Human-Machine Interaction (HMI) and Brain-Computer Interface (BCI) are evolving technologies that show the great potentials to extract and utilize humans’ intents in controlling smart machines. However, existing HMI and BCI technologies are limited in terms of (1) the number of Degrees- of-Freedom (DoF) to be controlled and (2) the ways the performance of BCI-enabled control systems are verified and validated. This study aimed to explore the solutions to addree both of above concerns; we proposed a hybrid control system that is capable of training, detecting, and interpreting humans’ intents, and utilizing humans’ intents in real-time controls of smart machines. More specifically, the system acquired brain signals in the form of Electroencephalography (EEG) by an Emotiv Epoc X and processed these signals to detect and extract humans’ intents in real-time machine controls. To cope with the frequency difference of humans’ thinking and machine motion controls, we developed a hybrid control module to fuse humans’ and machine's intelligence so that low-frequency humans’ intents could be used in real-time machine controls. The system was prototyped and verified experimentally. The system was verified to achieve the accuracy of over 90 % in recognizing humans’ intents and controlling a robot by the operator's intents with a satisfactory responding time and accuracy.
The main objective of this article is to provide a framework for intelligent capture-acquisition analysis of geometric information from geological outcrops. By combining deep learning methods with photogrammetric data from unmanned aerial vehicles (UAVs), FPV drones, and terrestrial cameras acquired by a hybrid vision-photogrammetric system (HVPS), intelligent fracture detection and geometric information segmentation of multiscale field geological outcrops were achieved. The extraction results were subsequently used to generate a three-dimensional discrete fracture network (DFN) of real rock masses for studying the influence of the spatial connectivity of discontinuity structural planes on the mechanical and hydrodynamic characteristics of rock masses. By testing data collected in situ from a variety of field rock masses in several regions of China, this framework was shown to be a very efficient method for geostatistical work, exhibiting very low measurement errors. Furthermore, this framework is extremely safe for geologists and applicable to a wide range of site geological environments. It is also suitable for field geological surveys, geometry acquisition of outcropping lithologies, obtaining tunnel face and surrounding fissure statistics, and geological stability assessment of unstable rock masses. This framework can also provide a method for unmanned topographic-geological exploration. Furthermore, the fracture network realism and the data acquisition efficiency have been greatly improved, and the difficulty of developing field measurements and validating the DFN model has been overcome.