Marvin Fritz;Christina Kuttler;Mabel L Rajendran;Barbara Wohlmuth;Laura Scarabosio
In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.
{"title":"On a subdiffusive tumour growth model with fractional time derivative","authors":"Marvin Fritz;Christina Kuttler;Mabel L Rajendran;Barbara Wohlmuth;Laura Scarabosio","doi":"10.1093/imamat/hxab009","DOIUrl":"https://doi.org/10.1093/imamat/hxab009","url":null,"abstract":"In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The numerical solution of partial differential equations that govern fluid dynamics with turbulence and combustion is challenging due to the multiscale nature of the dynamical system and the need to resolve small-scale physical features. In addition, the uncertainties in the dynamical system, including those in the physical models and parameters, initial and boundary conditions and numerical methods, impact the computational fluid dynamics (CFD) prediction of turbulence and chemical reactions. To improve the CFD prediction, this study focuses on the development and application of a maximum likelihood ensemble filter (MLEF), an ensemble-based data assimilation (DA), for flows featuring combustion and/or turbulence. MLEF finds the optimal analysis and its uncertainty by maximizing the posterior probability density function. The novelty of the study lies in the combination of advanced DA and CFD methods for a new comprehensive application to predict engineering fluid dynamics. The study combines important aspects, including an ensemble-based DA with analysis and uncertainty estimation, an augmented control vector that simultaneously adjusts initial conditions and model empirical parameters and an application of DA to CFD modeling of combustion and flows with complex geometry. The DA performance is validated by a turbulent Couette flow. The new CFD–DA system is then applied to solve the time-evolving shear-layer mixing with methane-air combustion and the turbulent flow over a bluff-body geometry. Results demonstrate the improvement of estimates of model parameters and the uncertainty reduction in initial conditions (ICs) for CFD modeling of flames and flows by the MLEF method.
{"title":"The maximum likelihood ensemble filter for computational flame and fluid dynamics","authors":"Yijun Wang;Stephen Guzik;Milija Zupanski;Xinfeng Gao","doi":"10.1093/imamat/hxab010","DOIUrl":"10.1093/imamat/hxab010","url":null,"abstract":"The numerical solution of partial differential equations that govern fluid dynamics with turbulence and combustion is challenging due to the multiscale nature of the dynamical system and the need to resolve small-scale physical features. In addition, the uncertainties in the dynamical system, including those in the physical models and parameters, initial and boundary conditions and numerical methods, impact the computational fluid dynamics (CFD) prediction of turbulence and chemical reactions. To improve the CFD prediction, this study focuses on the development and application of a maximum likelihood ensemble filter (MLEF), an ensemble-based data assimilation (DA), for flows featuring combustion and/or turbulence. MLEF finds the optimal analysis and its uncertainty by maximizing the posterior probability density function. The novelty of the study lies in the combination of advanced DA and CFD methods for a new comprehensive application to predict engineering fluid dynamics. The study combines important aspects, including an ensemble-based DA with analysis and uncertainty estimation, an augmented control vector that simultaneously adjusts initial conditions and model empirical parameters and an application of DA to CFD modeling of combustion and flows with complex geometry. The DA performance is validated by a turbulent Couette flow. The new CFD–DA system is then applied to solve the time-evolving shear-layer mixing with methane-air combustion and the turbulent flow over a bluff-body geometry. Results demonstrate the improvement of estimates of model parameters and the uncertainty reduction in initial conditions (ICs) for CFD modeling of flames and flows by the MLEF method.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imamat/hxab010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44645899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-15DOI: 10.21203/RS.3.RS-563354/V1
Zofia Wr'oblewska, P. Kowalczyk, Lukasz Plociniczak
We consider a classical spring-mass model of human running which is built upon an inverted elastic pendulum. Based on our previous results concerning asymptotic solutions for large spring constant (or small angle of attack), we construct analytical approximations of solutions in the considered model. The model itself consists of two sets of differential equations - one set describes the motion of the centre of mass of a runner in contact with the ground (support phase), and the second set describes the phase of no contact with the ground (flight phase). By appropriately concatenating asymptotic solutions for the two phases we are able to reduce the dynamics to a one-dimensional apex to apex return map. We find sufficient conditions for this map to have a unique stable fixed point. By numerical continuation of fixed points with respect to energy, we find a transcritical bifurcation in our model system.
{"title":"Stability of Fixed Points in an Approximate Solution of the Spring-mass Running Model","authors":"Zofia Wr'oblewska, P. Kowalczyk, Lukasz Plociniczak","doi":"10.21203/RS.3.RS-563354/V1","DOIUrl":"https://doi.org/10.21203/RS.3.RS-563354/V1","url":null,"abstract":"\u0000 We consider a classical spring-mass model of human running which is built upon an inverted elastic pendulum. Based on our previous results concerning asymptotic solutions for large spring constant (or small angle of attack), we construct analytical approximations of solutions in the considered model. The model itself consists of two sets of differential equations - one set describes the motion of the centre of mass of a runner in contact with the ground (support phase), and the second set describes the phase of no contact with the ground (flight phase). By appropriately concatenating asymptotic solutions for the two phases we are able to reduce the dynamics to a one-dimensional apex to apex return map. We find sufficient conditions for this map to have a unique stable fixed point. By numerical continuation of fixed points with respect to energy, we find a transcritical bifurcation in our model system.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41588949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this note we consider 1D problems within the context of a new class of elastic bodies. Under suitable conditions on the constitutive equations we prove instability and nonexistence of solutions similar to those in place for the linearized theory. The last section is devoted to describing the spatial behavior of the solutions.
{"title":"On the instability, nonexistence and spatial behaviour of the one-dimensional response of a new class of elastic bodies","authors":"R Quintanilla;K R Rajagopal","doi":"10.1093/imamat/hxab014","DOIUrl":"10.1093/imamat/hxab014","url":null,"abstract":"In this note we consider 1D problems within the context of a new class of elastic bodies. Under suitable conditions on the constitutive equations we prove instability and nonexistence of solutions similar to those in place for the linearized theory. The last section is devoted to describing the spatial behavior of the solutions.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imamat/hxab014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41910739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The general three-component nonlinear Schrödinger (gtc-NLS) equations are completely integrable and contain the self-focusing, defocusing and mixed cases, which are applied in many physical fields. In this paper, we would like to use the Fokas method to explore the initial-boundary value (IBV) problem for the gtc-NLS equations with a $4times 4$