The 8th edition of the Guide for the Care and Use of Laboratory Animals (Guide) is clear in its requirement for each institution to establish and maintain an occupational health and safety (OHS) program as an essential part of the overall program of animal care and use. For over 30 years, AAALAC International has utilized a variety of methods to evaluate this component of OHS programs as part of the accreditation process. AAALAC International began collecting data on site visit findings over 20 years ago using the Guide as a template for establishing the categories and subcategories to which findings are assigned. Data from 1656 findings associated with OHS were identified during calendar years 2014 through 2016. This information was used to provide an overview of the most frequently observed OHS findings that occurred during this time span. The 5 categories representing key OHS areas and the combined percentage of both mandatory findings and suggestions for improvement in each category included: workplace risk/safety assessment (37.3%); personnel protection (36.3%); personnel risk assessment (14.4%); hazard containment (9.4%); and medical services (2.6%). Information on the most commonly observed OHS findings and associated trends may be helpful to animal care and use programs when conducting internal reviews of their own OHS programs.
Institutions with animal care and use programs are obligated to provide for the health and well-being of the animals, but are equally obligated to provide for safety of individuals associated with the program. The topics in this issue of the ILAR Journal, in association with those within the complimentary issue of the Journal of Applied Biosafety, provide a variety of contemporary occupational health and safety considerations in today's animal research programs. Each article addresses key or emerging occupational health and safety topics in institutional animal care and use programs, where the status of the topic, contemporary challenges, and future directions are provided.
Since its inception in the 1950s, hematopoietic cell transplantation (HCT) has become a highly effective clinical treatment for malignant and nonmalignant hematological disorders. This milestone in cancer therapy was only possible through decades of intensive research using murine and canine animal models that overcame what appeared in the early days to be insurmountable obstacles. Conditioning protocols for tumor ablation and immunosuppression of the recipient using irradiation and chemotherapeutic drugs were developed in mouse and dog models as well as postgrafting immunosuppression methods essential for dependable donor cell engraftment. The random-bred canine was particularly important in defining the role of histocompatibility barriers and the development of the nonmyeloablative transplantation procedure, making HCT available to elderly patients with comorbidities. Two complications limit the success of HCT: disease relapse and graft versus host disease. Studies in both mice and dogs have made significant progress toward reducing and to some degree eliminating patient morbidity and mortality associated with both disease relapse and graft versus host disease. However, more investigation is needed to make HCT more effective, safer, and available as a treatment modality for other non-life-threatening diseases such as autoimmune disorders. Here, we focus our review on the contributions made by both the murine and canine models for the successful past and future development of HCT.
Aquatic vertebrates and cephalopods, amphibians, reptiles, and birds offer unique safety and occupational health challenges for laboratory animal personnel. This paper discusses environmental, handling, and zoonotic concerns associated with these species.
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Animal models are critical to the advancement of our knowledge of infectious disease pathogenesis, diagnostics, therapeutics, and prevention strategies. The use of animal models requires thoughtful consideration for their well-being, as infections can significantly impact the general health of an animal and impair their welfare. Application of the 3Rs-replacement, refinement, and reduction-to animal models using biohazardous agents can improve the scientific merit and animal welfare. Replacement of animal models can use in vitro techniques such as cell culture systems, mathematical models, and engineered tissues or invertebrate animal hosts such as amoeba, worms, fruit flies, and cockroaches. Refinements can use a variety of techniques to more closely monitor the course of disease. These include the use of biomarkers, body temperature, behavioral observations, and clinical scoring systems. Reduction is possible using advanced technologies such as in vivo telemetry and imaging, allowing longitudinal assessment of animals during the course of disease. While there is no single method to universally replace, refine, or reduce animal models, the alternatives and techniques discussed are broadly applicable and they should be considered when infectious disease animal models are developed.

