;1通过避免使用(张量)乘积的构造。因此,L2([0,1]d)的新Riesz基的函数可以很容易地用神经网络表示。此外,该系统的Riesz常数与d无关,这使其成为未来神经网络多变量分析的一个有吸引力的构建块。
{"title":"A multivariate Riesz basis of ReLU neural networks","authors":"Cornelia Schneider ,&nbsp;Jan Vybíral","doi":"10.1016/j.acha.2023.101605","DOIUrl":"10.1016/j.acha.2023.101605","url":null,"abstract":"<div><p><span>We consider the trigonometric-like system of piecewise linear<span> functions introduced recently by Daubechies, DeVore, Foucart, Hanin, and Petrova. We provide an alternative proof that this system forms a Riesz basis of </span></span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span><span> based on the Gershgorin theorem. We also generalize this system to higher dimensions </span><span><math><mi>d</mi><mo>&gt;</mo><mn>1</mn></math></span> by a construction, which avoids using (tensor) products. As a consequence, the functions from the new Riesz basis of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span><span> can be easily represented by neural networks. Moreover, the Riesz constants of this system are independent of </span><em>d</em><span>, making it an attractive building block regarding future multivariate analysis of neural networks.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101605"},"PeriodicalIF":2.5,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71518637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the relation between Fourier and Walsh–Rademacher spectra for random fields 关于随机场的傅立叶谱和Walsh–Rademacher谱之间的关系
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-13 DOI: 10.1016/j.acha.2023.101603
Anton Kutsenko , Sergey Danilov , Stephan Juricke , Marcel Oliver

We discuss relations between the expansion coefficients of a discrete random field when analyzed with respect to different hierarchical bases. Our main focus is on the comparison of two such systems: the Walsh–Rademacher basis and the trigonometric Fourier basis. In general, spectra computed with respect to one basis will look different in the other. In this paper, we prove that, in a statistical sense, the rate of spectral decay computed in one basis can be translated to the other. We further provide explicit expressions for this translation on quadrilateral meshes. The results are illustrated with numerical examples for deterministic and random fields.

我们讨论了离散随机场的展开系数之间的关系,当针对不同的层次基进行分析时。我们主要关注两个这样的系统的比较:Walsh–Rademacher基和三角傅立叶基。一般来说,根据一个基础计算的光谱在另一个基础上看起来会有所不同。在本文中,我们证明了,在统计学意义上,在一个基础上计算的光谱衰减率可以转换为另一个基础。我们进一步提供了四边形网格上这种平移的显式表达式。用确定性场和随机场的数值例子说明了结果。
{"title":"On the relation between Fourier and Walsh–Rademacher spectra for random fields","authors":"Anton Kutsenko ,&nbsp;Sergey Danilov ,&nbsp;Stephan Juricke ,&nbsp;Marcel Oliver","doi":"10.1016/j.acha.2023.101603","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101603","url":null,"abstract":"<div><p>We discuss relations between the expansion coefficients of a discrete random field when analyzed with respect to different hierarchical bases. Our main focus is on the comparison of two such systems: the Walsh–Rademacher basis and the trigonometric Fourier basis. In general, spectra computed with respect to one basis will look different in the other. In this paper, we prove that, in a statistical sense, the rate of spectral decay computed in one basis can be translated to the other. We further provide explicit expressions for this translation on quadrilateral meshes. The results are illustrated with numerical examples for deterministic and random fields.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101603"},"PeriodicalIF":2.5,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49791518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep nonparametric estimation of intrinsic data structures by chart autoencoders: Generalization error and robustness 图表自动编码器对内在数据结构的深度非参数估计:泛化误差和稳健性
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-12 DOI: 10.1016/j.acha.2023.101602
Hao Liu , Alex Havrilla , Rongjie Lai , Wenjing Liao

Autoencoders have demonstrated remarkable success in learning low-dimensional latent features of high-dimensional data across various applications. Assuming that data are sampled near a low-dimensional manifold, we employ chart autoencoders, which encode data into low-dimensional latent features on a collection of charts, preserving the topology and geometry of the data manifold. Our paper establishes statistical guarantees on the generalization error of chart autoencoders, and we demonstrate their denoising capabilities by considering n noisy training samples, along with their noise-free counterparts, on a d-dimensional manifold. By training autoencoders, we show that chart autoencoders can effectively denoise the input data with normal noise. We prove that, under proper network architectures, chart autoencoders achieve a squared generalization error in the order of n2d+2log4n, which depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension and noise level. We further extend our theory on data with noise containing both normal and tangential components, where chart autoencoders still exhibit a denoising effect for the normal component. As a special case, our theory also applies to classical autoencoders, as long as the data manifold has a global parametrization. Our results provide a solid theoretical foundation for the effectiveness of autoencoders, which is further validated through several numerical experiments.

自动编码器在各种应用中学习高维数据的低维潜在特征方面取得了显著成功。假设数据是在低维流形附近采样的,我们使用图表自动编码器,将数据编码为图表集合上的低维潜在特征,从而保留数据流形的拓扑和几何结构。我们的论文建立了图表自动编码器泛化误差的统计保证,并通过在d维流形上考虑n个有噪声的训练样本及其无噪声对应样本来证明其去噪能力。通过对自动编码器的训练,我们证明了图表自动编码器可以有效地对具有正态噪声的输入数据进行去噪。我们证明,在适当的网络架构下,图表自动编码器实现了n−2d+2log4量级的平方泛化误差⁡n、 其取决于流形的固有维度,并且仅弱地取决于环境维度和噪声水平。我们进一步扩展了我们关于噪声同时包含法向分量和切向分量的数据的理论,其中图表自动编码器仍然对法向分量表现出去噪效果。作为一种特殊情况,只要数据流形具有全局参数化,我们的理论也适用于经典的自动编码器。我们的结果为自动编码器的有效性提供了坚实的理论基础,并通过几个数值实验得到了进一步的验证。
{"title":"Deep nonparametric estimation of intrinsic data structures by chart autoencoders: Generalization error and robustness","authors":"Hao Liu ,&nbsp;Alex Havrilla ,&nbsp;Rongjie Lai ,&nbsp;Wenjing Liao","doi":"10.1016/j.acha.2023.101602","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101602","url":null,"abstract":"<div><p>Autoencoders have demonstrated remarkable success in learning low-dimensional latent features of high-dimensional data across various applications. Assuming that data are sampled near a low-dimensional manifold, we employ chart autoencoders, which encode data into low-dimensional latent features on a collection of charts, preserving the topology and geometry of the data manifold. Our paper establishes statistical guarantees on the generalization error of chart autoencoders, and we demonstrate their denoising capabilities by considering <em>n</em> noisy training samples, along with their noise-free counterparts, on a <em>d</em>-dimensional manifold. By training autoencoders, we show that chart autoencoders can effectively denoise the input data with normal noise. We prove that, under proper network architectures, chart autoencoders achieve a squared generalization error in the order of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, which depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension and noise level. We further extend our theory on data with noise containing both normal and tangential components, where chart autoencoders still exhibit a denoising effect for the normal component. As a special case, our theory also applies to classical autoencoders, as long as the data manifold has a global parametrization. Our results provide a solid theoretical foundation for the effectiveness of autoencoders, which is further validated through several numerical experiments.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101602"},"PeriodicalIF":2.5,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49778386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time and band limiting for exceptional polynomials 例外多项式的时间和频带限制
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-10 DOI: 10.1016/j.acha.2023.101600
M.M. Castro , F.A. Grünbaum , I. Zurrián

The “time-and-band limiting” commutative property was found and exploited by D. Slepian, H. Landau and H. Pollak at Bell Labs in the 1960's, and independently by M. Mehta and later by C. Tracy and H. Widom in Random matrix theory. The property in question is the existence of local operators with simple spectrum that commute with naturally appearing global ones.

Here we give a general result that insures the existence of a commuting differential operator for a given family of exceptional orthogonal polynomials satisfying the “bispectral property”. As a main tool we go beyond bispectrality and make use of the notion of Fourier Algebras associated to the given sequence of exceptional polynomials. We illustrate this result with two examples, of Hermite and Laguerre type, exhibiting also a nice Perline's form for the commuting differential operator.

“时间和频带限制”交换性质是由贝尔实验室的D.Slepian、H.Landau和H.Pollak在20世纪60年代发现和利用的,并由M.Mehta和后来的C.Tracy和H.Widom在随机矩阵理论中独立发现和利用。所讨论的性质是存在具有简单频谱的本地运营商,这些运营商可以与自然出现的全局运营商进行通勤。这里我们给出了一个一般的结果,它保证了给定的满足“双谱性质”的特殊正交多项式族存在一个交换微分算子。作为一个主要的工具,我们超越了双谱,并利用了与给定的异常多项式序列相关的傅立叶代数的概念。我们用Hermite和Laguerre型的两个例子说明了这一结果,也展示了通勤微分算子的一个很好的Perline形式。
{"title":"Time and band limiting for exceptional polynomials","authors":"M.M. Castro ,&nbsp;F.A. Grünbaum ,&nbsp;I. Zurrián","doi":"10.1016/j.acha.2023.101600","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101600","url":null,"abstract":"<div><p><span>The “time-and-band limiting” commutative property was found and exploited by D. Slepian, H. Landau and H. Pollak at Bell Labs in the 1960's, and independently by M. Mehta and later by C. Tracy and H. Widom in </span>Random matrix theory. The property in question is the existence of local operators with simple spectrum that commute with naturally appearing global ones.</p><p>Here we give a general result that insures the existence of a commuting differential operator<span> for a given family of exceptional orthogonal polynomials satisfying the “bispectral property”. As a main tool we go beyond bispectrality and make use of the notion of Fourier Algebras associated to the given sequence of exceptional polynomials. We illustrate this result with two examples, of Hermite and Laguerre type, exhibiting also a nice Perline's form for the commuting differential operator.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101600"},"PeriodicalIF":2.5,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49778389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LU decomposition and Toeplitz decomposition of a neural network 神经网络的LU分解和Toeplitz分解
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-06 DOI: 10.1016/j.acha.2023.101601
Yucong Liu , Simiao Jiao , Lek-Heng Lim
<div><p>Any matrix <em>A</em> has an LU decomposition up to a row or column permutation. Less well-known is the fact that it has a ‘Toeplitz decomposition’ <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are Toeplitz matrices. We will prove that any continuous function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> has an approximation to arbitrary accuracy by a neural network that maps <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>U</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, i.e., where the weight matrices alternate between lower and upper triangular matrices, <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>≔</mo><mi>σ</mi><mo>(</mo><mi>x</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> for some bias vector <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, and the activation <em>σ</em> may be chosen to be essentially any uniformly continuous nonpolynomial function. The same result also holds with Toeplitz matrices, i.e., <span><math><mi>f</mi><mo>≈</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> to arbitrary accuracy, and likewise for Hankel matrices. A consequence of our Toeplitz result is a fixed-width universal approximation theorem for convolutional neural networks, which so far have only arbitrary width versions. Since our results apply in particular to the case when <em>f</em> is a general neural network, we ma
任何矩阵A都具有直到行或列排列的LU分解。不太为人所知的是,它有一个“Toeplitz分解”a=T1T2…Tr,其中Ti是Toeplitz矩阵。我们将证明任何连续函数f:Rn→通过将x∈Rn映射到L1σ1U1σ2L2σ3U2…Lrσ2r−1Urx∈Rm的神经网络,Rm具有任意精度的近似值,即,当权重矩阵在下三角矩阵和上三角矩阵之间交替时,σi(x)≔σ(x−bi)对于某个偏置向量bi,并且激活σ可以被选择为本质上任何一致连续的非多项式函数。同样的结果也适用于Toeplitz矩阵,即f≈T1σ1T2σ2…σr−1Tr到任意精度,同样适用于Hankel矩阵。我们的Toeplitz结果的一个结果是卷积神经网络的固定宽度通用近似定理,到目前为止,卷积神经网络只有任意宽度的版本。由于我们的结果特别适用于f是一般神经网络的情况,我们可以将它们视为神经网络的LU和Toeplitz分解。我们的结果的实际意义是,在不牺牲其普遍逼近能力的情况下,可以大大减少神经网络中权重参数的数量。我们将在真实数据集上进行几个实验,以表明将这种结构强加在权重矩阵上会显著减少训练参数的数量,而对测试准确性几乎没有明显影响。
{"title":"LU decomposition and Toeplitz decomposition of a neural network","authors":"Yucong Liu ,&nbsp;Simiao Jiao ,&nbsp;Lek-Heng Lim","doi":"10.1016/j.acha.2023.101601","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101601","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Any matrix &lt;em&gt;A&lt;/em&gt; has an LU decomposition up to a row or column permutation. Less well-known is the fact that it has a ‘Toeplitz decomposition’ &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;'s are Toeplitz matrices. We will prove that any continuous function &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; has an approximation to arbitrary accuracy by a neural network that maps &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; to &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, i.e., where the weight matrices alternate between lower and upper triangular matrices, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≔&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for some bias vector &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, and the activation &lt;em&gt;σ&lt;/em&gt; may be chosen to be essentially any uniformly continuous nonpolynomial function. The same result also holds with Toeplitz matrices, i.e., &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;≈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; to arbitrary accuracy, and likewise for Hankel matrices. A consequence of our Toeplitz result is a fixed-width universal approximation theorem for convolutional neural networks, which so far have only arbitrary width versions. Since our results apply in particular to the case when &lt;em&gt;f&lt;/em&gt; is a general neural network, we ma","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101601"},"PeriodicalIF":2.5,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49778387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representation of operators using fusion frames 使用融合框架表示运算符
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-05 DOI: 10.1016/j.acha.2023.101596
Peter Balazs, Mitra Shamsabadi, Ali Akbar Arefijamaal, Gilles Chardon

To solve operator equations numerically, matrix representations are employing bases or more recently frames. For finding the numerical solution of operator equations a decomposition in subspaces is needed in many applications. To combine those two approaches, it is necessary to extend the known methods of matrix representation to the utilization of fusion frames. In this paper, we investigate this representation of operators on a Hilbert space H with Bessel fusion sequences, fusion frames and fusion Riesz bases. Fusion frames can be considered as a frame-like family of subspaces. Taking the particular property of the duality of fusion frames into account, this allows us to define a matrix representation in a canonical as well as an alternate way, the later being more efficient and well behaved in respect to inversion. We will give the basic definitions and show some structural results, like that the functions assigning the alternate representation to an operator is an algebra homomorphism. We give formulas for pseudo-inverses and the inverses (if existing) of such matrix representations. We apply this idea to Schatten p-class operators. Consequently, we show that tensor products of fusion frames are fusion frames in the space of Hilbert-Schmidt operators. We will show how this can be used for the solution of operator equations and link our approach to the additive Schwarz algorithm. Consequently, we propose some methods for solving an operator equation by iterative methods on the subspaces. Moreover, we implement the alternate Schwarz algorithms employing our perspective and provide small proof-of-concept numerical experiments. Finally, we show the application of this concept to overlapped convolution and the non-standard wavelet representation of operators.

为了用数值方法求解算子方程,矩阵表示采用了基或最近的框架。为了找到算子方程的数值解,在许多应用中需要在子空间中进行分解。为了将这两种方法结合起来,有必要将已知的矩阵表示方法扩展到融合框架的使用。在本文中,我们研究了具有贝塞尔融合序列、融合框架和融合Riesz基的Hilbert空间H上算子的这种表示。融合框架可以被认为是一个子空间的类框架族。考虑到融合框架对偶性的特殊性质,这使我们能够以规范和替代的方式定义矩阵表示,后者在反演方面更有效且表现良好。我们将给出基本的定义,并给出一些结构结果,比如为算子分配替代表示的函数是代数同态。我们给出了伪逆和这种矩阵表示的逆(如果存在)的公式。我们将这一思想应用于Schatten p类算子。因此,我们证明了融合框架的张量积是Hilbert-Schmidt算子空间中的融合框架。我们将展示如何将其用于求解算子方程,并将我们的方法与加性Schwarz算法联系起来。因此,我们提出了一些在子空间上用迭代方法求解算子方程的方法。此外,我们采用我们的观点实现了交替的Schwarz算法,并提供了小型的概念验证数值实验。最后,我们展示了这个概念在重叠卷积和算子的非标准小波表示中的应用。
{"title":"Representation of operators using fusion frames","authors":"Peter Balazs,&nbsp;Mitra Shamsabadi,&nbsp;Ali Akbar Arefijamaal,&nbsp;Gilles Chardon","doi":"10.1016/j.acha.2023.101596","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101596","url":null,"abstract":"<div><p><span><span>To solve operator equations numerically, matrix representations are employing bases or more recently frames. For finding the numerical solution of operator equations a decomposition in subspaces is needed in many applications. To combine those two approaches, it is necessary to extend the known methods of matrix representation to the utilization of fusion frames. In this paper, we investigate this representation of operators on a </span>Hilbert space </span><span><math><mi>H</mi></math></span><span><span> with Bessel<span> fusion sequences, fusion frames and fusion Riesz bases. Fusion frames can be considered as a frame-like family of subspaces. Taking the particular property of the duality of fusion frames into account, this allows us to define a matrix representation in a canonical as well as an alternate way, the later being more efficient and well behaved in respect to inversion. We will give the basic definitions and show some structural results, like that the functions assigning the alternate representation to an operator is an algebra </span></span>homomorphism. We give formulas for pseudo-inverses and the inverses (if existing) of such matrix representations. We apply this idea to Schatten </span><em>p</em><span>-class operators. Consequently, we show that tensor products of fusion frames are fusion frames in the space of Hilbert-Schmidt operators. We will show how this can be used for the solution of operator equations and link our approach to the additive Schwarz algorithm. Consequently, we propose some methods for solving an operator equation by iterative methods on the subspaces. Moreover, we implement the alternate Schwarz algorithms employing our perspective and provide small proof-of-concept numerical experiments. Finally, we show the application of this concept to overlapped convolution and the non-standard wavelet representation of operators.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101596"},"PeriodicalIF":2.5,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49778388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Diffusion maps for embedded manifolds with boundary with applications to PDEs 具有边界的嵌入流形的扩散映射及其在偏微分方程中的应用
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-09 DOI: 10.1016/j.acha.2023.101593
Ryan Vaughn , Tyrus Berry , Harbir Antil

Given only a finite collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to numerically solve elliptic and parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without a triangulation. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a variational sense for manifolds with boundary. Our main result is that the variational diffusion maps graph Laplacian is a consistent estimator of the Dirichlet energy on the manifold. This improves upon previous results and provides a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problem. Moreover, using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion maps kernel integral operator for manifolds with boundary. This expansion relies on a novel lemma which relates the extrinsic Euclidean distance to the coordinate norm in a normal collar of the boundary. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown) to construct a consistent estimator for boundary integrals. Finally, by combining these various estimators, we illustrate how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. Several numerical examples illustrate our theoretical findings.

本文仅给定从嵌入欧几里得空间的黎曼流形采样的有限个点集合,提出了一种新的方法来数值求解补充了边界条件的椭圆和抛物型偏微分方程。由于在未知流形上构造三角剖分既困难又昂贵,无论是在计算还是数据需求方面,我们的目标都是在不使用三角剖分的情况下解决这些问题。相反,我们只依赖于使用采样点来定义未知流形上的求积公式。我们的主要工具是扩散图算法。我们在变分意义上重新分析了这个著名的方法,用于有边界的流形。我们的主要结果是变分扩散映射图拉普拉斯算子是流形上Dirichlet能量的一致估计。这改进了先前的结果,并为扩散图和诺依曼特征值问题之间的众所周知的关系提供了严格的理由。此外,利用半测地坐标,我们导出了有边界流形的扩散映射核积分算子的第一个一致渐近展开式。这种扩展依赖于一个新的引理,该引理将外部欧几里得距离与边界的法线领中的坐标范数联系起来。然后,我们使用最近开发的估计到边界函数的距离的方法(注意,假设边界位置未知)来构造边界积分的一致估计器。最后,通过结合这些不同的估计量,我们说明了如何对一些常见的基于拉普拉斯算子的偏微分方程施加Dirichlet和Neumann条件。几个数值例子说明了我们的理论发现。
{"title":"Diffusion maps for embedded manifolds with boundary with applications to PDEs","authors":"Ryan Vaughn ,&nbsp;Tyrus Berry ,&nbsp;Harbir Antil","doi":"10.1016/j.acha.2023.101593","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101593","url":null,"abstract":"<div><p><span><span><span>Given only a finite collection of points sampled from a Riemannian manifold embedded in a </span>Euclidean space<span><span>, in this paper we propose a new method to numerically solve elliptic and parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without a triangulation. Instead, we rely only on using the sample points to define </span>quadrature formulas<span> on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a variational sense for manifolds with boundary. Our main result is that the variational diffusion maps graph Laplacian<span> is a consistent estimator of the Dirichlet energy on the manifold. This improves upon previous results and provides a rigorous justification of the well-known relationship between diffusion maps and the Neumann </span></span></span></span>eigenvalue problem<span>. Moreover, using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion maps kernel integral operator for manifolds with boundary. This expansion relies on a novel lemma which relates the extrinsic </span></span>Euclidean distance to the coordinate norm in a normal collar of the boundary. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown) to construct a consistent estimator for boundary integrals. Finally, by combining these various estimators, we illustrate how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. Several numerical examples illustrate our theoretical findings.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101593"},"PeriodicalIF":2.5,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49778390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Metaplectic Gabor frames and symplectic analysis of time-frequency spaces 复复Gabor框架与时频空间的辛分析
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-09 DOI: 10.1016/j.acha.2023.101594
Elena Cordero , Gianluca Giacchi

We introduce new frames, called metaplectic Gabor frames, as natural generalizations of Gabor frames in the framework of metaplectic Wigner distributions, cf. [7], [8], [5], [17], [27], [28]. Namely, we develop the theory of metaplectic atoms in a full-general setting and prove an inversion formula for metaplectic Wigner distributions on Rd. Its discretization provides metaplectic Gabor frames.

Next, we deepen the understanding of the so-called shift-invertible metaplectic Wigner distributions, showing that they can be represented, up to chirps, as rescaled short-time Fourier transforms. As an application, we derive a new characterization of modulation and Wiener amalgam spaces. Thus, these metaplectic distributions (and related frames) provide meaningful definitions of local frequencies and can be used to measure effectively the local frequency content of signals.

我们引入了新的框架,称为元辛Gabor框架,作为元辛Wigner分布框架中Gabor框架的自然推广,参见[7],[8],[5],[17],[27],[28]。也就是说,我们在一个完全通用的环境中发展了元辛原子的理论,并证明了Rd上的元辛Wigner分布的反演公式。它的离散化提供了元辛Gabor框架。接下来,我们加深了对所谓的移位可逆元辛Wigner分布的理解,表明它们可以表示为,直到啁啾,重新缩放的短时傅立叶变换。作为一个应用,我们导出了调制和Wiener汞齐空间的一个新的特征。因此,这些元辛分布(和相关帧)提供了对局部频率的有意义的定义,并且可以用于有效地测量信号的局部频率含量。
{"title":"Metaplectic Gabor frames and symplectic analysis of time-frequency spaces","authors":"Elena Cordero ,&nbsp;Gianluca Giacchi","doi":"10.1016/j.acha.2023.101594","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101594","url":null,"abstract":"<div><p>We introduce new frames, called <em>metaplectic Gabor frames</em><span>, as natural generalizations of Gabor frames in the framework of metaplectic Wigner distributions, cf. </span><span>[7]</span>, <span>[8]</span>, <span>[5]</span>, <span>[17]</span>, <span>[27]</span>, <span>[28]</span><span>. Namely, we develop the theory of metaplectic atoms in a full-general setting and prove an inversion formula for metaplectic Wigner distributions on </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span>. Its discretization provides metaplectic Gabor frames.</span></p><p>Next, we deepen the understanding of the so-called shift-invertible metaplectic Wigner distributions, showing that they can be represented, up to chirps, as rescaled short-time Fourier transforms. As an application, we derive a new characterization of modulation and Wiener amalgam spaces. Thus, these metaplectic distributions (and related frames) provide meaningful definitions of local frequencies and can be used to measure effectively the local frequency content of signals.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101594"},"PeriodicalIF":2.5,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49819289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Applied and Computational Harmonic Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1