首页 > 最新文献

Applied and Computational Harmonic Analysis最新文献

英文 中文
High-probability generalization bounds for pointwise uniformly stable algorithms 点式均匀稳定算法的高概率泛化边界
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-27 DOI: 10.1016/j.acha.2024.101632
Jun Fan , Yunwen Lei

Algorithmic stability is a fundamental concept in statistical learning theory to understand the generalization behavior of optimization algorithms. Existing high-probability bounds are developed for the generalization gap as measured by function values and require the algorithm to be uniformly stable. In this paper, we introduce a novel stability measure called pointwise uniform stability by considering the sensitivity of the algorithm with respect to the perturbation of each training example. We show this weaker pointwise uniform stability guarantees almost optimal bounds, and gives the first high-probability bound for the generalization gap as measured by gradients. Sharper bounds are given for strongly convex and smooth problems. We further apply our general result to derive improved generalization bounds for stochastic gradient descent. As a byproduct, we develop concentration inequalities for a summation of weakly-dependent vector-valued random variables.

算法稳定性是统计学习理论中的一个基本概念,用于理解优化算法的泛化行为。现有的高概率边界是针对以函数值衡量的泛化差距而开发的,并要求算法具有均匀稳定性。在本文中,我们通过考虑算法对每个训练实例扰动的敏感性,引入了一种新的稳定性度量,称为点均匀稳定性。我们证明了这种较弱的点均匀稳定性能保证几乎最优的边界,并首次给出了以梯度衡量的泛化差距的高概率边界。对于强凸问题和平滑问题,我们给出了更精确的界限。我们进一步应用我们的一般结果,推导出随机梯度下降的改进广义边界。作为副产品,我们为弱依赖向量随机变量的求和建立了集中不等式。
{"title":"High-probability generalization bounds for pointwise uniformly stable algorithms","authors":"Jun Fan ,&nbsp;Yunwen Lei","doi":"10.1016/j.acha.2024.101632","DOIUrl":"10.1016/j.acha.2024.101632","url":null,"abstract":"<div><p>Algorithmic stability is a fundamental concept in statistical learning theory to understand the generalization behavior of optimization algorithms. Existing high-probability bounds are developed for the generalization gap as measured by function values and require the algorithm to be uniformly stable. In this paper, we introduce a novel stability measure called pointwise<span> uniform stability by considering the sensitivity of the algorithm with respect to the perturbation of each training example. We show this weaker pointwise uniform stability guarantees almost optimal bounds, and gives the first high-probability bound for the generalization gap as measured by gradients. Sharper bounds<span> are given for strongly convex and smooth problems. We further apply our general result to derive improved generalization bounds for stochastic gradient descent. As a byproduct, we develop concentration inequalities for a summation of weakly-dependent vector-valued random variables.</span></span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101632"},"PeriodicalIF":2.5,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139568091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New theoretical insights in the decomposition and time-frequency representation of nonstationary signals: The IMFogram algorithm 非平稳信号分解和时频表示的新理论见解:IMFogram 算法
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-26 DOI: 10.1016/j.acha.2024.101634
Antonio Cicone , Wing Suet Li , Haomin Zhou

The analysis of the time–frequency content of a signal is a classical problem in signal processing, with a broad number of applications in real life. Many different approaches have been developed over the decades, which provide alternative time–frequency representations of a signal each with its advantages and limitations. In this work, following the success of nonlinear methods for the decomposition of signals into intrinsic mode functions (IMFs), we first provide more theoretical insights into the so–called Iterative Filtering decomposition algorithm, proving an energy conservation result for the derived decompositions. Furthermore, we present a new time–frequency representation method based on the IMF decomposition of a signal, which is called IMFogram. We prove theoretical results regarding this method, including its convergence to the spectrogram representation for a certain class of signals, and we present a few examples of applications, comparing results with some of the most well-known approaches available in the literature.

分析信号的时频内容是信号处理中的一个经典问题,在现实生活中有着广泛的应用。几十年来,人们开发了许多不同的方法,这些方法提供了信号的其他时频表示方法,每种方法都有其优势和局限性。在这项工作中,继将信号分解为固有模态函数(IMF)的非线性方法取得成功之后,我们首先对所谓的迭代滤波分解算法提出了更多理论见解,证明了衍生分解的能量守恒结果。此外,我们还提出了一种基于信号 IMF 分解的新时频表示方法,称为 IMFogram。我们证明了有关这种方法的理论结果,包括它对某类信号的频谱图表示的收敛性,我们还介绍了一些应用实例,并将结果与文献中一些最著名的方法进行了比较。
{"title":"New theoretical insights in the decomposition and time-frequency representation of nonstationary signals: The IMFogram algorithm","authors":"Antonio Cicone ,&nbsp;Wing Suet Li ,&nbsp;Haomin Zhou","doi":"10.1016/j.acha.2024.101634","DOIUrl":"10.1016/j.acha.2024.101634","url":null,"abstract":"<div><p>The analysis of the time–frequency content of a signal is a classical problem in signal processing, with a broad number of applications in real life. Many different approaches have been developed over the decades, which provide alternative time–frequency representations of a signal each with its advantages and limitations. In this work, following the success of nonlinear methods for the decomposition of signals into intrinsic mode functions (IMFs), we first provide more theoretical insights into the so–called Iterative Filtering decomposition algorithm, proving an energy conservation result for the derived decompositions. Furthermore, we present a new time–frequency representation method based on the IMF decomposition of a signal, which is called IMFogram. We prove theoretical results regarding this method, including its convergence to the spectrogram representation for a certain class of signals, and we present a few examples of applications, comparing results with some of the most well-known approaches available in the literature.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101634"},"PeriodicalIF":2.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On representations of the Helmholtz Green's function 关于亥姆霍兹格林函数的表征
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-24 DOI: 10.1016/j.acha.2024.101633
Gregory Beylkin

We consider the free space Helmholtz Green's function and split it into the sum of oscillatory and non-oscillatory (singular) components. The goal is to separate the impact of the singularity of the real part at the origin from the oscillatory behavior controlled by the wave number k. The oscillatory component can be chosen to have any finite number of continuous derivatives at the origin and can be applied to a function in the Fourier space in O(kdlogk) operations. The non-oscillatory component has a multiresolution representation via a linear combination of Gaussians and is applied efficiently in space.

Since the Helmholtz Green's function can be viewed as a point source, this partitioning can be interpreted as a splitting into propagating and evanescent components. We show that the non-oscillatory component is significant only in the vicinity of the source at distances O(c1k1+c2k1log10k), for some constants c1, c2, whereas the propagating component can be observed at large distances.

我们考虑了自由空间的亥姆霍兹格林函数,并将其拆分为振荡和非振荡(奇异)两部分之和。我们的目标是将原点实部奇异性的影响与波数 k 控制的振荡行为区分开来。振荡分量可以选择在原点具有任意有限个连续导数,并能在 O(kdlogk) 运算中应用于傅里叶空间中的函数。由于亥姆霍兹格林函数可被视为一个点源,因此这种分割可被解释为分为传播分量和蒸发分量。我们的研究表明,对于某些常数 c1、c2,非振荡分量只在距离 O(c1k-1+c2k-1log10k)的源附近才有意义,而传播分量则可以在较大距离上观察到。
{"title":"On representations of the Helmholtz Green's function","authors":"Gregory Beylkin","doi":"10.1016/j.acha.2024.101633","DOIUrl":"10.1016/j.acha.2024.101633","url":null,"abstract":"<div><p>We consider the free space Helmholtz Green's function and split it into the sum of oscillatory and non-oscillatory (singular) components. The goal is to separate the impact of the singularity of the real part at the origin from the oscillatory behavior controlled by the wave number <em>k</em>. The oscillatory component can be chosen to have any finite number of continuous derivatives at the origin and can be applied to a function in the Fourier space in <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></math></span><span><span> operations. The non-oscillatory component has a multiresolution representation via a </span>linear combination of Gaussians and is applied efficiently in space.</span></p><p>Since the Helmholtz Green's function can be viewed as a point source, this partitioning can be interpreted as a splitting into propagating and evanescent components. We show that the non-oscillatory component is significant only in the vicinity of the source at distances <span><math><mi>O</mi><mrow><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>log</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></math></span>, for some constants <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, whereas the propagating component can be observed at large distances.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101633"},"PeriodicalIF":2.5,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate compactly supported C∞ functions by subdivision 通过细分实现多变量紧凑支持的 C∞ 函数
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-19 DOI: 10.1016/j.acha.2024.101630
Maria Charina , Costanza Conti , Nira Dyn

This paper discusses the generation of multivariate C functions with compact small supports by subdivision schemes. Following the construction of such a univariate function, called Up-function, by a non-stationary scheme based on masks of spline subdivision schemes of growing degrees, we term the multivariate functions we generate Up-like functions. We generate them by non-stationary schemes based on masks of three-directional box-splines of growing supports. To analyze the convergence and smoothness of these non-stationary schemes, we develop new tools which apply to a wider class of schemes than the class we study. With our method for achieving small compact supports, we obtain in the univariate case, Up-like functions with supports [0,1+ϵ] in comparison to the support [0,2] of the Up-function. Examples of univariate and bivariate Up-like functions are given. As in the univariate case, the construction of Up-like functions can motivate the generation of C compactly supported wavelets of small support in any dimension.

本文讨论通过细分方案生成具有紧凑小支撑的多元 C∞ 函数。根据基于度数不断增长的样条细分方案掩码的非稳态方案构建的单变量函数(称为Up-函数),我们将生成的多变量函数称为Up-类函数。我们通过基于支持度不断增长的三向盒样条曲线掩码的非稳态方案生成它们。为了分析这些非稳态方案的收敛性和平滑性,我们开发了新的工具,这些工具适用于比我们所研究的方案更广泛的方案类别。用我们的方法实现了小的紧凑支撑,在单变量情况下,我们得到了支撑[0,1+ϵ]的类Up函数,与Up函数的支撑[0,2]相比。本文给出了单变量和双变量类 Up 函数的例子。与单变量情况一样,Up-like 函数的构造可以促使在任何维度上生成 C∞ 紧凑支持的小支持小波。
{"title":"Multivariate compactly supported C∞ functions by subdivision","authors":"Maria Charina ,&nbsp;Costanza Conti ,&nbsp;Nira Dyn","doi":"10.1016/j.acha.2024.101630","DOIUrl":"10.1016/j.acha.2024.101630","url":null,"abstract":"<div><p>This paper discusses the generation of multivariate <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> functions with compact small supports by subdivision schemes. Following the construction of such a univariate function, called <em>Up-function</em>, by a non-stationary scheme based on masks of spline subdivision schemes of growing degrees, we term the multivariate functions we generate <em>Up-like functions</em>. We generate them by non-stationary schemes based on masks of three-directional box-splines of growing supports. To analyze the convergence and smoothness of these non-stationary schemes, we develop new tools which apply to a wider class of schemes than the class we study. With our method for achieving small compact supports, we obtain in the univariate case, Up-like functions with supports <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>+</mo><mi>ϵ</mi><mo>]</mo></math></span> in comparison to the support <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> of the Up-function. Examples of univariate and bivariate Up-like functions are given. As in the univariate case, the construction of Up-like functions can motivate the generation of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> compactly supported wavelets of small support in any dimension.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101630"},"PeriodicalIF":2.5,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000071/pdfft?md5=1ad3a9e4a30806ec403f504079a4421d&pid=1-s2.0-S1063520324000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139505960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimension reduction, exact recovery, and error estimates for sparse reconstruction in phase space 相空间稀疏重构的降维、精确恢复和误差估计
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-11 DOI: 10.1016/j.acha.2024.101631
M. Holler , A. Schlüter , B. Wirth

An important theme in modern inverse problems is the reconstruction of time-dependent data from only finitely many measurements. To obtain satisfactory reconstruction results in this setting it is essential to strongly exploit temporal consistency between the different measurement times. The strongest consistency can be achieved by reconstructing data directly in phase space, the space of positions and velocities. However, this space is usually too high-dimensional for feasible computations. We introduce a novel dimension reduction technique, based on projections of phase space onto lower-dimensional subspaces, which provably circumvents this curse of dimensionality: Indeed, in the exemplary framework of superresolution we prove that known exact reconstruction results stay true after dimension reduction, and we additionally prove new error estimates of reconstructions from noisy data in optimal transport metrics which are of the same quality as one would obtain in the non-dimension-reduced case.

现代逆问题的一个重要主题是通过有限次测量重建随时间变化的数据。要在这种情况下获得令人满意的重构结果,必须充分利用不同测量时间之间的时间一致性。直接在相空间(位置和速度空间)中重建数据可以实现最强的一致性。然而,这个空间通常维度过高,无法进行可行的计算。我们引入了一种新颖的降维技术,该技术基于相位空间对低维子空间的投影,可有效规避维度诅咒:事实上,在超分辨率的示例框架中,我们证明了已知的精确重建结果在降维后仍然有效,我们还证明了在最佳传输度量中从噪声数据重建的新误差估计,其质量与在非降维情况下获得的质量相同。
{"title":"Dimension reduction, exact recovery, and error estimates for sparse reconstruction in phase space","authors":"M. Holler ,&nbsp;A. Schlüter ,&nbsp;B. Wirth","doi":"10.1016/j.acha.2024.101631","DOIUrl":"10.1016/j.acha.2024.101631","url":null,"abstract":"<div><p>An important theme in modern inverse problems is the reconstruction of <em>time-dependent</em> data from only <em>finitely many</em> measurements. To obtain satisfactory reconstruction results in this setting it is essential to strongly exploit temporal consistency between the different measurement times. The strongest consistency can be achieved by reconstructing data directly in <em>phase space</em>, the space of positions <em>and</em> velocities. However, this space is usually too high-dimensional for feasible computations. We introduce a novel dimension reduction technique, based on projections of phase space onto lower-dimensional subspaces, which provably circumvents this curse of dimensionality: Indeed, in the exemplary framework of superresolution we prove that known exact reconstruction results stay true after dimension reduction, and we additionally prove new error estimates of reconstructions from noisy data in optimal transport metrics which are of the same quality as one would obtain in the non-dimension-reduced case.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101631"},"PeriodicalIF":2.5,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000083/pdfft?md5=ecd67b0e5374d4297b6087dc7c3b9288&pid=1-s2.0-S1063520324000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139420410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A divide-and-conquer algorithm for distributed optimization on networks 网络分布式优化的分而治之算法
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-02 DOI: 10.1016/j.acha.2023.101623
Nazar Emirov , Guohui Song , Qiyu Sun

In this paper, we consider networks with topologies described by some connected undirected graph G=(V,E) and with some agents (fusion centers) equipped with processing power and local peer-to-peer communication, and optimization problem minx{F(x)=iVfi(x)} with local objective functions fi depending only on neighboring variables of the vertex iV. We introduce a divide-and-conquer algorithm to solve the above optimization problem in a distributed and decentralized manner. The proposed divide-and-conquer algorithm has exponential convergence, its computational cost is almost linear with respect to the size of the network, and it can be fully implemented at fusion centers of the network. In addition, our numerical demonstrations indicate that the proposed divide-and-conquer algorithm has superior performance than popular decentralized optimization methods in solving the least squares problem, both with and without the 1 penalty, and exhibits great performance on networks equipped with asynchronous local peer-to-peer communication.

在本文中,我们考虑了拓扑结构由一些连通无向图 G=(V,E) 描述的网络,以及一些配备处理能力和本地点对点通信的代理(融合中心),并考虑了优化问题 minx{F(x)=∑i∈Vfi(x)} ,其本地目标函数 fi 仅取决于顶点 i∈V 的相邻变量。我们引入了一种分而治之算法,以分布式和去中心化的方式解决上述优化问题。所提出的分而治之算法具有指数收敛性,其计算成本与网络规模几乎呈线性关系,而且可以在网络的融合中心完全实现。此外,我们的数值演示表明,在求解最小二乘法问题时,无论是否有 ℓ1 惩罚,所提出的分而治之算法都比流行的分散优化方法性能优越,而且在配备异步本地点对点通信的网络上表现出色。
{"title":"A divide-and-conquer algorithm for distributed optimization on networks","authors":"Nazar Emirov ,&nbsp;Guohui Song ,&nbsp;Qiyu Sun","doi":"10.1016/j.acha.2023.101623","DOIUrl":"10.1016/j.acha.2023.101623","url":null,"abstract":"<div><p>In this paper, we consider networks with topologies described by some connected undirected graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> and with some agents (fusion centers) equipped with processing power and local peer-to-peer communication, and optimization problem <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>⁡</mo><mo>{</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>V</mi></mrow></msub><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>}</mo></math></span> with local objective functions <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> depending only on neighboring variables of the vertex <span><math><mi>i</mi><mo>∈</mo><mi>V</mi></math></span>. We introduce a divide-and-conquer algorithm to solve the above optimization problem in a distributed and decentralized manner. The proposed divide-and-conquer algorithm has exponential convergence, its computational cost is almost linear with respect to the size of the network, and it can be fully implemented at fusion centers of the network. In addition, our numerical demonstrations indicate that the proposed divide-and-conquer algorithm has superior performance than popular decentralized optimization methods in solving the least squares problem, both with and without the <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> penalty, and exhibits great performance on networks equipped with asynchronous local peer-to-peer communication.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101623"},"PeriodicalIF":2.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139076847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the eigenvalue distribution of spatio-spectral limiting operators in higher dimensions 论高维空间谱限制算子的特征值分布
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-13 DOI: 10.1016/j.acha.2023.101620
Arie Israel, Azita Mayeli

Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval. They are also identified as the eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the interval [0,1]. Previous work has studied the asymptotic distribution and clustering behavior of the TFLO eigenvalues.

In this paper, we extend these results to multiple dimensions. We prove estimates on the eigenvalues of a spatio-spectral limiting operator (SSLO) on L2(Rd), which is an alternating product of projection operators associated to given spatial and frequency domains in Rd. If one of the domains is a hypercube, and the other domain is convex body satisfying a symmetry condition, we derive quantitative bounds on the distribution of the SSLO eigenvalues in the interval [0,1].

To prove our results, we design an orthonormal system of wave packets in L2(Rd) that are highly concentrated in the spatial and frequency domains. We show that these wave packets are “approximate eigenfunctions” of a spatio-spectral limiting operator. To construct the wave packets, we use a variant of the Coifman-Meyer local sine basis for L2[0,1], and we lift the basis to higher dimensions using a tensor product.

长球面波函数是R上的正交带限函数族,在特定时间间隔内具有最高的浓度。它们也被识别为时频限制算子(TFLO)的特征函数,其相关特征值属于区间[0,1]。前人研究了TFLO特征值的渐近分布和聚类行为。在本文中,我们将这些结果扩展到多个维度。我们证明了L2(Rd)上空间-频谱极限算子(SSLO)特征值的估计,它是与给定空间域和频率域相关联的投影算子的交替积。如果其中一个域是超立方体,另一个域是满足对称条件的凸体,我们导出了SSLO特征值在区间[0,1]内分布的定量界。为了证明我们的结果,我们在L2(Rd)中设计了一个高度集中在空间和频域的正交波包系统。我们证明了这些波包是空间谱极限算子的“近似特征函数”。为了构造波包,我们对L2[0,1]使用Coifman-Meyer局部正弦基的一种变体,并使用张量积将基提升到更高的维度。
{"title":"On the eigenvalue distribution of spatio-spectral limiting operators in higher dimensions","authors":"Arie Israel,&nbsp;Azita Mayeli","doi":"10.1016/j.acha.2023.101620","DOIUrl":"10.1016/j.acha.2023.101620","url":null,"abstract":"<div><p><span>Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on </span><span><math><mi>R</mi></math></span><span><span> that have the highest concentration within a specific time interval. They are also identified as the </span>eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the interval </span><span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span><span>. Previous work has studied the asymptotic distribution and clustering behavior of the TFLO eigenvalues.</span></p><p>In this paper, we extend these results to multiple dimensions. We prove estimates on the eigenvalues of a <em>spatio-spectral limiting operator</em> (SSLO) on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, which is an alternating product of projection operators associated to given spatial and frequency domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span>. If one of the domains is a hypercube<span><span>, and the other domain is convex body satisfying a </span>symmetry condition, we derive quantitative bounds on the distribution of the SSLO eigenvalues in the interval </span></span><span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>.</p><p><span>To prove our results, we design an orthonormal system of wave packets in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> that are highly concentrated in the spatial and frequency domains. We show that these wave packets are “approximate eigenfunctions” of a spatio-spectral limiting operator. To construct the wave packets, we use a variant of the Coifman-Meyer local sine basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span><span>, and we lift the basis to higher dimensions using a tensor product.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101620"},"PeriodicalIF":2.5,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138657597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-frequency analysis on flat tori and Gabor frames in finite dimensions 有限维平面环和 Gabor 框架的时频分析
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-12 DOI: 10.1016/j.acha.2023.101622
L.D. Abreu , P. Balazs , N. Holighaus , F. Luef , M. Speckbacher

We provide the foundations of a Hilbert space theory for the short-time Fourier transform (STFT) where the flat tori TN2=R2/(Z×NZ)=[0,1]×[0,N] act as phase spaces. We work on an N-dimensional subspace SN of distributions periodic in time and frequency in the dual S0(R) of the Feichtinger algebra S0(R) and equip it with an inner product. To construct the Hilbert space SN we apply a suitable double periodization operator to S0(R). On SN, the STFT is applied as the usual STFT defined on S0(R). This STFT is a continuous extension of the finite discrete Gabor transform from the lattice onto the entire flat torus. As such, sampling theorems on flat tori lead to Gabor frames in finite dimensions. For Gaussian windows, one is lead to spaces of analytic functions and the construction allows to prove a necessary and sufficient Nyquist rate type result, which is the analogue, for Gabor frames in finite dimensions, of a well known result of Lyubarskii and Seip-Wallstén for Gabor frames with Gaussian windows and which, for N odd, produces an explicit full spark Gabor frame. The compactness of the phase space, the finite dimension of the signal spaces and our sampling theorem offer practical advantages in some applications. We illustrate this by discussing a problem of current research interest: recovering signals from the zeros of their noisy spectrograms.

我们提供了短时傅立叶变换(STFT)的希尔伯特空间理论基础,其中平面环TN2=R2/(Z×NZ)=[0,1]×[0,N] 充当相空间。我们研究费希廷格代数 S0(R)的对偶 S0′(R)中时间和频率周期性分布的 N 维子空间 SN,并为其配备内积。为了构建希尔伯特空间 SN,我们在 S0(R)上应用合适的双周期化算子。在希尔伯特空间 SN 上,STFT 与定义在 S0′(R)上的 STFT 一样。这种 STFT 是有限离散 Gabor 变换从晶格到整个平面环的连续扩展。因此,平环面上的采样定理可以引出有限维度的 Gabor 框架。对于高斯窗,人们会进入解析函数空间,通过这种构造可以证明必要且充分的奈奎斯特率类型结果,对于有限维度的 Gabor 框架,该结果类似于 Lyubarskii 和 Seip-Wallstén 对于高斯窗 Gabor 框架的著名结果,对于奇数 N,该结果产生了明确的全火花 Gabor 框架。相空间的紧凑性、信号空间的有限维度以及我们的采样定理为某些应用提供了实际优势。我们将通过讨论一个当前研究热点问题来说明这一点:从噪声频谱图的零点恢复信号。
{"title":"Time-frequency analysis on flat tori and Gabor frames in finite dimensions","authors":"L.D. Abreu ,&nbsp;P. Balazs ,&nbsp;N. Holighaus ,&nbsp;F. Luef ,&nbsp;M. Speckbacher","doi":"10.1016/j.acha.2023.101622","DOIUrl":"10.1016/j.acha.2023.101622","url":null,"abstract":"<div><p>We provide the foundations of a Hilbert space theory for the short-time Fourier transform (STFT) where the flat tori <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><mi>Z</mi><mo>×</mo><mi>N</mi><mi>Z</mi><mo>)</mo><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span> act as phase spaces. We work on an <em>N</em>-dimensional subspace <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> of distributions periodic in time and frequency in the dual <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of the Feichtinger algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and equip it with an inner product. To construct the Hilbert space <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> we apply a suitable double periodization operator to <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. On <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>, the STFT is applied as the usual STFT defined on <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This STFT is a continuous extension of the finite discrete Gabor transform from the lattice onto the entire flat torus. As such, sampling theorems on flat tori lead to Gabor frames in finite dimensions. For Gaussian windows, one is lead to spaces of analytic functions and the construction allows to prove a necessary and sufficient Nyquist rate type result, which is the analogue, for Gabor frames in finite dimensions, of a well known result of Lyubarskii and Seip-Wallstén for Gabor frames with Gaussian windows and which, for <em>N</em> odd, produces an explicit <em>full spark Gabor frame</em>. The compactness of the phase space, the finite dimension of the signal spaces and our sampling theorem offer practical advantages in some applications. We illustrate this by discussing a problem of current research interest: recovering signals from the zeros of their noisy spectrograms.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101622"},"PeriodicalIF":2.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520323001094/pdfft?md5=a748cc66b45e71833f86016f2331a024&pid=1-s2.0-S1063520323001094-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laplace-Beltrami operator on the orthogonal group in ambient (Euclidean) coordinates 环境(欧几里得)坐标正交群上的拉普拉斯-贝尔特拉米算子
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-12 DOI: 10.1016/j.acha.2023.101619
Petre Birtea, Ioan Caşu, Dan Comănescu

Using the embedded gradient vector field method (see P. Birtea, D. Comănescu (2015) [7]), we present a general formula for the Laplace-Beltrami operator defined on a constraint manifold, written in the ambient coordinates. Regarding the orthogonal group as a constraint submanifold of the Euclidean space of n×n matrices, we give an explicit formula for the Laplace-Beltrami operator on the orthogonal group using the ambient Euclidean coordinates. We apply this new formula for some relevant functions.

利用嵌入梯度矢量场方法(见 P. Birtea, D. Comănescu (2015) [7]),我们给出了在约束流形上定义的拉普拉斯-贝尔特拉米算子的一般公式,并以环境坐标写出。关于作为 n×n 矩阵欧几里得空间约束子流形的正交群,我们给出了使用环境欧几里得坐标的正交群上拉普拉斯-贝尔特拉米算子的明确公式。我们将这一新公式应用于一些相关函数。
{"title":"Laplace-Beltrami operator on the orthogonal group in ambient (Euclidean) coordinates","authors":"Petre Birtea,&nbsp;Ioan Caşu,&nbsp;Dan Comănescu","doi":"10.1016/j.acha.2023.101619","DOIUrl":"10.1016/j.acha.2023.101619","url":null,"abstract":"<div><p><span>Using the embedded gradient vector field method (see P. Birtea, D. Comănescu (2015) </span><span>[7]</span><span><span>), we present a general formula for the Laplace-Beltrami operator defined on a constraint manifold, written in the ambient coordinates. Regarding the orthogonal group as a constraint </span>submanifold<span> of the Euclidean space of </span></span><span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span><span> matrices, we give an explicit formula for the Laplace-Beltrami operator on the orthogonal group using the ambient Euclidean coordinates. We apply this new formula for some relevant functions.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101619"},"PeriodicalIF":2.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spline manipulations for empirical mode decomposition (EMD) on bounded intervals and beyond 经验模态分解(EMD)在有界区间及以外的样条操作
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-05 DOI: 10.1016/j.acha.2023.101621
Charles K. Chui , Wenjie He
<div><p>Empirical mode decomposition (EMD), introduced by N.E. Huang et al. in 1998, is perhaps the most popular data-driven computational scheme for the decomposition of a non-stationary signal or time series <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, with time-domain <span><math><mi>R</mi><mo>:</mo><mo>=</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, into finitely many oscillatory components <span><math><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>}</mo></math></span>, called <em>intrinsic mode functions</em> (IMFs), and some “almost monotone” remainder <span><math><mi>r</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, called the <em>trend</em> of <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. The core of EMD is the iterative “<em>sifting process</em>” applied to each function <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> to compute <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>K</mi></math></span>, where <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, with trend <span><math><mi>r</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span>. For the computation of each IMF, the sifting process depends on cubic spline interpolation of the local maxima and local minima for computing the upper and lower envelopes, respectively, and on subtracting the mean of the two envelopes from the result of the previous iterative step. Since it is not feasible to search for all local extrema in the entire time-domain </span><span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>∞</mo><mo>)</mo></math></span><span>, implementation of the sifting process is commonly performed on some desired truncated bounded interval </span><span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>. The main objective of this paper is to introduce and develop four “<em>cubic spline manipulation engines</em><span>”, called “quasi-interpolation (QI)”, “enhanced quasi-interpolation (EQI)”, “local interpol
经验模态分解(EMD),由N.E. Huang等人于1998年引入,可能是最流行的数据驱动计算方案,用于将非平稳信号或时间序列f(t)分解为有限多个振荡分量{f1(t),⋯,fK(t)},称为本然模态函数(IMFs),以及一些“几乎单调”的余数R (t),称为f(t)的趋势。EMD的核心是应用于每个函数mk−1(t)的迭代“筛选过程”来计算fk(t),对于k=1,⋯k,其中m0(t):=f(t)和mk(t):=mk−1(t)−fk(t),趋势r(t):= mk(t)。对于每个IMF的计算,筛选过程依赖于局部最大值和局部最小值的三次样条插值,分别计算上下包络,并从前一个迭代步骤的结果中减去两个包络的平均值。由于在整个时域(−∞,∞)内搜索所有局部极值是不可行的,因此通常在一些期望的截断有界区间上执行筛选过程[a,b]。本文的主要目标是引入和开发四种“三次样条操作引擎”,分别是“准插值(QI)”、“增强准插值(EQI)”、“局部插值(LI)”和“改进全局插值(IGI)”三次样条操作引擎,以显著提高EMD在截断时域上的性能,同时减少边界伪像,提高计算效率、精度和一致性。引入和构建“基本准插值”(FQI)样条作为QI操作引擎的基函数,消除了计算(全局)三次样条插值的矩阵反演的需要,因为局部最大值和局部最小值分别用作其FQI样条序列表示的系数。对于EQI样条操作引擎,FQI函数是根据上下两个信封相同的三次b样条基来表示的;对于LI样条操作引擎,通过“修正EQI引擎的近似插补误差”,应用“三次样条混合”操作进一步修改FQI样条,实现真正的三次样条插补。因此,EQI和LI操作引擎具有共同的性质,即在计算上下包络的平均值时,唯一的计算是平均b样条系数,而不是分别计算上下包络。此外,还引入了对给定f(t)的快速三次样条预处理,以确保在截断的时域上计算第一个IMF f1(t)的希尔伯特变换的数值稳定性。本文所提出的理论以及方法和显式公式将用于EMD以外的其他应用。
{"title":"Spline manipulations for empirical mode decomposition (EMD) on bounded intervals and beyond","authors":"Charles K. Chui ,&nbsp;Wenjie He","doi":"10.1016/j.acha.2023.101621","DOIUrl":"10.1016/j.acha.2023.101621","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Empirical mode decomposition (EMD), introduced by N.E. Huang et al. in 1998, is perhaps the most popular data-driven computational scheme for the decomposition of a non-stationary signal or time series &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, with time-domain &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, into finitely many oscillatory components &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, called &lt;em&gt;intrinsic mode functions&lt;/em&gt; (IMFs), and some “almost monotone” remainder &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, called the &lt;em&gt;trend&lt;/em&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The core of EMD is the iterative “&lt;em&gt;sifting process&lt;/em&gt;” applied to each function &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; to compute &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, for &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, with trend &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;. For the computation of each IMF, the sifting process depends on cubic spline interpolation of the local maxima and local minima for computing the upper and lower envelopes, respectively, and on subtracting the mean of the two envelopes from the result of the previous iterative step. Since it is not feasible to search for all local extrema in the entire time-domain &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;, implementation of the sifting process is commonly performed on some desired truncated bounded interval &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The main objective of this paper is to introduce and develop four “&lt;em&gt;cubic spline manipulation engines&lt;/em&gt;&lt;span&gt;”, called “quasi-interpolation (QI)”, “enhanced quasi-interpolation (EQI)”, “local interpol","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101621"},"PeriodicalIF":2.5,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138491833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied and Computational Harmonic Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1