Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Cognitive frailty (CF) is the conjunction of cognitive impairment without dementia and physical frailty. While predictors of each element are well-researched, mechanisms of their co-occurrence have not been integrated, particularly in terms of relationships between social, psychological, and biological factors. This interdisciplinary scoping review set out to categorise a heterogenous multidisciplinary literature to identify potential pathways and mechanisms of CF, and research gaps. Studies were included if they used the definition of CF OR focused on conjunction of cognitive impairment and frailty (by any measure), AND excluded studies on specific disease populations, interventions, epidemiology or prediction of mortality. Searches used Web of Science, PubMed and Science Direct. Search terms included “cognitive frailty” OR ((“cognitive decline” OR “cognitive impairment”) AND (frail*)), with terms to elicit mechanisms, predictors, causes, pathways and risk factors. To ensure inclusion of animal and cell models, keywords such as “behavioural” or “cognitive decline” or “senescence”, were added. 206 papers were included. Descriptive analysis provided high-level categorisation of determinants from social and environmental through psychological to biological. Patterns distinguishing CF from Alzheimer’s disease were identified and social and psychological moderators and mediators of underlying biological and physiological changes and of trajectories of CF development were suggested as foci for further research.
Recent research has illuminated the profound bidirectional communication between the gastrointestinal tract and the brain, furthering our understanding of neurological ailments facilitating possible therapeutic strategies. Technological advancements in high-throughput sequencing and multi-omics have unveiled significant alterations in gut microbiota and their metabolites in various neurological disorders. This review provides a thorough analysis of the role of microbiome-gut-brain axis in neurodegenerative disease pathology, linking it to reduced age-associated proteostasis. We discuss evidences that substantiate the existence of a gut-brain cross talk ranging from early clinical accounts of James Parkinson to Braak’s hypothesis. In addition to understanding of microbes, the review particularly entails specific metabolites which are altered in neurodegenerative diseases. The regulatory effects of microbial metabolites on protein clearance mechanisms, proposing their potential therapeutic implications, are also discussed. By integrating this information, we advocate for a combinatory therapeutic strategy that targets early intervention, aiming to restore proteostasis and ameliorate disease progression. This approach not only provides a new perspective on the pathogenesis of neurodegenerative diseases but also highlights innovative strategies to combat the increasing burden of these age-related disorders.
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.