首页 > 最新文献

Tissue Engineering Part A最新文献

英文 中文
Promoting a Cobalt Complex of Qingzhuan Dark Tea Polysaccharides on Fracture Healing in Rats. 清岺黑茶多糖钴复合物对大鼠骨折愈合的促进作用
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 Epub Date: 2024-03-21 DOI: 10.1089/ten.TEA.2023.0125
Min Zheng, Yong Chen, Ziyao Wang, Chen Xie, Chi Zhou, Le Wang, Fang Xiong, Ling Li, Jun Xing, Cai Wang, Hongfu Zhou

Fractures occur commonly with multiple injuries, and their incidence has increased in recent years. Trace amounts of cobalt are necessary for many living organisms as it stimulates hematopoiesis and improves bone health. However, cobalt is also toxic, as it might cause allergic reactions and tissue destruction. These factors limit the application of cobalt in some medical fields. We studied the tea polysaccode-cobalt complex (TPS-Co) prepared from Qingzhuan Dark Tea polysaccharides. We used 6-week-old Sprague-Dawley rats to establish a femoral fracture model and evaluated the effects of CoCl2 and TPS-Co on the healing of femoral fractures. In this study, treatment with TPS-Co for the same content of cobalt intake decreased the side effects associated with CoCl2 treatment and accelerated the healing of femoral fractures in rats. This treatment method promoted angiogenesis by upregulating the expression of vascular endothelial growth factor and hypoxia-inducible factor. Bone formation was promoted via the upregulation of the expression of bone morphogenetic protein 2 and serum bone alkaline phosphatase. TPS-Co was found to actively regulate bone and vascular systems, resulting in significant bone regeneration effects. Therefore, the Qingzhuan Dark Tea polysaccharide cobalt complex might be used as an additive or drug to promote fracture healing, and thus, it might have a huge market value.

骨折常见于多种损伤,近年来其发病率有所上升。许多生物体都需要微量的钴,因为钴能刺激造血,改善骨骼健康。不过,钴也有毒性,可能会引起过敏反应和组织破坏。这些因素限制了钴在某些医学领域的应用。我们研究了从青砖黑茶多糖中制备的多糖钴复合物(TPS-Co)。我们用六周大的 Sprague-Dawley 大鼠建立了股骨骨折模型,并评估了 CoCl2 和 TPS-Co 对股骨骨折愈合的影响。在这项研究中,在钴摄入量相同的情况下,使用 TPS-Co 治疗可减少与 CoCl2 治疗相关的副作用,并加速大鼠股骨骨折的愈合。这种治疗方法通过上调血管内皮生长因子(VEGF)和缺氧诱导因子(HIF-1)的表达促进血管生成。通过上调骨形态发生蛋白 2(BMP2)和血清骨碱性磷酸酶(BALP)的表达,促进了骨形成。研究发现,TPS-Co 能积极调节骨和血管系统,从而产生显著的骨再生效果。因此,清岺黑茶多糖钴复合物可作为促进骨折愈合的添加剂或药物,具有巨大的市场价值。
{"title":"Promoting a Cobalt Complex of Qingzhuan Dark Tea Polysaccharides on Fracture Healing in Rats.","authors":"Min Zheng, Yong Chen, Ziyao Wang, Chen Xie, Chi Zhou, Le Wang, Fang Xiong, Ling Li, Jun Xing, Cai Wang, Hongfu Zhou","doi":"10.1089/ten.TEA.2023.0125","DOIUrl":"10.1089/ten.TEA.2023.0125","url":null,"abstract":"<p><p>Fractures occur commonly with multiple injuries, and their incidence has increased in recent years. Trace amounts of cobalt are necessary for many living organisms as it stimulates hematopoiesis and improves bone health. However, cobalt is also toxic, as it might cause allergic reactions and tissue destruction. These factors limit the application of cobalt in some medical fields. We studied the tea polysaccode-cobalt complex (TPS-Co) prepared from Qingzhuan Dark Tea polysaccharides. We used 6-week-old Sprague-Dawley rats to establish a femoral fracture model and evaluated the effects of CoCl<sub>2</sub> and TPS-Co on the healing of femoral fractures. In this study, treatment with TPS-Co for the same content of cobalt intake decreased the side effects associated with CoCl<sub>2</sub> treatment and accelerated the healing of femoral fractures in rats. This treatment method promoted angiogenesis by upregulating the expression of vascular endothelial growth factor and hypoxia-inducible factor. Bone formation was promoted via the upregulation of the expression of bone morphogenetic protein 2 and serum bone alkaline phosphatase. TPS-Co was found to actively regulate bone and vascular systems, resulting in significant bone regeneration effects. Therefore, the Qingzhuan Dark Tea polysaccharide cobalt complex might be used as an additive or drug to promote fracture healing, and thus, it might have a huge market value.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139111374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supercritical Carbon Dioxide Decellularization of Porcine Nerve Matrix for Regenerative Medicine. 用于再生医学的猪神经基质超临界二氧化碳脱细胞技术。
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 Epub Date: 2024-03-07 DOI: 10.1089/ten.TEA.2023.0228
Linh Thi Thuy Le, Ngoc Chien Pham, Xuan-Tung Trinh, Ngan Giang Nguyen, Van Long Nguyen, Sun-Young Nam, Chan-Yeong Heo

Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO2)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The in vivo experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO2 has been successfully used in tissue engineering.

组织工程支架通常是由脱细胞组织制成的。长时间与水性洗涤剂接触造成的组织脱细胞可能会损害微观结构并留下细胞毒性残留物。在这项研究中,我们开发了一种基于超临界二氧化碳(Sc-CO2)的猪神经组织脱细胞新技术。通过组织学检查分析了脱细胞的效果,包括血红素和伊红(H&E)、马森三色染色(MT)和 4',6-二脒基-2-苯基吲哚(DAPI)染色。此外,还对脱细胞后的组织进行了生化分析,测定了DNA含量、胶原蛋白含量和糖胺聚糖(GAGs)含量。结果表明,脱细胞后组织结构得以保留,细胞被清除,细胞外基质(ECM)的基本成分,如胶原纤维、弹性纤维和糖胺聚糖纤维仍然存在。此外,与原生组织相比,脱细胞神经组织中的 DNA 含量有所降低,胶原蛋白和糖胺聚糖的浓度与原生组织相同。大鼠模型体内实验表明,脱细胞神经植入 6 个月后,坐骨神经功能指数得到恢复。形态学分析表明,脱细胞神经中有一系列浸润细胞,与原生组织相似,而且脱细胞神经中对运动功能和感觉起重要作用的许旺细胞的数量也得到了证实。这些研究结果表明,使用 Sc-CO2 进行组织脱细胞已成功应用于组织工程中。
{"title":"Supercritical Carbon Dioxide Decellularization of Porcine Nerve Matrix for Regenerative Medicine.","authors":"Linh Thi Thuy Le, Ngoc Chien Pham, Xuan-Tung Trinh, Ngan Giang Nguyen, Van Long Nguyen, Sun-Young Nam, Chan-Yeong Heo","doi":"10.1089/ten.TEA.2023.0228","DOIUrl":"10.1089/ten.TEA.2023.0228","url":null,"abstract":"<p><p>Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO<sub>2</sub>)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The <i>in vivo</i> experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO<sub>2</sub> has been successfully used in tissue engineering.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balancing Scaffold Degradation and Neo-Tissue Formation in In Situ Tissue Engineered Vascular Grafts. 平衡原位组织工程血管移植物的支架降解和新生组织形成。
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 Epub Date: 2024-03-28 DOI: 10.1089/ten.TEA.2023.0019
Marcelle Uiterwijk, Bram F Coolen, Jan-Willem van Rijswijk, Serge H M Söntjens, Michel H C J van Houtem, Wojciech Szymczyk, Laura Rijns, Henk M Janssen, Allard van de Wal, Bas A J M de Mol, Carlijn V C Bouten, Gustav J Strijkers, Patricia Y W Dankers, Jolanda Kluin

An essential aspect of cardiovascular in situ tissue engineering (TE) is to ensure balance between scaffold degradation and neo-tissue formation. We evaluated the rate of degradation and neo-tissue formation of three electrospun supramolecular bisurea-based biodegradable scaffolds that differ in their soft-block backbone compositions only. Scaffolds were implanted as interposition grafts in the abdominal aorta in rats, and evaluated at different time points (t = 1, 6, 12, 24, and 40 weeks) on function, tissue formation, strength, and scaffold degradation. The fully carbonate-based biomaterial showed minor degradation after 40 weeks in vivo, whereas the other two ester-containing biomaterials showed (near) complete degradation within 6-12 weeks. Local dilatation was only observed in these faster degrading scaffolds. All materials showed to some extent mineralization, at early as well as late time points. Histological evaluation showed equal and non-native-like neo-tissue formation after total degradation. The fully carbonate-based scaffolds lagged in neo-tissue formation, presumably as its degradation was (far from) complete at 40 weeks. A significant difference in vessel wall contrast enhancement was observed by magnetic resonance imaging between grafts with total compared with minimal-degraded scaffolds.

心血管原位组织工程(TE)的一个重要方面是确保支架降解和新生组织形成之间的平衡。我们评估了三种电纺超分子 bisurea 生物可降解支架的降解速度和新生组织形成情况,这三种支架仅在软块骨架成分上存在差异。在不同的时间点(t = 1、6、12、24 和 40 周)对支架的功能、组织形成、强度和支架降解进行评估。完全基于碳酸盐的生物材料在体内使用 40 周后出现轻微降解,而另外两种含酯生物材料在 6 到 12 周内出现(接近)完全降解。只有在这些降解较快的支架中才能观察到局部扩张。所有材料在早期和晚期都出现了一定程度的钙化。组织学评估显示,完全降解后会形成等量和非原生的新生组织。全碳酸盐基支架的新生组织形成滞后,这可能是因为其降解在 40 周时(远未完成)。通过核磁共振成像观察到,完全降解支架与最小降解支架移植物的血管壁对比增强有明显差异。
{"title":"Balancing Scaffold Degradation and Neo-Tissue Formation in <i>In Situ</i> Tissue Engineered Vascular Grafts.","authors":"Marcelle Uiterwijk, Bram F Coolen, Jan-Willem van Rijswijk, Serge H M Söntjens, Michel H C J van Houtem, Wojciech Szymczyk, Laura Rijns, Henk M Janssen, Allard van de Wal, Bas A J M de Mol, Carlijn V C Bouten, Gustav J Strijkers, Patricia Y W Dankers, Jolanda Kluin","doi":"10.1089/ten.TEA.2023.0019","DOIUrl":"10.1089/ten.TEA.2023.0019","url":null,"abstract":"<p><p>An essential aspect of cardiovascular <i>in situ</i> tissue engineering (TE) is to ensure balance between scaffold degradation and neo-tissue formation. We evaluated the rate of degradation and neo-tissue formation of three electrospun supramolecular bisurea-based biodegradable scaffolds that differ in their soft-block backbone compositions only. Scaffolds were implanted as interposition grafts in the abdominal aorta in rats, and evaluated at different time points (<i>t</i> = 1, 6, 12, 24, and 40 weeks) on function, tissue formation, strength, and scaffold degradation. The fully carbonate-based biomaterial showed minor degradation after 40 weeks <i>in vivo</i>, whereas the other two ester-containing biomaterials showed (near) complete degradation within 6-12 weeks. Local dilatation was only observed in these faster degrading scaffolds. All materials showed to some extent mineralization, at early as well as late time points. Histological evaluation showed equal and non-native-like neo-tissue formation after total degradation. The fully carbonate-based scaffolds lagged in neo-tissue formation, presumably as its degradation was (far from) complete at 40 weeks. A significant difference in vessel wall contrast enhancement was observed by magnetic resonance imaging between grafts with total compared with minimal-degraded scaffolds.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macromolecular Crowding Enhances Matrix Protein Deposition in Tissue-Engineered Vascular Grafts. 大分子拥挤会增强基质蛋白在组织工程血管移植物中的沉积。
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 Epub Date: 2024-03-01 DOI: 10.1089/ten.TEA.2023.0290
Qing Liu, Jiang Liu, Xu-Heng Sun, Jian-Yi Xu, Cong Xiao, Hong-Jing Jiang, Yin-Di Wu, Zhan-Yi Lin

Successful in vitro culture of small-diameter tissue-engineered vascular grafts (TEVGs) requires rapid deposition of biomacromolecules secreted by vascular smooth muscle cells in a polyglycolic acid mesh scaffold's three-dimensional (3D) porous environment. However, common media have lower crowding conditions than in vivo tissue fluids. In addition, during the early stages of construction, most of the biomolecules secreted by the cells into the medium are lost, which negatively affects the TEVG culture process. In this study, we propose the use of macromolecular crowding (MMC) to enhance medium crowding to improve the deposition and self-assembly efficiency of major biomolecules in the early stages of TEVG culture. The addition of carrageenan significantly increased the degree of MMC in the culture medium without affecting cell viability, proliferation, and metabolic activity. Protein analysis demonstrated that the deposition of collagen types I and III and fibronectin increased significantly in the cell layers of two-dimensional and 3D smooth muscle cell cultures after the addition of a MMC agent. Collagen type I in the culture medium decreased significantly compared with that in the medium without a MMC agent. Scanning electron microscopy demonstrated that MMC agents considerably enhanced the formation of matrix protein structures during the early stages of 3D culture. Hence, MMC modifies the crowding degree of the culture medium, resulting in the rapid formation of numerous matrix proteins and fiber structures. Impact Statement Small-diameter tissue-engineered vascular grafts (TEVGs) are one of the most promising means of treating cardiovascular diseases; however, the in vitro construction of TEVGs has some limitations, such as slow deposition of extracellular matrix (ECM), long culture period, and poor mechanical properties. We hypothesized that macromolecular crowding can increase the crowding of the culture medium to construct a more bionic microenvironment, which enhances ECM deposition in the medium to the cell layer and reduces collagen loss, accelerating and enhancing TEVG culture and construction in vitro.

小直径组织工程血管移植物(TEVG)的成功体外培养需要血管平滑肌细胞(VSMC)分泌的生物大分子在聚乙醇酸(PGA)网状支架的三维(3D)多孔环境中快速沉积。然而,与体内组织液相比,普通介质的拥挤度较低。此外,在构建的早期阶段,细胞分泌到培养基中的大部分生物大分子都会流失,这对 TEVG 的培养过程产生了负面影响。在本研究中,我们提出了利用大分子拥挤(MMC)来增强培养基的拥挤度,以提高 TEVG 培养早期主要生物大分子的沉积和自组装效率。加入卡拉胶(CR)可显著提高培养基中的大分子拥挤度,而不会影响细胞活力、增殖和代谢活性。蛋白质分析表明,在添加大分子拥挤剂后,二维和三维平滑肌细胞培养物的细胞层中 I 型胶原蛋白、III 型胶原蛋白和纤连蛋白的沉积明显增加。培养基中的 I 型胶原蛋白与未添加大分子拥挤剂的培养基中的 I 型胶原蛋白相比明显减少。扫描电子显微镜显示,在三维培养的早期阶段,大分子拥挤剂大大促进了基质蛋白结构的形成。因此,MMC 改变了培养基的拥挤度,从而快速形成了大量基质蛋白和纤维结构。
{"title":"Macromolecular Crowding Enhances Matrix Protein Deposition in Tissue-Engineered Vascular Grafts.","authors":"Qing Liu, Jiang Liu, Xu-Heng Sun, Jian-Yi Xu, Cong Xiao, Hong-Jing Jiang, Yin-Di Wu, Zhan-Yi Lin","doi":"10.1089/ten.TEA.2023.0290","DOIUrl":"10.1089/ten.TEA.2023.0290","url":null,"abstract":"<p><p>Successful <i>in vitro</i> culture of small-diameter tissue-engineered vascular grafts (TEVGs) requires rapid deposition of biomacromolecules secreted by vascular smooth muscle cells in a polyglycolic acid mesh scaffold's three-dimensional (3D) porous environment. However, common media have lower crowding conditions than <i>in vivo</i> tissue fluids. In addition, during the early stages of construction, most of the biomolecules secreted by the cells into the medium are lost, which negatively affects the TEVG culture process. In this study, we propose the use of macromolecular crowding (MMC) to enhance medium crowding to improve the deposition and self-assembly efficiency of major biomolecules in the early stages of TEVG culture. The addition of carrageenan significantly increased the degree of MMC in the culture medium without affecting cell viability, proliferation, and metabolic activity. Protein analysis demonstrated that the deposition of collagen types I and III and fibronectin increased significantly in the cell layers of two-dimensional and 3D smooth muscle cell cultures after the addition of a MMC agent. Collagen type I in the culture medium decreased significantly compared with that in the medium without a MMC agent. Scanning electron microscopy demonstrated that MMC agents considerably enhanced the formation of matrix protein structures during the early stages of 3D culture. Hence, MMC modifies the crowding degree of the culture medium, resulting in the rapid formation of numerous matrix proteins and fiber structures. Impact Statement Small-diameter tissue-engineered vascular grafts (TEVGs) are one of the most promising means of treating cardiovascular diseases; however, the <i>in vitro</i> construction of TEVGs has some limitations, such as slow deposition of extracellular matrix (ECM), long culture period, and poor mechanical properties. We hypothesized that macromolecular crowding can increase the crowding of the culture medium to construct a more bionic microenvironment, which enhances ECM deposition in the medium to the cell layer and reduces collagen loss, accelerating and enhancing TEVG culture and construction <i>in vitro</i>.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin Treatment of Macrophages Increases Microvessel Growth in Three-Dimensional Hydrogel Coculture. 二甲双胍处理巨噬细胞可促进三维水凝胶共培养中的微血管生长
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 Epub Date: 2024-03-05 DOI: 10.1089/ten.TEA.2023.0327
Justin Silberman, Michael Olagbiyan, Erika Moore

The global population is aging rapidly, posing unprecedented challenges to health care systems. This study investigates the often-overlooked role of macrophages in microvascular dysfunction associated with aging. We use a three-dimensional in vitro hydrogel model to assess the effects of both age and metformin, an anti-aging therapeutic, on macrophage interactions with microvasculature. Metformin's broad cellular impact is a subject of significant interest, yet its precise mechanisms remain unclear. Our research reveals that metformin treatment enhances genetic pathways associated with macrophage-mediated support of angiogenesis, resulting in increased microvessel density. Of importance, monocyte chemoattractant protein-1 expression is upregulated with metformin treatment and positively correlated with microvascular volume, shedding light on a potential mechanism for metformin's promotion of macrophage support of vasculogenesis. This work not only uncovers metformin's impact on human macrophages but also supports its potential as an antiaging therapeutic, offering new avenues for combating age-related diseases.

全球人口正在迅速老龄化,给医疗保健系统带来了前所未有的挑战。本研究探讨了巨噬细胞在与衰老相关的微血管功能障碍中经常被忽视的作用。我们采用三维体外水凝胶模型来评估年龄和二甲双胍(一种抗衰老治疗药物)对巨噬细胞与微血管相互作用的影响。二甲双胍对细胞的广泛影响备受关注,但其确切机制仍不清楚。我们的研究发现,二甲双胍治疗可增强与巨噬细胞介导的血管生成支持相关的遗传途径,从而导致微血管密度增加。重要的是,二甲双胍治疗后,MCP-1表达上调,并与微血管体积呈正相关,这揭示了二甲双胍促进巨噬细胞血管生成的潜在机制。这项工作不仅揭示了二甲双胍对人类巨噬细胞的影响,还支持了二甲双胍作为抗衰老疗法的潜力,为防治老年相关疾病提供了新的途径。
{"title":"Metformin Treatment of Macrophages Increases Microvessel Growth in Three-Dimensional Hydrogel Coculture.","authors":"Justin Silberman, Michael Olagbiyan, Erika Moore","doi":"10.1089/ten.TEA.2023.0327","DOIUrl":"10.1089/ten.TEA.2023.0327","url":null,"abstract":"<p><p>The global population is aging rapidly, posing unprecedented challenges to health care systems. This study investigates the often-overlooked role of macrophages in microvascular dysfunction associated with aging. We use a three-dimensional <i>in vitro</i> hydrogel model to assess the effects of both age and metformin, an anti-aging therapeutic, on macrophage interactions with microvasculature. Metformin's broad cellular impact is a subject of significant interest, yet its precise mechanisms remain unclear. Our research reveals that metformin treatment enhances genetic pathways associated with macrophage-mediated support of angiogenesis, resulting in increased microvessel density. Of importance, monocyte chemoattractant protein-1 expression is upregulated with metformin treatment and positively correlated with microvascular volume, shedding light on a potential mechanism for metformin's promotion of macrophage support of vasculogenesis. This work not only uncovers metformin's impact on human macrophages but also supports its potential as an antiaging therapeutic, offering new avenues for combating age-related diseases.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139673757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rat Tracheal Cartilage Regeneration Using Mesenchymal Stem Cells Derived From Human iPS Cells. 利用源自人类 iPS 细胞的间充质干细胞再生大鼠气管软骨。
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-07-29 DOI: 10.1089/ten.TEA.2024.0151
Keisuke Mizuno, Hiroe Ohnishi, Yo Kishimoto, Tsuyoshi Kojima, Shintaro Fujimura, Yoshitaka Kawai, Masayuki Kitano, Makoto Ikeya, Koichi Omori

Tracheal cartilage provides structural support to the airways to enable breathing. However, it can become damaged or impaired, sometimes requiring surgical resection and reconstruction. Previously, we clinically applied an artificial trachea composed of a polypropylene mesh and collagen sponge, with a favorable postoperative course. However, the artificial trachea presents a limitation, as the mesh is not biodegradable and cannot be used in pediatric patients. Compared to a polypropylene mesh, regenerated cartilage represents an ideal material for reconstruction of the damaged trachea. The use of mesenchymal stem cells (MSCs) as a source for cartilage regeneration has gained widespread acceptance, but challenges such as the invasiveness of harvesting and limited cell supply persist. Therefore, we focused on the potential of human-induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) for tracheal cartilage regeneration. In this study, we aimed to regenerate tracheal cartilage on an artificial trachea as a preliminary step to replace the polypropylene mesh. iMSCs were induced from hiPSCs through neural crest cells and transplanted with a polypropylene mesh covered with a collagen sponge into the damaged tracheal cartilage in immunodeficient rats. Human nuclear antigen (HNA)-positive cells were observed in all six rats at 4 weeks and in six out of seven rats at 12 weeks after transplantation, indicating that transplanted iMSCs survived within the tracheal cartilage defects of rats. The HNA-positive cells coexpressed SOX9, and type II collagen was detected around HNA-positive cells in four of six rats at 4 weeks and in three of seven rats at 12 weeks after transplantation, reflecting cartilage-like tissue regeneration. These results indicate that the transplanted iMSCs could differentiate into chondrogenic cells and promote tracheal cartilage regeneration. iMSC transplantation thus represents a promising approach for human tracheal reconstruction.

气管软骨为呼吸道提供结构性支撑,从而实现呼吸。然而,气管软骨也可能受损或受损,有时需要进行手术切除和重建。此前,我们在临床上应用了由聚丙烯网和胶原海绵组成的人工气管,术后效果良好。然而,这种人工气管有其局限性,因为网片不可生物降解,不能用于儿童患者。与聚丙烯网片相比,再生软骨是重建受损气管的理想材料。间充质干细胞(MSCs)作为软骨再生的来源已被广泛接受,但仍存在一些挑战,如采集时的侵入性和细胞供应有限。因此,我们重点研究了人类诱导多能干细胞(hiPSC)衍生的间充质干细胞(iMSCs)用于气管软骨再生的潜力。在这项研究中,我们的目的是在人工气管上再生气管软骨,作为替代聚丙烯网的第一步。通过神经嵴细胞诱导出 hiPSCs,并将覆盖有胶原海绵的聚丙烯网移植到免疫缺陷大鼠受损的气管软骨上。移植后 4 周,在所有 6 只大鼠体内都观察到了人类核抗原(HNA)阳性细胞;移植后 12 周,在 7 只大鼠中的 6 只体内观察到了人类核抗原(HNA)阳性细胞,表明移植的 iMSCs 在大鼠气管软骨缺损处存活。移植后 4 周,6 只大鼠中有 4 只的 HNA 阳性细胞共同表达 SOX9,移植后 12 周,7 只大鼠中有 3 只的 HNA 阳性细胞周围检测到 II 型胶原蛋白,这反映了软骨样组织再生。这些结果表明,移植的 iMSCs 可分化为软骨细胞,促进气管软骨再生。
{"title":"Rat Tracheal Cartilage Regeneration Using Mesenchymal Stem Cells Derived From Human iPS Cells.","authors":"Keisuke Mizuno, Hiroe Ohnishi, Yo Kishimoto, Tsuyoshi Kojima, Shintaro Fujimura, Yoshitaka Kawai, Masayuki Kitano, Makoto Ikeya, Koichi Omori","doi":"10.1089/ten.TEA.2024.0151","DOIUrl":"10.1089/ten.TEA.2024.0151","url":null,"abstract":"<p><p>Tracheal cartilage provides structural support to the airways to enable breathing. However, it can become damaged or impaired, sometimes requiring surgical resection and reconstruction. Previously, we clinically applied an artificial trachea composed of a polypropylene mesh and collagen sponge, with a favorable postoperative course. However, the artificial trachea presents a limitation, as the mesh is not biodegradable and cannot be used in pediatric patients. Compared to a polypropylene mesh, regenerated cartilage represents an ideal material for reconstruction of the damaged trachea. The use of mesenchymal stem cells (MSCs) as a source for cartilage regeneration has gained widespread acceptance, but challenges such as the invasiveness of harvesting and limited cell supply persist. Therefore, we focused on the potential of human-induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) for tracheal cartilage regeneration. In this study, we aimed to regenerate tracheal cartilage on an artificial trachea as a preliminary step to replace the polypropylene mesh. iMSCs were induced from hiPSCs through neural crest cells and transplanted with a polypropylene mesh covered with a collagen sponge into the damaged tracheal cartilage in immunodeficient rats. Human nuclear antigen (HNA)-positive cells were observed in all six rats at 4 weeks and in six out of seven rats at 12 weeks after transplantation, indicating that transplanted iMSCs survived within the tracheal cartilage defects of rats. The HNA-positive cells coexpressed SOX9, and type II collagen was detected around HNA-positive cells in four of six rats at 4 weeks and in three of seven rats at 12 weeks after transplantation, reflecting cartilage-like tissue regeneration. These results indicate that the transplanted iMSCs could differentiate into chondrogenic cells and promote tracheal cartilage regeneration. iMSC transplantation thus represents a promising approach for human tracheal reconstruction.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Passaging Primary Skeletal Muscle Cell Isolates on the Engineering of Skeletal Muscle. 原代骨骼肌细胞离体传代对骨骼肌工程学的影响
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-07-18 DOI: 10.1089/ten.TEA.2024.0044
Olga M Wroblewski, Christopher S Kennedy, Emmanuel E Vega-Soto, Celeste E Forester, Eileen Y Su, Matthew H Nguyen, Paul S Cederna, Lisa M Larkin

Volumetric muscle loss (VML) is a clinical state that results in impaired skeletal muscle function. Engineered skeletal muscle can serve as a treatment for VML. Currently, large biopsies are required to achieve the cells necessary for the fabrication of engineered muscle, leading to donor-site morbidity. Amplification of cell numbers using cell passaging may increase the usefulness of a single muscle biopsy for engineering muscle tissue. In this study, we evaluated the impact of passaging cells obtained from donor muscle tissue by analyzing characteristics of in vitro cellular growth and tissue-engineered skeletal muscle unit (SMU) structure and function. Human skeletal muscle cell isolates from three separate donors (P0-Control) were compared with cells passaged once (P1), twice (P2), or three times (P3) by monitoring SMU force production and determining muscle content and structure using immunohistochemistry. Data indicated that passaging decreased the number of satellite cells and increased the population doubling time. P1 SMUs had slightly greater contractile force and P2 SMUs showed statistically significant greater force production compared with P0 SMUs with no change in SMU muscle content. In conclusion, human skeletal muscle cells can be passaged twice without negatively impacting SMU muscle content or contractile function, providing the opportunity to potentially create larger SMUs from smaller biopsies, thereby producing clinically relevant sized grafts to aid in VML repair.

肌肉体积损失(VML)是一种导致骨骼肌功能受损的临床状态。工程骨骼肌可作为 VML 的治疗方法。目前,为了获得制造人造肌肉所需的细胞,需要进行大量活组织切片检查,这导致了供体部位的发病率。利用细胞传代来增加细胞数量可提高单次肌肉活检对工程肌肉组织的有用性。在这项研究中,我们通过分析体外细胞生长的特点以及组织工程骨骼肌单位(SMU)的结构和功能,评估了从供体肌肉组织中获得的细胞传代的影响。通过监测SMU的产力并使用免疫组化方法确定肌肉含量和结构,将来自三个不同供体的人类骨骼肌细胞分离物(P0-对照组)与传代一次(P1)、两次(P2)或三次(P3)的细胞进行比较。数据显示,传代减少了卫星细胞的数量,增加了细胞群的倍增时间。与 P0 SMU 相比,P1 SMU 的收缩力略大于 P0 SMU,而 P2 SMU 的收缩力显著大于 P0 SMU,但 SMU 的肌肉含量没有变化。总之,人类骨骼肌细胞可以进行两次传代,而不会对SMU肌肉含量或收缩功能产生负面影响,从而有可能从较小的活检组织中制造出更大的SMU,从而生产出临床相关大小的移植物来帮助VML修复。
{"title":"Impact of Passaging Primary Skeletal Muscle Cell Isolates on the Engineering of Skeletal Muscle.","authors":"Olga M Wroblewski, Christopher S Kennedy, Emmanuel E Vega-Soto, Celeste E Forester, Eileen Y Su, Matthew H Nguyen, Paul S Cederna, Lisa M Larkin","doi":"10.1089/ten.TEA.2024.0044","DOIUrl":"10.1089/ten.TEA.2024.0044","url":null,"abstract":"<p><p>Volumetric muscle loss (VML) is a clinical state that results in impaired skeletal muscle function. Engineered skeletal muscle can serve as a treatment for VML. Currently, large biopsies are required to achieve the cells necessary for the fabrication of engineered muscle, leading to donor-site morbidity. Amplification of cell numbers using cell passaging may increase the usefulness of a single muscle biopsy for engineering muscle tissue. In this study, we evaluated the impact of passaging cells obtained from donor muscle tissue by analyzing characteristics of <i>in vitro</i> cellular growth and tissue-engineered skeletal muscle unit (SMU) structure and function. Human skeletal muscle cell isolates from three separate donors (P0-Control) were compared with cells passaged once (P1), twice (P2), or three times (P3) by monitoring SMU force production and determining muscle content and structure using immunohistochemistry. Data indicated that passaging decreased the number of satellite cells and increased the population doubling time. P1 SMUs had slightly greater contractile force and P2 SMUs showed statistically significant greater force production compared with P0 SMUs with no change in SMU muscle content. In conclusion, human skeletal muscle cells can be passaged twice without negatively impacting SMU muscle content or contractile function, providing the opportunity to potentially create larger SMUs from smaller biopsies, thereby producing clinically relevant sized grafts to aid in VML repair.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality Assessment by Bile Composition in Normothermic Machine Perfusion of Rat Livers. 通过常温机器灌流大鼠肝脏中的胆汁成分评估质量。
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-07-03 DOI: 10.1089/ten.TEA.2024.0048
Vanessa Muth, Felix Stobl, Julian Michelotto, Linda Gilles, Jennifer A Kirwan, Alina Eisenberger, Jeremy Marchand, Nathalie N Roschke, Simon Moosburner, Johann Pratschke, Igor M Sauer, Nathanael Raschzok, Joseph Mgv Gassner

Background: The persistent challenge of organ scarcity in liver transplantation leads to an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) is used for improved preservation. Due to the mimicked in vivo conditions during normothermic machine perfusion, the liver is metabolically active, which allows quality assessment during perfusion. Bile seems to be of rising interest in clinical studies, as it is easily collectible for analysis. As there are currently no data on biliary bile acids during NMP, the primary objective of this study was to use our experimental rodent NMP model to assess changes in bile composition through organ damage during perfusion to inform clinical evaluation of donor organs during NMP. Methods: Thirty livers from male Sprague-Dawley rats in five groups underwent 6 h of NMP using either erythrocyte-supplemented DMEM or Steen solution, with or without 30 min of warm ischemia time (WIT). We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at 3-hour intervals. Bile samples were analyzed for biliary pH, LDH, and gamma glutamyltransferase, as well as biliary bile acids via mass spectrometry and UHPLC. Results: Compared with regular livers, liver injury parameters were significantly higher in our donation after circulatory death (DCD) model. Bile production was significantly reduced in livers exposed to WIT, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers experiencing WIT. However, regular livers produced a higher total amount of biliary bile acids during perfusion. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced during perfusion due to the missing enterohepatic circulation. Conclusions: WIT-induced liver injury affects bile composition within our small-animal NMP model. We hypothesize this phenomenon to be attributed to the energy-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile. Our results may inform clinical studies, in which biliary bile acids might have a potential as a quantifiable viability marker in human NMP liver transplantation studies.

背景:肝脏移植手术中器官稀缺是一个长期存在的挑战,这导致人们越来越依赖于从扩展标准捐献者(ECD)处获得的器官。常温机器灌注(NMP)用于改善器官保存。在常温机器灌注过程中,由于模拟了体内条件,肝脏新陈代谢活跃,因此可以在灌注过程中进行质量评估。在临床研究中,胆汁似乎越来越受到关注,因为胆汁很容易收集进行分析。方法:30 只雄性 Sprague Dawley 大鼠的肝脏分成 5 组,使用红细胞补充 DMEM 或 Steen 溶液进行 6 小时的 NMP,同时进行或不进行 30 分钟的热缺血时间(WIT)。我们每隔三小时定期测量灌注液中的 AST、ALT、LDH 和尿素水平。胆汁样本通过质谱法和超高效液相色谱法分析胆汁pH值、LDH和GGT以及胆汁酸:结果:与普通肝脏相比,循环死亡(DCD)后捐献模型的肝损伤参数明显升高。暴露于 WIT 的肝脏胆汁分泌明显减少,胆汁 pH 值明显偏碱性。这与总胆汁酸的浓度有关,在经历 WIT 的肝脏中,总胆汁酸的浓度明显更高。然而,正常肝脏在灌注过程中产生的胆汁酸总量更高。其中以牛胆酸及其代谢产物最为突出。由于肠肝循环缺失,次级胆汁酸在灌注过程中明显减少:结论:在我们的小动物 NMP 模型中,WIT 诱导的肝损伤会影响胆汁成分。我们推测这一现象是由于胆汁分泌的能量驱动性质造成的,这可能解释了为什么 DCD 肝脏产生的胆汁较少,但浓度更高。我们的研究结果可为临床研究提供参考,胆汁中的胆汁酸有可能成为人类 NMP 肝移植研究中可量化的存活标志物。
{"title":"Quality Assessment by Bile Composition in Normothermic Machine Perfusion of Rat Livers.","authors":"Vanessa Muth, Felix Stobl, Julian Michelotto, Linda Gilles, Jennifer A Kirwan, Alina Eisenberger, Jeremy Marchand, Nathalie N Roschke, Simon Moosburner, Johann Pratschke, Igor M Sauer, Nathanael Raschzok, Joseph Mgv Gassner","doi":"10.1089/ten.TEA.2024.0048","DOIUrl":"10.1089/ten.TEA.2024.0048","url":null,"abstract":"<p><p><b><i>Background:</i></b> The persistent challenge of organ scarcity in liver transplantation leads to an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) is used for improved preservation. Due to the mimicked <i>in vivo</i> conditions during normothermic machine perfusion, the liver is metabolically active, which allows quality assessment during perfusion. Bile seems to be of rising interest in clinical studies, as it is easily collectible for analysis. As there are currently no data on biliary bile acids during NMP, the primary objective of this study was to use our experimental rodent NMP model to assess changes in bile composition through organ damage during perfusion to inform clinical evaluation of donor organs during NMP. <b><i>Methods:</i></b> Thirty livers from male Sprague-Dawley rats in five groups underwent 6 h of NMP using either erythrocyte-supplemented DMEM or Steen solution, with or without 30 min of warm ischemia time (WIT). We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at 3-hour intervals. Bile samples were analyzed for biliary pH, LDH, and gamma glutamyltransferase, as well as biliary bile acids via mass spectrometry and UHPLC. <b><i>Results:</i></b> Compared with regular livers, liver injury parameters were significantly higher in our donation after circulatory death (DCD) model. Bile production was significantly reduced in livers exposed to WIT, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers experiencing WIT. However, regular livers produced a higher total amount of biliary bile acids during perfusion. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced during perfusion due to the missing enterohepatic circulation. <b><i>Conclusions:</i></b> WIT-induced liver injury affects bile composition within our small-animal NMP model. We hypothesize this phenomenon to be attributed to the energy-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile. Our results may inform clinical studies, in which biliary bile acids might have a potential as a quantifiable viability marker in human NMP liver transplantation studies.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine. 生物打印:再生医学中的机械稳定和加固策略。
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-07-01 Epub Date: 2024-02-09 DOI: 10.1089/ten.TEA.2023.0239
Ashleigh Ballard, Rebecca Patush, Jenesis Perez, Carmen Juarez, Alina Kirillova

Bioprinting describes the printing of biomaterials and cell-laden or cell-free hydrogels with various combinations of embedded bioactive molecules. It encompasses the precise patterning of biomaterials and cells to create scaffolds for different biomedical needs. There are many requirements that bioprinting scaffolds face, and it is ultimately the interplay between the scaffold's structure, properties, processing, and performance that will lead to its successful translation. Among the essential properties that the scaffolds must possess-adequate and appropriate application-specific chemical, mechanical, and biological performance-the mechanical behavior of hydrogel-based bioprinted scaffolds is the key to their stable performance in vivo at the site of implantation. Hydrogels that typically constitute the main scaffold material and the medium for the cells and biomolecules are very soft, and often lack sufficient mechanical stability, which reduces their printability and, therefore, the bioprinting potential. The aim of this review article is to highlight the reinforcement strategies that are used in different bioprinting approaches to achieve enhanced mechanical stability of the bioinks and the printed scaffolds. Enabling stable and robust materials for the bioprinting processes will lead to the creation of truly complex and remarkable printed structures that could accelerate the application of smart, functional scaffolds in biomedical settings. Impact statement Bioprinting is a powerful tool for the fabrication of 3D structures and scaffolds for biomedical applications. It has gained tremendous attention in recent years, and the bioink library is expanding to include more and more material combinations. From the practical application perspective, different properties need to be considered, such as the printed structure's chemical, mechanical, and biological performances. Among these, the mechanical behavior of the printed constructs is critical for their successful translation into the clinic. The aim of this review article is to explore the different reinforcement strategies used for the mechanical stabilization of bioinks and bioprinted structures.

生物打印描述的是生物材料和含有或不含细胞的水凝胶与嵌入的生物活性分子的各种组合的打印。它包括对生物材料和细胞进行精确图案化,以创建满足不同生物医学需求的支架。生物打印支架面临许多要求,而支架的结构、特性、加工和性能之间的相互作用最终将导致其成功转化。在支架必须具备的基本特性--充分和适当的特定应用化学、机械和生物性能中,基于水凝胶的生物打印支架的机械性能是其在植入部位的体内性能是否稳定的关键。水凝胶是典型的主要支架材料,也是细胞和生物分子的介质,但水凝胶非常柔软,通常缺乏足够的机械稳定性,这降低了其可印刷性,从而降低了生物打印的潜力。本综述旨在强调不同生物打印方法中使用的加固策略,以增强生物墨水和打印支架的机械稳定性。在生物打印过程中使用稳定而坚固的材料将有助于创造出真正复杂而卓越的打印结构,从而加快智能功能支架在生物医学领域的应用。
{"title":"Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine.","authors":"Ashleigh Ballard, Rebecca Patush, Jenesis Perez, Carmen Juarez, Alina Kirillova","doi":"10.1089/ten.TEA.2023.0239","DOIUrl":"10.1089/ten.TEA.2023.0239","url":null,"abstract":"<p><p>Bioprinting describes the printing of biomaterials and cell-laden or cell-free hydrogels with various combinations of embedded bioactive molecules. It encompasses the precise patterning of biomaterials and cells to create scaffolds for different biomedical needs. There are many requirements that bioprinting scaffolds face, and it is ultimately the interplay between the scaffold's structure, properties, processing, and performance that will lead to its successful translation. Among the essential properties that the scaffolds must possess-adequate and appropriate application-specific chemical, mechanical, and biological performance-the mechanical behavior of hydrogel-based bioprinted scaffolds is the key to their stable performance <i>in vivo</i> at the site of implantation. Hydrogels that typically constitute the main scaffold material and the medium for the cells and biomolecules are very soft, and often lack sufficient mechanical stability, which reduces their printability and, therefore, the bioprinting potential. The aim of this review article is to highlight the reinforcement strategies that are used in different bioprinting approaches to achieve enhanced mechanical stability of the bioinks and the printed scaffolds. Enabling stable and robust materials for the bioprinting processes will lead to the creation of truly complex and remarkable printed structures that could accelerate the application of smart, functional scaffolds in biomedical settings. Impact statement Bioprinting is a powerful tool for the fabrication of 3D structures and scaffolds for biomedical applications. It has gained tremendous attention in recent years, and the bioink library is expanding to include more and more material combinations. From the practical application perspective, different properties need to be considered, such as the printed structure's chemical, mechanical, and biological performances. Among these, the mechanical behavior of the printed constructs is critical for their successful translation into the clinic. The aim of this review article is to explore the different reinforcement strategies used for the mechanical stabilization of bioinks and bioprinted structures.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart Design for Hybrid Bioprinting of Scalable and Viable Tissue Constructs. 可伸缩和可存活组织结构的混合生物打印的智能设计。
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-07-01 Epub Date: 2023-11-29 DOI: 10.1089/ten.TEA.2023.0188
Niji Nandakumar, Subramania Iyyer, Thadi Mohan, Shantikumar V Nair, Binulal N Sathy

Hybrid bioprinting uses sequential printing of melt-extruded biodegradable thermoplastic polymer and cell-encapsulated bioink in a predesigned manner using high- and low-temperature print heads for the fabrication of robust three-dimensional (3D) biological constructs. However, the high-temperature print head and melt-extruded polymer cause irreversible thermal damage to the bioprinted cells, and it affects viability and functionality of 3D bioprinted biological constructs. Thus, there is an urgent need to develop innovative approaches to protect the bioprinted cells, coming into contact or at close proximities to the melt-extruded thermoplastic polymer and the high-temperature print head during hybrid bioprinting. Therefore, this study investigated the potential of iterating the structural architecture pattern (SAP) of melt-printed thermoplastic layers and the cell printing pattern (CPP) to protect the cells from temperature-associated damage during hybrid bioprinting. A novel SAP for printing the thermoplastic polymer and an associated CPP for minimizing thermal damage to the 3D bioprinted construct have been developed. The newly developed SAP- and CPP-based hybrid bioprinted biological constructs showed significantly low thermal damage compared to conventionally hybrid bioprinted biological constructs. The results from this study suggest that the newly developed SAP and CPP can be an improved hybrid bioprinting strategy for developing living constructs at the human scale.

混合生物打印使用熔融挤出的可生物降解热塑性聚合物和细胞包封的生物墨水,以预先设计的方式使用高温和低温打印头进行顺序打印,以制造坚固的三维(3D)生物结构。然而,高温打印头和熔融挤出的聚合物会对生物打印的细胞造成不可逆的热损伤,并影响3D生物打印生物构建体的生存能力和功能。因此,迫切需要开发创新的方法来保护生物打印的细胞,这些细胞在混合生物打印过程中接触或接近熔融挤出的热塑性聚合物和高温打印头。因此,本研究调查了在混合生物打印过程中,重复熔融打印热塑性层的结构架构模式(SAP)和细胞打印模式(CPP)以保护细胞免受温度相关损伤的潜力。已经开发了一种用于打印热塑性聚合物的新型SAP和用于最小化对3D生物打印结构的热损伤的相关CPP。与传统的混合生物打印生物构建体相比,新开发的基于SAP和CPP的混合生物印刷生物构建体显示出显著低的热损伤。这项研究的结果表明,新开发的SAP和CPP可以成为一种改进的混合生物打印策略,用于在人类规模上开发活体结构。
{"title":"Smart Design for Hybrid Bioprinting of Scalable and Viable Tissue Constructs.","authors":"Niji Nandakumar, Subramania Iyyer, Thadi Mohan, Shantikumar V Nair, Binulal N Sathy","doi":"10.1089/ten.TEA.2023.0188","DOIUrl":"10.1089/ten.TEA.2023.0188","url":null,"abstract":"<p><p>Hybrid bioprinting uses sequential printing of melt-extruded biodegradable thermoplastic polymer and cell-encapsulated bioink in a predesigned manner using high- and low-temperature print heads for the fabrication of robust three-dimensional (3D) biological constructs. However, the high-temperature print head and melt-extruded polymer cause irreversible thermal damage to the bioprinted cells, and it affects viability and functionality of 3D bioprinted biological constructs. Thus, there is an urgent need to develop innovative approaches to protect the bioprinted cells, coming into contact or at close proximities to the melt-extruded thermoplastic polymer and the high-temperature print head during hybrid bioprinting. Therefore, this study investigated the potential of iterating the structural architecture pattern (SAP) of melt-printed thermoplastic layers and the cell printing pattern (CPP) to protect the cells from temperature-associated damage during hybrid bioprinting. A novel SAP for printing the thermoplastic polymer and an associated CPP for minimizing thermal damage to the 3D bioprinted construct have been developed. The newly developed SAP- and CPP-based hybrid bioprinted biological constructs showed significantly low thermal damage compared to conventionally hybrid bioprinted biological constructs. The results from this study suggest that the newly developed SAP and CPP can be an improved hybrid bioprinting strategy for developing living constructs at the human scale.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71489481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tissue Engineering Part A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1