The failure of animal studies to translate to effective clinical therapeutics has driven efforts to identify underlying cause and develop solutions that improve the reproducibility and translatability of preclinical research. Common issues revolve around study design, analysis, and reporting as well as standardization between preclinical and clinical endpoints. To address these needs, recent advancements in digital technology, including biomonitoring of digital biomarkers, development of software systems and database technologies, as well as application of artificial intelligence to preclinical datasets can be used to increase the translational relevance of preclinical animal research. In this review, we will describe how a number of innovative digital technologies are being applied to overcome recurring challenges in study design, execution, and data sharing as well as improving scientific outcome measures. Examples of how these technologies are applied to specific therapeutic areas are provided. Digital technologies can enhance the quality of preclinical research and encourage scientific collaboration, thus accelerating the development of novel therapeutics.
{"title":"Biomonitoring and Digital Data Technology as an Opportunity for Enhancing Animal Study Translation.","authors":"Erwin B Defensor, Maria A Lim, Laura R Schaevitz","doi":"10.1093/ilar/ilab018","DOIUrl":"https://doi.org/10.1093/ilar/ilab018","url":null,"abstract":"<p><p>The failure of animal studies to translate to effective clinical therapeutics has driven efforts to identify underlying cause and develop solutions that improve the reproducibility and translatability of preclinical research. Common issues revolve around study design, analysis, and reporting as well as standardization between preclinical and clinical endpoints. To address these needs, recent advancements in digital technology, including biomonitoring of digital biomarkers, development of software systems and database technologies, as well as application of artificial intelligence to preclinical datasets can be used to increase the translational relevance of preclinical animal research. In this review, we will describe how a number of innovative digital technologies are being applied to overcome recurring challenges in study design, execution, and data sharing as well as improving scientific outcome measures. Examples of how these technologies are applied to specific therapeutic areas are provided. Digital technologies can enhance the quality of preclinical research and encourage scientific collaboration, thus accelerating the development of novel therapeutics.</p>","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 1-2","pages":"223-231"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39069094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael J Kuiper, Laurence O W Wilson, Shruthi Mangalaganesh, Carol Lee, Daniel Reti, Seshadri S Vasan
In silico predictions combined with in vitro, in vivo, and in situ observations collectively suggest that mouse adaptation of the severe acute respiratory syndrome 2 virus requires an aromatic substitution in position 501 or position 498 (but not both) of the spike protein's receptor binding domain. This effect could be enhanced by mutations in positions 417, 484, and 493 (especially K417N, E484K, Q493K, and Q493R), and to a lesser extent by mutations in positions 486 and 499 (such as F486L and P499T). Such enhancements, due to more favorable binding interactions with residues on the complementary angiotensin-converting enzyme 2 interface, are, however, unlikely to sustain mouse infectivity on their own based on theoretical and experimental evidence to date. Our current understanding thus points to the Alpha, Beta, Gamma, and Omicron variants of concern infecting mice, whereas Delta and "Delta Plus" lack a similar biomolecular basis to do so. This paper identifies 11 countries (Brazil, Chile, Djibouti, Haiti, Malawi, Mozambique, Reunion, Suriname, Trinidad and Tobago, Uruguay, and Venezuela) where targeted local field surveillance of mice is encouraged because they may have come in contact with humans who had the virus with adaptive mutation(s). It also provides a systematic methodology to analyze the potential for other animal reservoirs and their likely locations.
{"title":"\"But Mouse, You Are Not Alone\": On Some Severe Acute Respiratory Syndrome Coronavirus 2 Variants Infecting Mice.","authors":"Michael J Kuiper, Laurence O W Wilson, Shruthi Mangalaganesh, Carol Lee, Daniel Reti, Seshadri S Vasan","doi":"10.1093/ilar/ilab031","DOIUrl":"10.1093/ilar/ilab031","url":null,"abstract":"<p><p>In silico predictions combined with in vitro, in vivo, and in situ observations collectively suggest that mouse adaptation of the severe acute respiratory syndrome 2 virus requires an aromatic substitution in position 501 or position 498 (but not both) of the spike protein's receptor binding domain. This effect could be enhanced by mutations in positions 417, 484, and 493 (especially K417N, E484K, Q493K, and Q493R), and to a lesser extent by mutations in positions 486 and 499 (such as F486L and P499T). Such enhancements, due to more favorable binding interactions with residues on the complementary angiotensin-converting enzyme 2 interface, are, however, unlikely to sustain mouse infectivity on their own based on theoretical and experimental evidence to date. Our current understanding thus points to the Alpha, Beta, Gamma, and Omicron variants of concern infecting mice, whereas Delta and \"Delta Plus\" lack a similar biomolecular basis to do so. This paper identifies 11 countries (Brazil, Chile, Djibouti, Haiti, Malawi, Mozambique, Reunion, Suriname, Trinidad and Tobago, Uruguay, and Venezuela) where targeted local field surveillance of mice is encouraged because they may have come in contact with humans who had the virus with adaptive mutation(s). It also provides a systematic methodology to analyze the potential for other animal reservoirs and their likely locations.</p>","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 1-2","pages":"48-59"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/b2/ilab031.PMC9236659.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39677530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laboratory registration codes, also known as laboratory codes or lab codes, are a key element in standardized laboratory animal and genetic nomenclature. As such they are critical to accurate scientific communication and to research reproducibility and integrity. The original committee on Mouse Genetic Nomenclature published nomenclature conventions for mice genetics in 1940, and then conventions for inbred strains in 1952. Unique designations were needed, and have been in use since the 1950s, for the sources of animals and substrains, for the laboratories that identified new alleles or mutations, and then for developers of transgenes and induced mutations. Current laboratory codes are typically a 2- to 4-letter acronym for an institution or an investigator. Unique codes are assigned from the International Laboratory Code Registry, which was developed and is maintained by ILAR in the National Academies (National Academies of Sciences Engineering and Medicine and previously National Academy of Sciences). As a resource for the global research community, the registry has been online since 1997. Since 2003 mouse and rat genetic and strain nomenclature rules have been reviewed and updated annually as a joint effort of the International Committee on Standardized Genetic Nomenclature for Mice and the Rat Genome and Nomenclature Committee. The current nomenclature conventions (particularly conventions for non-inbred animals) are applicable beyond rodents, although not widely adopted. Ongoing recognition, since at least the 1930s, of the research relevance of genetic backgrounds and origins of animals, and of spontaneous and induced genetic variants speaks to the need for broader application of standardized nomenclature for animals in research, particularly given the increasing numbers and complexities of genetically modified swine, nonhuman primates, fish, and other species.
{"title":"Laboratory Codes in Nomenclature and Scientific Communication (Advancing Organism Nomenclature in Scientific Communication to Improve Research Reporting and Reproducibility).","authors":"Cory F Brayton","doi":"10.1093/ilar/ilac016","DOIUrl":"https://doi.org/10.1093/ilar/ilac016","url":null,"abstract":"<p><p>Laboratory registration codes, also known as laboratory codes or lab codes, are a key element in standardized laboratory animal and genetic nomenclature. As such they are critical to accurate scientific communication and to research reproducibility and integrity. The original committee on Mouse Genetic Nomenclature published nomenclature conventions for mice genetics in 1940, and then conventions for inbred strains in 1952. Unique designations were needed, and have been in use since the 1950s, for the sources of animals and substrains, for the laboratories that identified new alleles or mutations, and then for developers of transgenes and induced mutations. Current laboratory codes are typically a 2- to 4-letter acronym for an institution or an investigator. Unique codes are assigned from the International Laboratory Code Registry, which was developed and is maintained by ILAR in the National Academies (National Academies of Sciences Engineering and Medicine and previously National Academy of Sciences). As a resource for the global research community, the registry has been online since 1997. Since 2003 mouse and rat genetic and strain nomenclature rules have been reviewed and updated annually as a joint effort of the International Committee on Standardized Genetic Nomenclature for Mice and the Rat Genome and Nomenclature Committee. The current nomenclature conventions (particularly conventions for non-inbred animals) are applicable beyond rodents, although not widely adopted. Ongoing recognition, since at least the 1930s, of the research relevance of genetic backgrounds and origins of animals, and of spontaneous and induced genetic variants speaks to the need for broader application of standardized nomenclature for animals in research, particularly given the increasing numbers and complexities of genetically modified swine, nonhuman primates, fish, and other species.</p>","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 3","pages":"295-309"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10558762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond the Laboratory: Emerging Landscape of Animal Studies - the Influence of National Academies of Sciences Activities and Publications.","authors":"B Natterson-Horowitz, Amelia Reynolds","doi":"10.1093/ilar/ilac010","DOIUrl":"https://doi.org/10.1093/ilar/ilac010","url":null,"abstract":"","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 3","pages":"310-313"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10868365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristi L Helke, David K Meyerholz, Amanda P Beck, Eric R Burrough, Rachel J Derscheid, Christiane Löhr, Elizabeth F McInnes, Cheryl L Scudamore, Cory F Brayton
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
{"title":"Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats.","authors":"Kristi L Helke, David K Meyerholz, Amanda P Beck, Eric R Burrough, Rachel J Derscheid, Christiane Löhr, Elizabeth F McInnes, Cheryl L Scudamore, Cory F Brayton","doi":"10.1093/ilar/ilab005","DOIUrl":"https://doi.org/10.1093/ilar/ilab005","url":null,"abstract":"<p><p>Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.</p>","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 1-2","pages":"133-168"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25482395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa M Mangus, Monique S França, H L Shivaprasad, Jeffrey C Wolf
Non-mammalian vertebrates including birds, fish, and amphibians have a long history of contributing to ground-breaking scientific discoveries. Because these species offer several experimental advantages over higher vertebrates and share extensive anatomic and genetic homology with their mammalian counterparts, they remain popular animal models in a variety of fields such as developmental biology, physiology, toxicology, drug discovery, immunology, toxicology, and infectious disease. As with all animal models, familiarity with the anatomy, physiology, and spontaneous diseases of these species is necessary for ensuring animal welfare, as well as accurate interpretation and reporting of study findings. Working with avian and aquatic species can be especially challenging in this respect due to their rich diversity and array of unique adaptations. Here, we provide an overview of the research-relevant anatomic features, non-infectious conditions, and infectious diseases that impact research colonies of birds and aquatic animals, including fish and Xenopus species.
{"title":"Research-Relevant Background Lesions and Conditions in Common Avian and Aquatic Species.","authors":"Lisa M Mangus, Monique S França, H L Shivaprasad, Jeffrey C Wolf","doi":"10.1093/ilar/ilab008","DOIUrl":"https://doi.org/10.1093/ilar/ilab008","url":null,"abstract":"<p><p>Non-mammalian vertebrates including birds, fish, and amphibians have a long history of contributing to ground-breaking scientific discoveries. Because these species offer several experimental advantages over higher vertebrates and share extensive anatomic and genetic homology with their mammalian counterparts, they remain popular animal models in a variety of fields such as developmental biology, physiology, toxicology, drug discovery, immunology, toxicology, and infectious disease. As with all animal models, familiarity with the anatomy, physiology, and spontaneous diseases of these species is necessary for ensuring animal welfare, as well as accurate interpretation and reporting of study findings. Working with avian and aquatic species can be especially challenging in this respect due to their rich diversity and array of unique adaptations. Here, we provide an overview of the research-relevant anatomic features, non-infectious conditions, and infectious diseases that impact research colonies of birds and aquatic animals, including fish and Xenopus species.</p>","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 1-2","pages":"169-202"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ilar/ilab008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25543972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Animal Care Panel is a nonprofit educational association of individuals and institutions concerned with the production, care, and study of laboratory animals. The entire United States and several foreign countries are represented in its membership. The Panel provides for the exchange of scientific information on all phases of laboratory animal care. It compiles and distributes information on films dealing with the handling of laboratory animals, and has initiated an animal technicians' training program. It publishes a bimonthly journal, "Laboratory Animal Care;" sponsors annual awards designed to encourage and reward outstanding accomplishment in the improvement of the care and quality of laboratory animals; and maintains close liaison with the Institute of Laboratory Resources (National Research Council), the American Veterinary Medical Association (through the American College of Laboratory Animal Medicine), the Laboratory Animal Breeders Association, and the National Society for Medical Research. Through its Animal Facilities Standards Committee, the Panel gathers and examines information that will aid in the establishment of high standards for the care of animals. The Guide for Laboratory Animal Facilities and Care was adopted by the Institute of Laboratory Animal Resources, National Academy of Sciences-National Research Council, on January 28, 1963.
{"title":"Guide for Laboratory Animal Facilities and Care.","authors":"","doi":"10.1093/ilar/ilac012","DOIUrl":"https://doi.org/10.1093/ilar/ilac012","url":null,"abstract":"The Animal Care Panel is a nonprofit educational association of individuals and institutions concerned with the production, care, and study of laboratory animals. The entire United States and several foreign countries are represented in its membership. The Panel provides for the exchange of scientific information on all phases of laboratory animal care. It compiles and distributes information on films dealing with the handling of laboratory animals, and has initiated an animal technicians' training program. It publishes a bimonthly journal, \"Laboratory Animal Care;\" sponsors annual awards designed to encourage and reward outstanding accomplishment in the improvement of the care and quality of laboratory animals; and maintains close liaison with the Institute of Laboratory Resources (National Research Council), the American Veterinary Medical Association (through the American College of Laboratory Animal Medicine), the Laboratory Animal Breeders Association, and the National Society for Medical Research. Through its Animal Facilities Standards Committee, the Panel gathers and examines information that will aid in the establishment of high standards for the care of animals. The Guide for Laboratory Animal Facilities and Care was adopted by the Institute of Laboratory Animal Resources, National Academy of Sciences-National Research Council, on January 28, 1963.","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 3","pages":"345-358"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10500157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"What Is the ILAR?","authors":"","doi":"10.1093/ilar/ilac007","DOIUrl":"https://doi.org/10.1093/ilar/ilac007","url":null,"abstract":"","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 3","pages":"343-344"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10521807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The ILAR Journal Is Taking a Hiatus.","authors":"","doi":"10.1093/ilar/ilac008","DOIUrl":"https://doi.org/10.1093/ilar/ilac008","url":null,"abstract":"","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 3","pages":"275"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10463933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lewis B Kinter, Robert C Dysko, Barbara Natterson-Horowitz, Cory F Brayton
The Institute for Laboratory Animal Research (ILAR) was created within the National Academies of Sciences, Engineering, and Medicine (National Academies) in 1953 when biomedical research using animals was in its infancy in terms of quantity, quality, complexity, sophistication, and care. Over the intervening 69 years, ILAR has witnessed unprecedented growth, followed by unprecedented decline, and then regrowth in usage of specific species and models and an overall shift in experimental burden away from larger to smaller species (ie, mice, fish, and rats). ILAR has contributed much to the evolution of necessary research using animals and animal models for the benefit of humans, animals, and the environment and to the development and implementation of humane principles and standards for care and use of research animals. ILAR has served as a "neutral broker" seeking consensus, solutions, common ground, and pathways forward for all professional constituencies engaged in conduct of animal research. In 2022, ILAR will become the Board on Animal Health Sciences, Conservation, and Research (BAHSCR) within the Division on Earth and Life Studies of the National Academies and the ILAR Journal will pause publication with volume 62. This manuscript recounts the history and accomplishments of ILAR 1953-2022, emphasizing the past 2 decades. The manuscript draws upon ILAR's communications and previously published histories to document ILAR's leaders, reports, publications, conferences, workshops, and roundtables using text, tables, references, and extensive supplemental tables. The authors' intention is to provide the scientific community with a single source document for ILAR, and they apologize for any omissions and errors.
{"title":"History of the National Academies of Sciences, Engineering, and Medicine's Institute for Laboratory Animal Research.","authors":"Lewis B Kinter, Robert C Dysko, Barbara Natterson-Horowitz, Cory F Brayton","doi":"10.1093/ilar/ilac017","DOIUrl":"https://doi.org/10.1093/ilar/ilac017","url":null,"abstract":"<p><p>The Institute for Laboratory Animal Research (ILAR) was created within the National Academies of Sciences, Engineering, and Medicine (National Academies) in 1953 when biomedical research using animals was in its infancy in terms of quantity, quality, complexity, sophistication, and care. Over the intervening 69 years, ILAR has witnessed unprecedented growth, followed by unprecedented decline, and then regrowth in usage of specific species and models and an overall shift in experimental burden away from larger to smaller species (ie, mice, fish, and rats). ILAR has contributed much to the evolution of necessary research using animals and animal models for the benefit of humans, animals, and the environment and to the development and implementation of humane principles and standards for care and use of research animals. ILAR has served as a \"neutral broker\" seeking consensus, solutions, common ground, and pathways forward for all professional constituencies engaged in conduct of animal research. In 2022, ILAR will become the Board on Animal Health Sciences, Conservation, and Research (BAHSCR) within the Division on Earth and Life Studies of the National Academies and the ILAR Journal will pause publication with volume 62. This manuscript recounts the history and accomplishments of ILAR 1953-2022, emphasizing the past 2 decades. The manuscript draws upon ILAR's communications and previously published histories to document ILAR's leaders, reports, publications, conferences, workshops, and roundtables using text, tables, references, and extensive supplemental tables. The authors' intention is to provide the scientific community with a single source document for ILAR, and they apologize for any omissions and errors.</p>","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"62 3","pages":"278-294"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}