Pub Date : 2024-09-25DOI: 10.1109/TSIPN.2024.3467916
Dong Liang;Shimin Wang;Engang Tian
Multiple rigid bodies can model various practical industrial systems. However, periodic sampled-data communication can have a load over the network subject to limited bandwidth. The research on the leader-follower attitude consensus issue for a group of rigid-body dynamics is conducted in this technical paper. The plant of each follower is subject to unknown external disturbances. To reduce the burden of the communication network, an edge-triggered nonlinear distributed observer with dynamic triggering mechanisms is presented. The proposed observer has the ability to evaluate the leader system's state regardless of implementing the continuous-time exchange of the neighborhood information. The proposed edge-based triggering mechanism is asynchronous while eliminating the Zeno phenomenon. Based on the nonlinear observer, a distributed control protocol together with an adaptive law is put forward in order to realize the leader-follower attitude consensus while attenuating the unknown external disturbances. In the end, an illustrative example of a collection of spacecraft systems is provided to verify the feasibility of our methods.
{"title":"Edge-Triggered Leader–Follower Consensus of Multiple Spacecraft Systems With Unknown Disturbances","authors":"Dong Liang;Shimin Wang;Engang Tian","doi":"10.1109/TSIPN.2024.3467916","DOIUrl":"https://doi.org/10.1109/TSIPN.2024.3467916","url":null,"abstract":"Multiple rigid bodies can model various practical industrial systems. However, periodic sampled-data communication can have a load over the network subject to limited bandwidth. The research on the leader-follower attitude consensus issue for a group of rigid-body dynamics is conducted in this technical paper. The plant of each follower is subject to unknown external disturbances. To reduce the burden of the communication network, an edge-triggered nonlinear distributed observer with dynamic triggering mechanisms is presented. The proposed observer has the ability to evaluate the leader system's state regardless of implementing the continuous-time exchange of the neighborhood information. The proposed edge-based triggering mechanism is asynchronous while eliminating the Zeno phenomenon. Based on the nonlinear observer, a distributed control protocol together with an adaptive law is put forward in order to realize the leader-follower attitude consensus while attenuating the unknown external disturbances. In the end, an illustrative example of a collection of spacecraft systems is provided to verify the feasibility of our methods.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"740-751"},"PeriodicalIF":3.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}