Aim: This study aimed to explore whether microRNAs (miRNAs) could serve as biomarkers of perinatal asphyxia and whether they were correlated with severity of brain magnetic resonance imaging.
Methods: We prospectively enrolled 26 full-term newborns, including 10 with perinatal asphyxia and 16 healthy controls. Plasma samples were collected at 0-6 h and 7 days of age. Encephalopathy was classified according to modified Sarnat staging. Magnetic resonance imaging was performed in surviving infants within 30 days of birth, and a score was established. We used next-generation sequencing to explore differentially expressed miRNAs, which were then further validated using quantitative reverse transcription real-time polymerase chain reaction (RT-PCR).
Results: A significantly lower expression of miR-486-5p was found at 0-6 h of age in the asphyxiated newborns compared with the healthy controls (p = 0.005). The area under the receiver operating characteristic curve (AUC) of miR-486-5p at 0-6 h of age to differentiate the perinatal asphyxia group from the healthy control group was 0.831, and the AUC to differentiate newborns eligible for therapeutic hypothermia from others was 0.782. In addition, a lower expression of miR-486-5p at 7 days of age was noted in the asphyxiated newborns with adverse outcomes compared to those with normal outcomes.
Conclusion: MiR-486-5p may be a biomarker of perinatal asphyxia in newborns, and further research is warranted to clarify its role.