首页 > 最新文献

Tissue Engineering Part A最新文献

英文 中文
Code-Free Machine Learning Solutions for Microscopy Image Processing: Deep Learning. 显微图像处理的无代码机器学习解决方案:深度学习。
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-15 DOI: 10.1089/ten.TEA.2024.0014
Elizaveta Chechekhina, Nikita Voloshin, Konstantin Kulebyakin, Pyotr Tyurin-Kuzmin

In recent years, there has been a significant expansion in the realm of processing microscopy images, thanks to the advent of machine learning techniques. These techniques offer diverse applications for image processing. Currently, numerous methods are used for processing microscopy images in the field of biology, ranging from conventional machine learning algorithms to sophisticated deep learning artificial neural networks with millions of parameters. However, a comprehensive grasp of the intricacies of these methods usually necessitates proficiency in programming and advanced mathematics. In our comprehensive review, we explore various widely used deep learning approaches tailored for the processing of microscopy images. Our emphasis is on algorithms that have gained popularity in the field of biology and have been adapted to cater to users lacking programming expertise. In essence, our target audience comprises biologists interested in exploring the potential of deep learning algorithms, even without programming skills. Throughout the review, we elucidate each algorithm's fundamental concepts and capabilities without delving into mathematical and programming complexities. Crucially, all the highlighted algorithms are accessible on open platforms without requiring code, and we provide detailed descriptions and links within our review. It's essential to recognize that addressing each specific problem demands an individualized approach. Consequently, our focus is not on comparing algorithms but on delineating the problems they are adept at solving. In practical scenarios, researchers typically select multiple algorithms suited to their tasks and experimentally determine the most effective one. It is worth noting that microscopy extends beyond the realm of biology; its applications span diverse fields such as geology and material science. Although our review predominantly centers on biomedical applications, the algorithms and principles outlined here are equally applicable to other scientific domains. Furthermore, a number of the proposed solutions can be modified for use in entirely distinct computer vision cases.

近年来,由于机器学习技术的出现,显微图像处理领域有了显著的发展。这些技术为图像处理提供了多种应用。目前,生物学领域采用了许多方法来处理显微图像,从传统的机器学习算法到拥有数百万参数的复杂深度学习人工神经网络,不一而足。然而,要全面掌握这些方法的复杂性,通常需要精通编程和高等数学。在我们的综合综述中,我们探讨了各种广泛使用的深度学习方法,这些方法都是为显微图像处理量身定制的。我们的重点是在生物学领域广受欢迎的算法,这些算法已经过调整,以满足缺乏编程专业知识的用户的需求。从本质上讲,我们的目标受众包括有兴趣探索深度学习算法潜力的生物学家,即使他们不具备编程技能。在整篇综述中,我们阐明了每种算法的基本概念和功能,而没有深入探讨数学和编程的复杂性。最重要的是,所有重点介绍的算法都可以在开放平台上访问,无需代码,我们在综述中提供了详细的说明和链接。必须认识到,解决每个具体问题都需要个性化的方法。因此,我们的重点不在于比较算法,而在于划分它们擅长解决的问题。在实际应用中,研究人员通常会选择多种适合其任务的算法,并通过实验确定最有效的算法。值得注意的是,显微镜技术已超越了生物学领域,其应用横跨地质学和材料科学等多个领域。虽然我们的综述主要以生物医学应用为中心,但这里概述的算法和原理同样适用于其他科学领域。此外,许多建议的解决方案都可以进行修改,以用于完全不同的计算机视觉案例。
{"title":"Code-Free Machine Learning Solutions for Microscopy Image Processing: Deep Learning.","authors":"Elizaveta Chechekhina, Nikita Voloshin, Konstantin Kulebyakin, Pyotr Tyurin-Kuzmin","doi":"10.1089/ten.TEA.2024.0014","DOIUrl":"10.1089/ten.TEA.2024.0014","url":null,"abstract":"<p><p>In recent years, there has been a significant expansion in the realm of processing microscopy images, thanks to the advent of machine learning techniques. These techniques offer diverse applications for image processing. Currently, numerous methods are used for processing microscopy images in the field of biology, ranging from conventional machine learning algorithms to sophisticated deep learning artificial neural networks with millions of parameters. However, a comprehensive grasp of the intricacies of these methods usually necessitates proficiency in programming and advanced mathematics. In our comprehensive review, we explore various widely used deep learning approaches tailored for the processing of microscopy images. Our emphasis is on algorithms that have gained popularity in the field of biology and have been adapted to cater to users lacking programming expertise. In essence, our target audience comprises biologists interested in exploring the potential of deep learning algorithms, even without programming skills. Throughout the review, we elucidate each algorithm's fundamental concepts and capabilities without delving into mathematical and programming complexities. Crucially, all the highlighted algorithms are accessible on open platforms without requiring code, and we provide detailed descriptions and links within our review. It's essential to recognize that addressing each specific problem demands an individualized approach. Consequently, our focus is not on comparing algorithms but on delineating the problems they are adept at solving. In practical scenarios, researchers typically select multiple algorithms suited to their tasks and experimentally determine the most effective one. It is worth noting that microscopy extends beyond the realm of biology; its applications span diverse fields such as geology and material science. Although our review predominantly centers on biomedical applications, the algorithms and principles outlined here are equally applicable to other scientific domains. Furthermore, a number of the proposed solutions can be modified for use in entirely distinct computer vision cases.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting of a Liposomal Oxygen-Releasing Scaffold for Ovary Tissue Engineering. 用于卵巢组织工程的脂质体释氧支架的生物打印。
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-12 DOI: 10.1089/ten.TEA.2024.0003
Arezoo Dadashzadeh, Saeid Moghassemi, Christiani A Amorim

This study addresses a critical challenge in bioprinting for regenerative medicine, specifically the issue of hypoxia compromising cell viability in engineered tissues. To overcome this hurdle, a novel approach using a microfluidic bioprinter is used to create a two-layer structure resembling the human ovary. This structure incorporates a liposomal oxygen-releasing system to enhance cell viability. The bioprinting technique enables the simultaneous extrusion of two distinct bioinks, namely, bioink A (comprising alginate 1% and 5 mg/mL PEGylated fibrinogen in a 20:1 molar ratio) and bioink B (containing alginate 0.5%). In addition, liposomal catalase and hydrogen peroxide (H2O2) are synthesized and incorporated into bioinks A and B, respectively. The liposomes are prepared using thin film hydration with a monodisperse size (140-160 nm) and high encapsulation efficiency. To assess construct functionality, isolated human ovarian cells are added to bioink A. The bioprinted constructs, with or without liposomal oxygen-releasing systems, are cultured under hypoxic and normoxic conditions for 3 days. Live/Dead assay results demonstrate that liposomal oxygen-releasing systems effectively preserve cell viability in hypoxic conditions, resembling viability under normoxic conditions without liposomes. PrestoBlue assay reveals significantly higher mitochondrial activity in constructs with liposomal oxygen delivery systems under both hypoxic and normoxic conditions. The evaluation of apoptosis status through annexin V immunostaining shows that liposomal oxygen-releasing scaffolds successfully protect cells from hypoxic stress, exhibiting a proportion of apoptotic cells similar to normoxic conditions. In contrast, constructs lacking liposomes in hypoxic conditions exhibit a higher incidence of cells in early-stage apoptosis. In conclusion, the study demonstrates the promising potential of bioprinted oxygen-releasing liposomal scaffolds to protect ovarian stromal cells in hypoxic environments. These innovative scaffolds not only offer protection but also recapitulate the mechanical differences between the medulla and the cortex in the normal ovary structure. This opens new avenues for advanced ovary tissue engineering and transplantation strategies.

这项研究解决了再生医学生物打印中的一个关键难题,特别是缺氧影响工程组织中细胞活力的问题。为了克服这一障碍,我们采用了一种新颖的方法,利用微流体生物打印机制造出类似人类卵巢的双层结构。这种结构结合了脂质体氧气释放系统,以提高细胞活力。生物打印技术可同时挤出两种不同的生物墨水,即生物墨水 A(由 1%的海藻酸盐和 5mg/ml PEG 化纤维蛋白原组成,摩尔比为 20:1)和生物墨水 B(含 0.5%的海藻酸盐)。此外,还合成了脂质体过氧化氢酶和 H2O2,并分别加入生物墨水 A 和 B 中。脂质体采用薄膜水合法制备,具有单分散尺寸(140-160 nm)和高封装效率。为了评估构建体的功能,在生物墨水 A 中加入了分离的人类卵巢细胞。在缺氧和正常缺氧条件下,将含有或不含脂质体释氧系统的生物打印构建体培养 3 天。活/死检测结果表明,脂质体释氧系统能有效保持细胞在缺氧条件下的活力,与不含脂质体的常氧条件下的活力相似。PrestoBlue 检测显示,在缺氧和常氧条件下,带有脂质体氧释放系统的构建体的线粒体活性都明显较高。通过附件素 V 免疫染色对细胞凋亡状态的评估表明,脂质体氧释放支架成功地保护了细胞免受缺氧应激,其凋亡细胞的比例与正常缺氧条件下相似。与此相反,缺氧条件下缺乏脂质体的构建体显示出更高的细胞早期凋亡发生率。总之,这项研究证明了生物打印氧释放脂质体支架在缺氧环境中保护卵巢基质细胞的巨大潜力。这些创新型支架不仅能提供保护,还能再现正常卵巢结构中髓质和皮质之间的机械差异。这为先进的卵巢组织工程和移植策略开辟了新途径。
{"title":"Bioprinting of a Liposomal Oxygen-Releasing Scaffold for Ovary Tissue Engineering.","authors":"Arezoo Dadashzadeh, Saeid Moghassemi, Christiani A Amorim","doi":"10.1089/ten.TEA.2024.0003","DOIUrl":"10.1089/ten.TEA.2024.0003","url":null,"abstract":"<p><p>This study addresses a critical challenge in bioprinting for regenerative medicine, specifically the issue of hypoxia compromising cell viability in engineered tissues. To overcome this hurdle, a novel approach using a microfluidic bioprinter is used to create a two-layer structure resembling the human ovary. This structure incorporates a liposomal oxygen-releasing system to enhance cell viability. The bioprinting technique enables the simultaneous extrusion of two distinct bioinks, namely, bioink A (comprising alginate 1% and 5 mg/mL PEGylated fibrinogen in a 20:1 molar ratio) and bioink B (containing alginate 0.5%). In addition, liposomal catalase and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) are synthesized and incorporated into bioinks A and B, respectively. The liposomes are prepared using thin film hydration with a monodisperse size (140-160 nm) and high encapsulation efficiency. To assess construct functionality, isolated human ovarian cells are added to bioink A. The bioprinted constructs, with or without liposomal oxygen-releasing systems, are cultured under hypoxic and normoxic conditions for 3 days. Live/Dead assay results demonstrate that liposomal oxygen-releasing systems effectively preserve cell viability in hypoxic conditions, resembling viability under normoxic conditions without liposomes. PrestoBlue assay reveals significantly higher mitochondrial activity in constructs with liposomal oxygen delivery systems under both hypoxic and normoxic conditions. The evaluation of apoptosis status through annexin V immunostaining shows that liposomal oxygen-releasing scaffolds successfully protect cells from hypoxic stress, exhibiting a proportion of apoptotic cells similar to normoxic conditions. In contrast, constructs lacking liposomes in hypoxic conditions exhibit a higher incidence of cells in early-stage apoptosis. In conclusion, the study demonstrates the promising potential of bioprinted oxygen-releasing liposomal scaffolds to protect ovarian stromal cells in hypoxic environments. These innovative scaffolds not only offer protection but also recapitulate the mechanical differences between the medulla and the cortex in the normal ovary structure. This opens new avenues for advanced ovary tissue engineering and transplantation strategies.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amino Acid Uptake Limitations during Human Mesenchymal Stem Cell-Based Chondrogenesis. 人体间充质干细胞软骨形成过程中的氨基酸摄取限制
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-12 DOI: 10.1089/ten.TEA.2024.0032
Yi Zhong, Bo Zhang, Rodrigo Somoza, Arnold I Caplan, Jean F Welter, Harihara Baskaran

A mino acids are the essential building blocks for collagen and proteoglycan, which are the main constituents for cartilage extracellular matrix (ECM). Synthesis of ECM proteins requires the uptake of various essential/nonessential amino acids. Analyzing amino acid metabolism during chondrogenesis can help to relate tissue quality to amino acid metabolism under different conditions. In our study, we studied amino acid uptake/secretion using human mesenchymal stem cell (hMSC)-based aggregate chondrogenesis in a serum-free induction medium with a defined chemical formulation. The initial glucose level and medium-change frequency were varied. Our results showed that essential amino acid uptake increased with time during hMSCs chondrogenesis for all initial glucose levels and medium-change frequencies. Essential amino acid uptake rates were initial glucose-level independent. The DNA-normalized glycosaminoglycans and hydroxyproline content of chondrogenic aggregates correlated with cumulative uptake of leucine, valine, and tryptophan regardless of initial glucose levels and medium-change frequencies. Collectively, our results show that amino acid uptake rates during in vitro chondrogenesis were insufficient to produce a tissue with an ECM content similar to that of human neonatal cartilage or adult cartilage. Furthermore, this deficiency was likely related to the downregulation of some key amino acid transporters in the cells. Such deficiency could be partially improved by increasing the amino acid availability in the chondrogenic medium by changing culture conditions.

氨基酸是构成软骨细胞外基质(ECM)的主要成分--胶原蛋白和蛋白多糖的基本成分。ECM 蛋白质的合成需要吸收各种必需/非必需氨基酸。分析软骨形成过程中的氨基酸代谢有助于将组织质量与不同条件下的氨基酸代谢联系起来。在我们的研究中,我们使用无血清诱导培养基和确定的化学配方研究了基于 hMSC 的聚合软骨形成过程中氨基酸的摄取/分泌。初始葡萄糖水平和培养基更换频率各不相同。我们的研究结果表明,在所有初始葡萄糖水平和培养基更换频率下,hMSCs软骨形成过程中必需氨基酸的摄取量都会随着时间的推移而增加。必需氨基酸吸收率与初始葡萄糖水平无关。无论初始葡萄糖水平和介质变化频率如何,软骨形成聚集体的 DNA 归一化 GAG 和 HYP 含量都与亮氨酸、缬氨酸和色氨酸的累积吸收相关。总之,我们的研究结果表明,体外软骨形成过程中氨基酸的吸收率不足以产生与新生软骨或成人软骨相似的 ECM 含量的组织。此外,这种不足可能与细胞中一些关键氨基酸转运体的下调有关。通过改变培养条件,增加软骨培养基中氨基酸的供应量,可以部分改善这种不足。
{"title":"Amino Acid Uptake Limitations during Human Mesenchymal Stem Cell-Based Chondrogenesis.","authors":"Yi Zhong, Bo Zhang, Rodrigo Somoza, Arnold I Caplan, Jean F Welter, Harihara Baskaran","doi":"10.1089/ten.TEA.2024.0032","DOIUrl":"10.1089/ten.TEA.2024.0032","url":null,"abstract":"<p><p>A mino acids are the essential building blocks for collagen and proteoglycan, which are the main constituents for cartilage extracellular matrix (ECM). Synthesis of ECM proteins requires the uptake of various essential/nonessential amino acids. Analyzing amino acid metabolism during chondrogenesis can help to relate tissue quality to amino acid metabolism under different conditions. In our study, we studied amino acid uptake/secretion using human mesenchymal stem cell (hMSC)-based aggregate chondrogenesis in a serum-free induction medium with a defined chemical formulation. The initial glucose level and medium-change frequency were varied. Our results showed that essential amino acid uptake increased with time during hMSCs chondrogenesis for all initial glucose levels and medium-change frequencies. Essential amino acid uptake rates were initial glucose-level independent. The DNA-normalized glycosaminoglycans and hydroxyproline content of chondrogenic aggregates correlated with cumulative uptake of leucine, valine, and tryptophan regardless of initial glucose levels and medium-change frequencies. Collectively, our results show that amino acid uptake rates during <i>in vitro</i> chondrogenesis were insufficient to produce a tissue with an ECM content similar to that of human neonatal cartilage or adult cartilage. Furthermore, this deficiency was likely related to the downregulation of some key amino acid transporters in the cells. Such deficiency could be partially improved by increasing the amino acid availability in the chondrogenic medium by changing culture conditions.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Negative Pressure Therapy on Hair Growth of Mouse Models. 负压疗法对小鼠模型毛发生长的影响
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-09 DOI: 10.1089/ten.TEA.2024.0056
Chun-Yu Cheng, Ming-Huei Cheng, Chin-Yu Yang, Cheng-Han Wang, Joshua Lim, Wei Huang, Chih-Hsin Lin

Negative pressure therapy (NPT) has been shown to facilitate wound healing and promote hair growth in a porcine model. However, there is a paucity of research on the impact of negative pressure on hair growth in murine models. Despite the ability of nude mice to develop hair follicles, the hair they produce is often flawed towing to genetically induced keratin disorders, rendering them a pertinent animal model for assessing hair regeneration. Therefore, this study aims to investigate the effects of negative pressure on hair follicle growth in a nude mouse model. To achieve this, a customized external tissue expansion device was developed to apply negative pressure to the dorsum of nude mice. The mice were subjected to several treatment courses consisting of 15 and 30 min of continuous negative pressure at 10 mmHg, which were repeated 5 and 10 times every other day until sacrifice. Dorsal skin samples were subsequently extracted from the suction and nonsuction areas. The sections were stained with various antibodies to assess the expression of SOX-9, LHX-2, Keratin-15, β-catenin, CD31, and vascular endothelial growth factor-A, and a TUNEL assay was used to analyze cell apoptosis. The results showed that the number of hair follicles and angiogenesis were significantly higher in the suction area than in the nonsuction area in all groups. Moreover, mice that received NPT for 15 min for 10 times had a higher hair follicle density than the other three groups. Immunofluorescence staining for LHX-2 and Keratin 15 further validated the results of these findings. In conclusion, this study demonstrated that negative pressure effectively promotes hair follicle growth and angiogenesis in nude mice through SOX-9- and LHX-2-mediated follicular regeneration and β-catenin-mediated hair follicle morphogenesis.

在猪模型中,负压疗法(NPT)已被证明可促进伤口愈合和毛发生长。然而,有关负压对小鼠模型毛发生长的影响的研究却很少。尽管裸鼠有发育毛囊的能力,但由于基因诱导的角蛋白紊乱,它们长出的毛发往往有缺陷,因此裸鼠是评估毛发再生的一个相关动物模型。因此,本研究旨在研究负压对裸鼠模型毛囊生长的影响。为此,我们开发了一种定制的体外组织扩张装置(ETED),用于在裸鼠背部施加负压。小鼠接受了几个疗程的治疗,包括 15 和 30 分钟 10 mmHg 的持续负压,每隔一天重复五次和十次,直至牺牲。随后从抽吸区和非抽吸区提取背侧皮肤样本。用各种抗体对切片进行染色,以评估 SOX-9、LHX-2、角蛋白-15、β-catenin、CD31 和 VEGF-A 的表达,并用 TUNEL 检测法分析细胞凋亡。结果表明,在所有组别中,抽吸区(SA)的毛囊数量和血管生成都明显高于非抽吸区(NSA)。此外,接受负压治疗 15 分钟 10 次的小鼠的毛囊密度高于其他三组。对 LHX-2 和角蛋白 15 的免疫荧光染色进一步验证了这些研究结果。总之,这项研究表明,负压通过 SOX-9 和 LHX-2 介导的毛囊再生以及 β-catenin 介导的毛囊形态发生,有效促进了裸鼠的毛囊生长和血管生成。.
{"title":"The Effects of Negative Pressure Therapy on Hair Growth of Mouse Models.","authors":"Chun-Yu Cheng, Ming-Huei Cheng, Chin-Yu Yang, Cheng-Han Wang, Joshua Lim, Wei Huang, Chih-Hsin Lin","doi":"10.1089/ten.TEA.2024.0056","DOIUrl":"10.1089/ten.TEA.2024.0056","url":null,"abstract":"<p><p>Negative pressure therapy (NPT) has been shown to facilitate wound healing and promote hair growth in a porcine model. However, there is a paucity of research on the impact of negative pressure on hair growth in murine models. Despite the ability of nude mice to develop hair follicles, the hair they produce is often flawed towing to genetically induced keratin disorders, rendering them a pertinent animal model for assessing hair regeneration. Therefore, this study aims to investigate the effects of negative pressure on hair follicle growth in a nude mouse model. To achieve this, a customized external tissue expansion device was developed to apply negative pressure to the dorsum of nude mice. The mice were subjected to several treatment courses consisting of 15 and 30 min of continuous negative pressure at 10 mmHg, which were repeated 5 and 10 times every other day until sacrifice. Dorsal skin samples were subsequently extracted from the suction and nonsuction areas. The sections were stained with various antibodies to assess the expression of SOX-9, LHX-2, Keratin-15, β-catenin, CD31, and vascular endothelial growth factor-A, and a TUNEL assay was used to analyze cell apoptosis. The results showed that the number of hair follicles and angiogenesis were significantly higher in the suction area than in the nonsuction area in all groups. Moreover, mice that received NPT for 15 min for 10 times had a higher hair follicle density than the other three groups. Immunofluorescence staining for LHX-2 and Keratin 15 further validated the results of these findings. In conclusion, this study demonstrated that negative pressure effectively promotes hair follicle growth and angiogenesis in nude mice through SOX-9- and LHX-2-mediated follicular regeneration and β-catenin-mediated hair follicle morphogenesis.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acrylated Hyaluronic-Acid Based Hydrogel for the Treatment of Craniofacial Volumetric Muscle Loss. 丙烯酸透明质酸基水凝胶用于治疗颅面部肌肉体积损失。
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-09 DOI: 10.1089/ten.TEA.2023.0241
Lucas Rohrer, Shinji Kato, Shane A Browne, Katharine Striedinger-Melo, Kevin Healy, Jason H Pomerantz

Current treatment options for craniofacial volumetric muscle loss (VML) have disadvantages and cannot fully restore normal function. Bio-inspired semisynthetic acrylated hyaluronic acid (AcHyA) hydrogel, which fills irregularly shaped defects, resembles an extracellular matrix, and induces a minimal inflammatory response, has shown promise in experimental studies of extremity VML. We therefore sought to study AcHyA hydrogel in the treatment of craniofacial VML. For this, we used a novel model of masseter VML in the rat. Following the creation of a 5 mm × 5 mm injury to the superficial masseter and administration of AcHyA to the wound, masseters were explanted between 2 and 16 weeks postoperatively and were analyzed for evidence of muscle regeneration including fibrosis, defect size, and fiber cross-sectional area (FCSA). At 8 and 16 weeks, masseters treated with AcHyA showed significantly less fibrosis than nonrepaired controls and a smaller decrease in defect size. The mean FCSA among fibers near the defect was significantly greater among hydrogel-repaired than control masseters at 8 weeks, 12 weeks, and 16 weeks. These results show that the hydrogel mitigates the fibrotic healing response and wound contracture. Our findings also suggest that hydrogel-based treatments have potential use as a treatment for the regeneration of craniofacial VML and demonstrate a system for evaluating subsequent iterations of materials in VML injuries.

目前治疗颅面容积性肌肉缺损(VML)的方法存在缺陷,无法完全恢复正常功能。受生物启发的半合成丙烯酸透明质酸(AcHyA)水凝胶可填充形状不规则的缺损,类似细胞外基质,并能诱发最小的炎症反应,在四肢 VML 的实验研究中已显示出其前景。因此,我们试图评估 AcHyA 水凝胶治疗颅面 VML 的疗效。为此,我们使用了一种新型的大鼠颌下静脉曲张模型。在浅层颌面部造成 5 毫米乘 5 毫米的损伤并在伤口处注射 AcHyA 后,在术后 2 周和 16 周之间取出颌面部,分析肌肉再生的证据,包括纤维化、缺损大小和纤维横截面积 (FCSA)。在 8 周和 16 周时,接受 AcHyA 治疗的腓肠肌的纤维化程度明显低于未接受修复的对照组,缺损大小的减少程度也较小。在 8 周、12 周和 16 周时,缺损附近纤维的平均 FCSA 在水凝胶修复后明显大于对照组。这些结果表明,水凝胶可减轻纤维化愈合反应和伤口挛缩。我们的研究结果还表明,基于水凝胶的治疗方法有可能用于颅面 VML 的再生治疗,并展示了一种用于评估 VML 损伤后续迭代材料的系统。
{"title":"Acrylated Hyaluronic-Acid Based Hydrogel for the Treatment of Craniofacial Volumetric Muscle Loss.","authors":"Lucas Rohrer, Shinji Kato, Shane A Browne, Katharine Striedinger-Melo, Kevin Healy, Jason H Pomerantz","doi":"10.1089/ten.TEA.2023.0241","DOIUrl":"10.1089/ten.TEA.2023.0241","url":null,"abstract":"<p><p>Current treatment options for craniofacial volumetric muscle loss (VML) have disadvantages and cannot fully restore normal function. Bio-inspired semisynthetic acrylated hyaluronic acid (AcHyA) hydrogel, which fills irregularly shaped defects, resembles an extracellular matrix, and induces a minimal inflammatory response, has shown promise in experimental studies of extremity VML. We therefore sought to study AcHyA hydrogel in the treatment of craniofacial VML. For this, we used a novel model of masseter VML in the rat. Following the creation of a 5 mm × 5 mm injury to the superficial masseter and administration of AcHyA to the wound, masseters were explanted between 2 and 16 weeks postoperatively and were analyzed for evidence of muscle regeneration including fibrosis, defect size, and fiber cross-sectional area (FCSA). At 8 and 16 weeks, masseters treated with AcHyA showed significantly less fibrosis than nonrepaired controls and a smaller decrease in defect size. The mean FCSA among fibers near the defect was significantly greater among hydrogel-repaired than control masseters at 8 weeks, 12 weeks, and 16 weeks. These results show that the hydrogel mitigates the fibrotic healing response and wound contracture. Our findings also suggest that hydrogel-based treatments have potential use as a treatment for the regeneration of craniofacial VML and demonstrate a system for evaluating subsequent iterations of materials in VML injuries.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An In Situ-Gelling Conductive Hydrogel for Potential Use in Neural Tissue Engineering. 一种可用于神经组织工程的原位胶凝导电水凝胶。
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-05 DOI: 10.1089/ten.TEA.2023.0359
Atefeh Amirabdollahian, Mohammad Moeini

Cerebral cavitation is usual following acute brain injuries, such as stroke and traumatic brain injuries, as well as after tumor resection. Minimally invasive implantation of an injectable scaffold in the cavity is a promising approach for potential regeneration of tissue loss. This study aimed at designing an in situ-gelling conductive hydrogel containing silk fibroin (SF), brain decellularized extracellular matrix (dECM), and carbon nanotubes (CNT) for potential use in brain tissue regeneration. Two percent w/v SF hydrogels with different concentrations of dECM (0.1%, 0.2%, or 0.3% w/v) and CNTs (0.05%, 0.1%, or 0.25% w/v) were fabricated and characterized. It was observed that with the addition of dECM, the porosity decreased, whereas swelling and electrical conductivity tended to increase. The addition of dECM also led to a faster resorption rate, but no significant change in compressive modulus. Addition of CNTs, on the other hand, led to a denser, stronger, and more regular porous structure, higher swelling ratio, faster gelation time, slower degradation rate, and a significant increase in electrical conductivity. dECM and CNTs combined together resulted in superior porosity, swelling, resorption rate, mechanical properties, and electrical conductivity compared with SF scaffolds containing only dECM or CNTs. Hydrogel samples containing 2% SF, 0.3% dECM, and 0.1% CNTs had a high porosity (58.9%), low swelling ratio (15.9%), high conductivity (2.35 × 10-4 S/m), and moderate degradation rate (37.3% after 21 days), appropriate for neural tissue engineering applications. Cell evaluation studies also showed that the hydrogel systems support the cell adhesion and growth, with no sign of significant cytotoxicity. Impact statement Tissue loss and formation of a fluid-filled cavity following stroke, traumatic brain injury, or brain tumor resection lead to sensorimotor and/or cognitive deficits. The lack of a healthy extracellular matrix in the cavity avoids the endogenous cell migration and axonal sprouting and may also worsen the secondary injuries to peri-lesional tissue. Due to the brain anatomy, simple implantation of tissue engineering scaffolds to the injured site is not possible in many cases. Therefore, the development of injectable scaffolds that support neural growth and differentiation is crucial for tissue repair or limiting the expansion of damage region.

脑空洞症常见于急性脑损伤(如中风和脑外伤)以及肿瘤切除术后。在空腔内微创植入可注射支架是一种很有前景的方法,可用于潜在的组织损失再生。本研究旨在设计一种原位胶凝导电水凝胶,其中含有丝纤维蛋白(SF)、脑脱细胞 ECM(dECM)和碳纳米管(CNT),有望用于脑组织再生。制备并表征了含有不同浓度 dECM(0.1%、0.2% 或 0.3% w/v)和碳纳米管(0.05%、0.1% 或 0.25% w/v)的 2% w/v SF 水凝胶。结果表明,添加 dECM 后,孔隙率降低,而膨胀率和导电率呈上升趋势。添加 dECM 还导致吸收速度加快,但压缩模量没有显著变化。另一方面,添加碳纳米管会使多孔结构更致密、更坚固、更规整,溶胀率更高,凝胶时间更快,降解速度更慢,导电率显著增加。与仅含 dECM 或碳纳米管的 SF 支架相比,dECM 和碳纳米管结合在一起会产生更高的孔隙率、溶胀率、吸收率、机械性能和导电率。含有 2% SF、0.3% dECM 和 0.1% CNT 的水凝胶样品具有高孔隙率(58.9%)、低膨胀率(15.9%)、高导电率(2.35×10-4 S/m)和适度降解率(21 天后降解率为 37.3%),适合神经组织工程应用。细胞评估研究也表明,水凝胶系统支持细胞粘附和生长,没有明显的细胞毒性迹象。
{"title":"An <i>In Situ</i>-Gelling Conductive Hydrogel for Potential Use in Neural Tissue Engineering.","authors":"Atefeh Amirabdollahian, Mohammad Moeini","doi":"10.1089/ten.TEA.2023.0359","DOIUrl":"10.1089/ten.TEA.2023.0359","url":null,"abstract":"<p><p>Cerebral cavitation is usual following acute brain injuries, such as stroke and traumatic brain injuries, as well as after tumor resection. Minimally invasive implantation of an injectable scaffold in the cavity is a promising approach for potential regeneration of tissue loss. This study aimed at designing an <i>in situ</i>-gelling conductive hydrogel containing silk fibroin (SF), brain decellularized extracellular matrix (dECM), and carbon nanotubes (CNT) for potential use in brain tissue regeneration. Two percent w/v SF hydrogels with different concentrations of dECM (0.1%, 0.2%, or 0.3% w/v) and CNTs (0.05%, 0.1%, or 0.25% w/v) were fabricated and characterized. It was observed that with the addition of dECM, the porosity decreased, whereas swelling and electrical conductivity tended to increase. The addition of dECM also led to a faster resorption rate, but no significant change in compressive modulus. Addition of CNTs, on the other hand, led to a denser, stronger, and more regular porous structure, higher swelling ratio, faster gelation time, slower degradation rate, and a significant increase in electrical conductivity. dECM and CNTs combined together resulted in superior porosity, swelling, resorption rate, mechanical properties, and electrical conductivity compared with SF scaffolds containing only dECM or CNTs. Hydrogel samples containing 2% SF, 0.3% dECM, and 0.1% CNTs had a high porosity (58.9%), low swelling ratio (15.9%), high conductivity (2.35 × 10<sup>-4</sup> S/m), and moderate degradation rate (37.3% after 21 days), appropriate for neural tissue engineering applications. Cell evaluation studies also showed that the hydrogel systems support the cell adhesion and growth, with no sign of significant cytotoxicity. Impact statement Tissue loss and formation of a fluid-filled cavity following stroke, traumatic brain injury, or brain tumor resection lead to sensorimotor and/or cognitive deficits. The lack of a healthy extracellular matrix in the cavity avoids the endogenous cell migration and axonal sprouting and may also worsen the secondary injuries to peri-lesional tissue. Due to the brain anatomy, simple implantation of tissue engineering scaffolds to the injured site is not possible in many cases. Therefore, the development of injectable scaffolds that support neural growth and differentiation is crucial for tissue repair or limiting the expansion of damage region.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Low-Intensity Pulsed Ultrasound on Temporomandibular Joint Arthritis in Juvenile Rats. 低强度脉冲超声对幼鼠颞下颌关节炎的影响
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-03 DOI: 10.1089/ten.TEA.2024.0034
Jacqueline Crossman, Hollis Lai, Marianna Kulka, Nadr Jomha, Patrick Flood, Tarek El-Bialy

Juvenile idiopathic arthritis is an inflammatory disease that can affect the temporomandibular joint (TMJ) and lower jaw growth. Better treatment options are needed, so this study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on TMJ arthritis. Seventy-two 3-week-old male Wistar rats were in vivo microcomputed tomography (micro-CT) scanned and divided into eight groups (n = 9). These groups were Group 1-TMJ arthritis and immediate LIPUS treatment (20 min/day, 4 weeks); Group 2-immediate LIPUS treatment and no TMJ arthritis; Group 3-TMJ arthritis and no LIPUS; Group 4-no TMJ arthritis and no LIPUS; Group 5-TMJ arthritis and LIPUS treatment with a delayed start by 4 weeks; Group 6-Delayed LIPUS and no TMJ arthritis; Group 7-TMJ arthritis and no (delayed) LIPUS; and Group 8-no TMJ arthritis and no (delayed) LIPUS. Ex vivo micro-CT scanning was completed, and samples were prepared for tissue analysis. Synovitis was observed in the TMJ arthritis (collagen-induced arthritis [CIA]) groups, but the severity appeared greater in the groups without LIPUS treatment. Fibrocartilage and hypertrophic cell layer thicknesses in the CIA group without LIPUS treatment were significantly greater (p < 0.05). Proteoglycan staining appeared greater in the LIPUS groups. Immediate LIPUS treatment increased the expression of type II collagen, type X collagen, and transforming growth factor-beta 1 (TGF-β1) immunostaining, and CIA (no LIPUS) increased MMP-13, vascular endothelial growth factor, and interleukin-1 beta (IL-1β) immunostaining. LIPUS treatment prevented growth disturbances observed in the CIA groups (no LIPUS) (p < 0.005). Our results have contributed to the understanding of the uses and limitations of the CIA juvenile rat model and have demonstrated the effects of LIPUS on the TMJ and mandibular growth. This information will help in designing future studies for investigating LIPUS and TMJ arthritis, leading to the development of new treatment options for children with juvenile arthritis in their TMJs.

幼年特发性关节炎(JIA)是一种会影响颞下颌关节(TMJ)和下颌生长的炎症性疾病。我们需要更好的治疗方案,因此本研究调查了低强度脉冲超声(LIPUS)对颞下颌关节炎的影响。研究人员对 72 只 3 周大的雄性 Wistar 大鼠进行了体内微型计算机断层扫描(MicroCT),并将其分为 8 组(n=9)。这些组分别为:第1组--颞下颌关节炎和立即LIPUS治疗(20分钟/天,4周);第2组--立即LIPUS治疗和无颞下颌关节炎;第3组--颞下颌关节炎和无LIPUS;第4组--无颞下颌关节炎和无LIPUS;第 5 组--颞下颌关节炎和延迟 4 周开始的 LIPUS 治疗;第 6 组--延迟 LIPUS 和无颞下颌关节炎;第 7 组--颞下颌关节炎和无(延迟)LIPUS;第 8 组--无颞下颌关节炎和无(延迟)LIPUS。完成体外显微 CT 扫描后,制备样本进行组织分析。在颞下颌关节炎[胶原诱发关节炎(CIA)]组中观察到滑膜炎,但在未接受 LIPUS 治疗的组中,滑膜炎的严重程度似乎更高。未接受 LIPUS 治疗的 CIA 组的纤维软骨层和肥厚细胞层厚度明显更大(p < 0.05)。LIPUS组的蛋白多糖染色更明显。立即进行 LIPUS 处理可增加 II 型胶原、X 型胶原和 TGF-β1 免疫染色的表达,而 CIA(无 LIPUS)可增加 MMP-13、VEGF 和 IL-1β 免疫染色的表达。LIPUS治疗可防止CIA组(无LIPUS)观察到的生长障碍(p < 0.005)。我们的研究结果有助于人们了解 CIA 幼鼠模型的用途和局限性,并证明了 LIPUS 对颞下颌关节和下颌骨生长的影响。这些信息将有助于设计未来的 LIPUS 和颞下颌关节炎研究,从而为颞下颌关节炎患儿开发新的治疗方案。
{"title":"The Effect of Low-Intensity Pulsed Ultrasound on Temporomandibular Joint Arthritis in Juvenile Rats.","authors":"Jacqueline Crossman, Hollis Lai, Marianna Kulka, Nadr Jomha, Patrick Flood, Tarek El-Bialy","doi":"10.1089/ten.TEA.2024.0034","DOIUrl":"10.1089/ten.TEA.2024.0034","url":null,"abstract":"<p><p>Juvenile idiopathic arthritis is an inflammatory disease that can affect the temporomandibular joint (TMJ) and lower jaw growth. Better treatment options are needed, so this study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on TMJ arthritis. Seventy-two 3-week-old male Wistar rats were <i>in vivo</i> microcomputed tomography (micro-CT) scanned and divided into eight groups (<i>n</i> = 9). These groups were Group 1-TMJ arthritis and immediate LIPUS treatment (20 min/day, 4 weeks); Group 2-immediate LIPUS treatment and no TMJ arthritis; Group 3-TMJ arthritis and no LIPUS; Group 4-no TMJ arthritis and no LIPUS; Group 5-TMJ arthritis and LIPUS treatment with a delayed start by 4 weeks; Group 6-Delayed LIPUS and no TMJ arthritis; Group 7-TMJ arthritis and no (delayed) LIPUS; and Group 8-no TMJ arthritis and no (delayed) LIPUS. <i>Ex vivo</i> micro-CT scanning was completed, and samples were prepared for tissue analysis. Synovitis was observed in the TMJ arthritis (collagen-induced arthritis [CIA]) groups, but the severity appeared greater in the groups without LIPUS treatment. Fibrocartilage and hypertrophic cell layer thicknesses in the CIA group without LIPUS treatment were significantly greater (<i>p</i> < 0.05). Proteoglycan staining appeared greater in the LIPUS groups. Immediate LIPUS treatment increased the expression of type II collagen, type X collagen, and transforming growth factor-beta 1 (TGF-β1) immunostaining, and CIA (no LIPUS) increased MMP-13, vascular endothelial growth factor, and interleukin-1 beta (IL-1β) immunostaining. LIPUS treatment prevented growth disturbances observed in the CIA groups (no LIPUS) (<i>p</i> < 0.005). Our results have contributed to the understanding of the uses and limitations of the CIA juvenile rat model and have demonstrated the effects of LIPUS on the TMJ and mandibular growth. This information will help in designing future studies for investigating LIPUS and TMJ arthritis, leading to the development of new treatment options for children with juvenile arthritis in their TMJs.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negative Printing for the Reinforcement of In Situ Tissue-Engineered Cartilage. 用于加固原位组织工程软骨的负打印技术。
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-03 DOI: 10.1089/ten.TEA.2023.0358
Stephanie E Doyle, Finn Snow, Carmine Onofrillo, Claudia Di Bella, Cathal D O'Connell, Elena Pirogova, Serena Duchi

In the realm of in situ cartilage engineering, the targeted delivery of both cells and hydrogel materials to the site of a defect serves to directly stimulate chondral repair. Although the in situ application of stem cell-laden soft hydrogels to tissue defects holds great promise for cartilage regeneration, a significant challenge lies in overcoming the inherent limitation of these soft hydrogels, which must attain mechanical properties akin to the native tissue to withstand physiological loading. We therefore developed a system where a gelatin methacryloyl hydrogel laden with human adipose-derived mesenchymal stem cells is combined with a secondary structure to provide bulk mechanical reinforcement. In this study, we used the negative embodied sacrificial template 3D printing technique to generate eight different lattice-based reinforcement structures made of polycaprolactone, which ranged in porosity from 80% to 90% with stiffnesses from 28 ± 5 kPa to 2853 ± 236 kPa. The most promising of these designs, the hex prism edge, was combined with the cellular hydrogel and retained a stable stiffness over 41 days of chondrogenic differentiation. There was no significant difference between the hydrogel-only and hydrogel scaffold group in the sulfated glycosaminoglycan production (340.46 ± 13.32 µg and 338.92 ± 47.33 µg, respectively) or Type II Collagen gene expression. As such, the use of negative printing represents a promising solution for the integration of bulk reinforcement without losing the ability to produce new chondrogenic matrix.

在原位软骨工程领域,将细胞和水凝胶材料有针对性地输送到缺损部位,可直接刺激软骨修复。虽然在组织缺损处原位应用干细胞软水凝胶为软骨再生带来了巨大希望,但克服这些软水凝胶的固有限制是一项重大挑战,因为这些软水凝胶必须达到与原生组织类似的机械性能,才能承受生理负荷。因此,我们开发了一种系统,将含有人脂肪间充质干细胞的明胶甲基丙烯酰水凝胶与二级结构相结合,以提供大量机械加固。在这项研究中,我们使用负体现牺牲模板三维打印技术生成了8种不同的基于聚己内酯的晶格加固结构,其孔隙率在80-90%之间,刚度从28 ± 5 kPa到2853 ± 236 kPa不等。其中最有前途的设计是六棱柱边缘,它与细胞水凝胶相结合,在软骨分化 41 天后仍能保持稳定的硬度。仅水凝胶组和水凝胶支架组的硫酸化氨基糖产量(分别为 340.46 ± 13.32 µg 和 338.92 ± 47.33 µg)或 II 型胶原基因表达量没有明显差异。因此,使用负向打印是一种很有前途的解决方案,既能整合大块加固材料,又不会丧失产生新软骨基质的能力。
{"title":"Negative Printing for the Reinforcement of <i>In Situ</i> Tissue-Engineered Cartilage.","authors":"Stephanie E Doyle, Finn Snow, Carmine Onofrillo, Claudia Di Bella, Cathal D O'Connell, Elena Pirogova, Serena Duchi","doi":"10.1089/ten.TEA.2023.0358","DOIUrl":"10.1089/ten.TEA.2023.0358","url":null,"abstract":"<p><p>In the realm of <i>in situ</i> cartilage engineering, the targeted delivery of both cells and hydrogel materials to the site of a defect serves to directly stimulate chondral repair. Although the <i>in situ</i> application of stem cell-laden soft hydrogels to tissue defects holds great promise for cartilage regeneration, a significant challenge lies in overcoming the inherent limitation of these soft hydrogels, which must attain mechanical properties akin to the native tissue to withstand physiological loading. We therefore developed a system where a gelatin methacryloyl hydrogel laden with human adipose-derived mesenchymal stem cells is combined with a secondary structure to provide bulk mechanical reinforcement. In this study, we used the negative embodied sacrificial template 3D printing technique to generate eight different lattice-based reinforcement structures made of polycaprolactone, which ranged in porosity from 80% to 90% with stiffnesses from 28 ± 5 kPa to 2853 ± 236 kPa. The most promising of these designs, the hex prism edge, was combined with the cellular hydrogel and retained a stable stiffness over 41 days of chondrogenic differentiation. There was no significant difference between the hydrogel-only and hydrogel scaffold group in the sulfated glycosaminoglycan production (340.46 ± 13.32 µg and 338.92 ± 47.33 µg, respectively) or Type II Collagen gene expression. As such, the use of negative printing represents a promising solution for the integration of bulk reinforcement without losing the ability to produce new chondrogenic matrix.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Low-Intensity Ultrasound Improves Cartilage Repair in Rabbit Model of Subchondral Injury. 持续低强度超声波可改善软骨下损伤兔模型的软骨修复。
IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-04-01 Epub Date: 2024-03-01 DOI: 10.1089/ten.TEA.2023.0246
Anuradha Subramanian, Sarayu Bhogoju, Oraine Snaith, April D Miller, Heather Newell, Denzhi Wang, Gene Siegal, Katelin Oborny, Jesse Baumann-Berg, Hendrik Viljoen

Subchondral drilling (SD), a bone marrow stimulation technique, is used to repair cartilage lesions that lack regenerative potential. Cartilage repair outcomes upon SD are typically fibrocartilaginous in nature with inferior functionality. The lack of cues to foster the chondrogenic differentiation of egressed mesenchymal stromal cells upon SD can be attributed for the poor outcomes. Continuous low-intensity ultrasound (cLIUS) at 3.8 MHz is proposed as a treatment modality for improving cartilage repair outcomes upon marrow stimulation. Bilateral defects were created by SD on the femoral medial condyle of female New Zealand white rabbits (n = 12), and the left joint received cLIUS treatment (3.8 MHz, 3.5 Vpp, 8 min/application/day) and the contralateral right joint served as the control. On day 7 postsurgery, synovial fluid was aspirated, and the cytokine levels were assessed by Quantibody™ assay. Rabbits were euthanized at 8 weeks and outcomes were assessed macroscopically and histologically. Defect areas in the right joints exhibited boundaries, incomplete fill, irregular cartilage surfaces, loss of glycosaminoglycan (GAG), and absence of chondrocytes. In contrast, the repaired defect area in the joints that received cLIUS showed complete fill, positive staining for GAG with rounded chondrocyte morphology, COL2A1 staining, and columnar organization. Synovial fluid collected from cLIUS-treated left knee joints had lower levels of IL1, TNFα, and IFNγ when compared to untreated right knee joints, alluding to the potential of cLIUS to mitigate early inflammation. Further at 8 weeks, left knee joints (n = 12) consistently scored higher on the O'Driscoll scale, with a higher percent hyaline cartilage score. No adverse impact on bone or change in the joint space was noted. Upon a single exposure of cLIUS to TNFα-treated cells, nuclear localization of pNFκB and SOX9 was visualized by double immunofluorescence and the expression of markers associated with the NFκB pathway was assayed by quantitative real-time polymerase chain reaction. cLIUS extends its chondroprotective effects by titrating pNFκB levels, preventing its nuclear translocation, while maintaining the expression of SOX9, the collagen II transcription factor. Our combined results demonstrate that healing of chondral defects treated with marrow stimulation by SD can be accelerated by employing cLIUS regimen that possesses chondroinductive and chondroprotective properties. Impact statement Repair of cartilage represents an unsolved biomedical burden. In vitro, continuous low-intensity ultrasound (cLIUS) has been demonstrated to possess chondroinductive and chondroprotective potential. To our best knowledge, the use of cLIUS to improve cartilage repair outcomes upon marrow stimulation, in vivo, has not been reported and our work reported here fills that gap. Our results demonstrated enhanced cartilage repair outcomes under cLIUS (3.8 MHz) in a rabbit model of s

软骨下钻孔(SD)是一种骨髓刺激技术,用于修复缺乏再生潜力的软骨损伤。软骨下钻孔术的软骨修复结果通常是纤维软骨化,功能较差。间充质干细胞(MSCs)脱落后,由于缺乏促进软骨分化的线索,导致修复效果不佳。3.8兆赫的连续低强度超声(cLIUS)被认为是改善骨髓刺激软骨修复效果的一种治疗方式。通过 SD 在雌性新西兰白兔(n=12)的股骨内侧髁上创建双侧缺损,左侧关节接受 cLIUS 治疗(3.8 MHz,3.5 Vpp,8 分钟/次/天),对侧右侧关节作为对照。术后第 7 天,抽取滑液,用 Quantibody™ 检测法评估细胞因子水平。兔子在 8 周后被安乐死,并对结果进行了宏观和组织学评估。右侧关节的缺损区呈现边界、不完全填充、软骨表面不规则、糖胺聚糖(GAG)缺失和软骨细胞缺失。相比之下,接受cLIUS修复的关节缺损区显示出完全填充、GAG阳性染色、圆形软骨细胞形态、COL2A1染色和柱状组织。与未接受治疗的右膝关节相比,从接受过cLIUS治疗的左膝关节采集的滑膜液中IL1、TNFα和IFNγ水平较低,这表明cLIUS具有减轻早期炎症的潜力。此外,在8周时,左膝关节(12个)在O "Driscoll量表上的得分一直较高;透明软骨的百分比得分也较高。没有发现对骨骼有不良影响或关节间隙有变化。将 cLIUS 单次暴露于 TNFα 处理过的细胞后,通过双重免疫荧光可观察到 pNFκB 和 SOX9 的核定位,并通过 qRT-PCR 检测与 NFκB 通路相关的标记物的表达。我们的综合结果表明,采用具有软骨诱导和软骨保护特性的 cLIUS 方案可以加速通过 SD 刺激骨髓治疗的软骨缺损的愈合。
{"title":"Continuous Low-Intensity Ultrasound Improves Cartilage Repair in Rabbit Model of Subchondral Injury.","authors":"Anuradha Subramanian, Sarayu Bhogoju, Oraine Snaith, April D Miller, Heather Newell, Denzhi Wang, Gene Siegal, Katelin Oborny, Jesse Baumann-Berg, Hendrik Viljoen","doi":"10.1089/ten.TEA.2023.0246","DOIUrl":"10.1089/ten.TEA.2023.0246","url":null,"abstract":"<p><p>Subchondral drilling (SD), a bone marrow stimulation technique, is used to repair cartilage lesions that lack regenerative potential. Cartilage repair outcomes upon SD are typically fibrocartilaginous in nature with inferior functionality. The lack of cues to foster the chondrogenic differentiation of egressed mesenchymal stromal cells upon SD can be attributed for the poor outcomes. Continuous low-intensity ultrasound (cLIUS) at 3.8 MHz is proposed as a treatment modality for improving cartilage repair outcomes upon marrow stimulation. Bilateral defects were created by SD on the femoral medial condyle of female New Zealand white rabbits (<i>n</i> = 12), and the left joint received cLIUS treatment (3.8 MHz, 3.5 Vpp, 8 min/application/day) and the contralateral right joint served as the control. On day 7 postsurgery, synovial fluid was aspirated, and the cytokine levels were assessed by Quantibody™ assay. Rabbits were euthanized at 8 weeks and outcomes were assessed macroscopically and histologically. Defect areas in the right joints exhibited boundaries, incomplete fill, irregular cartilage surfaces, loss of glycosaminoglycan (GAG), and absence of chondrocytes. In contrast, the repaired defect area in the joints that received cLIUS showed complete fill, positive staining for GAG with rounded chondrocyte morphology, COL2A1 staining, and columnar organization. Synovial fluid collected from cLIUS-treated left knee joints had lower levels of IL1, TNFα, and IFNγ when compared to untreated right knee joints, alluding to the potential of cLIUS to mitigate early inflammation. Further at 8 weeks, left knee joints (<i>n</i> = 12) consistently scored higher on the O'Driscoll scale, with a higher percent hyaline cartilage score. No adverse impact on bone or change in the joint space was noted. Upon a single exposure of cLIUS to TNFα-treated cells, nuclear localization of pNFκB and SOX9 was visualized by double immunofluorescence and the expression of markers associated with the NFκB pathway was assayed by quantitative real-time polymerase chain reaction. cLIUS extends its chondroprotective effects by titrating pNFκB levels, preventing its nuclear translocation, while maintaining the expression of SOX9, the collagen II transcription factor. Our combined results demonstrate that healing of chondral defects treated with marrow stimulation by SD can be accelerated by employing cLIUS regimen that possesses chondroinductive and chondroprotective properties. Impact statement Repair of cartilage represents an unsolved biomedical burden. <i>In vitro</i>, continuous low-intensity ultrasound (cLIUS) has been demonstrated to possess chondroinductive and chondroprotective potential. To our best knowledge, the use of cLIUS to improve cartilage repair outcomes upon marrow stimulation, <i>in vivo</i>, has not been reported and our work reported here fills that gap. Our results demonstrated enhanced cartilage repair outcomes under cLIUS (3.8 MHz) in a rabbit model of s","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial Cellulose Electrospun Fiber Mesh Coated with Chitin Nanofibrils for Eardrum Repair. 甲壳素纳米原纤维包覆细菌纤维素电纺丝网用于耳膜修复。
IF 4.1 3区 医学 Q1 Engineering Pub Date : 2024-04-01 Epub Date: 2024-01-25 DOI: 10.1089/ten.TEA.2023.0242
Bahareh Azimi, Atefeh Rasti, Alessandra Fusco, Teresa Macchi, Claudio Ricci, Mohammad Amin Hosseinifard, Lorenzo Guazzelli, Giovanna Donnarumma, Roohollah Bagherzadeh, Masoud Latifi, Ipsita Roy, Serena Danti, Andrea Lazzeri

In this study, we develop a bio-based and bioactive nanofibrous patch based on bacterial cellulose (BC) and chitin nanofibrils (CNs) using an ionic liquid as a solvent for BC, aimed at tympanic membrane (TM) repair. Electrospun BC nanofiber meshes were produced via electrospinning, and surface-modified with CNs using electrospray. The rheology of the BC/ionic liquid system was investigated. The obtained CN/BC meshes underwent comprehensive morphological, physicochemical, and mechanical characterization. Cytotoxicity tests were conducted using L929 mouse fibroblasts, revealing a cell viability of 97.8%. In vivo tests on rabbit skin demonstrated that the patches were nonirritating. Furthermore, the CN/BC fiber meshes were tested in vitro using human dermal keratinocytes (HaCaT cells) and human umbilical vein endothelial cells as model cells for TM perforation healing. Both cell types demonstrated successful growth on these scaffolds. The presence of CNs resulted in improved indirect antimicrobial activity of the electrospun fiber meshes. HaCaT cells exhibited an upregulated mRNA expression at 6 and 24 h of key proinflammatory cytokines crucial for the wound healing process, indicating the potential benefits of CNs in the healing response. Overall, this study presents a natural and eco-sustainable fiber mesh with great promise for applications in TM repair, leveraging the synergistic effects of BC and CNs to possibly enhance tissue regeneration and healing. Impact statement Repair of tympanic membrane perforations following chronic otitis media is a main clinical issue in otologic surgery, where the underlying infection obstacles self-healing. To address this challenge, our study proposes a bio-based patch made of nanoscale carbohydrate materials (i.e., bacterial cellulose electrospun fibers and chitin nanofibrils) processed via green solvents. The scaffold is nonirritating in vivo, and cytocompatible with fibroblasts, endothelial cells, and keratinocytes. In epithelial cells, it stimulates the expression of the antimicrobial peptide human beta defensin 2, with a pathway of cytokine expression compatible with the wound healing process. Therefore, it could be applied with unsolved infective pathology.

在这项研究中,我们开发了一种基于细菌纤维素(BC)和几丁质纳米纤维(CNs)的生物基和生物活性纳米纤维贴片,以离子液体作为BC的溶剂,旨在修复鼓膜(TM)。采用静电纺丝法制备了BC纳米纤维网,并用电喷雾对其表面进行了CNs改性。研究了BC/离子液体体系的流变性。得到的CN/BC网格进行了全面的形态、物理化学和力学表征。使用L929小鼠成纤维细胞进行细胞毒性试验,发现细胞存活率为97.8%。在兔皮肤上进行的体内试验表明,该贴片无刺激性。以人真皮角化细胞(HaCaT细胞)和人脐静脉内皮细胞(HUVECs)为模型细胞,体外测试了CN/BC纤维网对TM穿孔愈合的影响。两种类型的细胞都在这些支架上成功生长。CNs的存在提高了静电纺纤维网的间接抗菌活性。HaCaT细胞在6小时和24小时表现出对伤口愈合过程至关重要的关键促炎细胞因子mRNA表达上调,表明CNs在愈合反应中的潜在益处。总的来说,本研究提出了一种天然和生态可持续的纤维网,在TM修复中有很大的应用前景,利用BC和CNs的协同作用,可能促进组织再生和愈合。
{"title":"Bacterial Cellulose Electrospun Fiber Mesh Coated with Chitin Nanofibrils for Eardrum Repair.","authors":"Bahareh Azimi, Atefeh Rasti, Alessandra Fusco, Teresa Macchi, Claudio Ricci, Mohammad Amin Hosseinifard, Lorenzo Guazzelli, Giovanna Donnarumma, Roohollah Bagherzadeh, Masoud Latifi, Ipsita Roy, Serena Danti, Andrea Lazzeri","doi":"10.1089/ten.TEA.2023.0242","DOIUrl":"10.1089/ten.TEA.2023.0242","url":null,"abstract":"<p><p>In this study, we develop a bio-based and bioactive nanofibrous patch based on bacterial cellulose (BC) and chitin nanofibrils (CNs) using an ionic liquid as a solvent for BC, aimed at tympanic membrane (TM) repair. Electrospun BC nanofiber meshes were produced via electrospinning, and surface-modified with CNs using electrospray. The rheology of the BC/ionic liquid system was investigated. The obtained CN/BC meshes underwent comprehensive morphological, physicochemical, and mechanical characterization. Cytotoxicity tests were conducted using L929 mouse fibroblasts, revealing a cell viability of 97.8%. <i>In vivo</i> tests on rabbit skin demonstrated that the patches were nonirritating. Furthermore, the CN/BC fiber meshes were tested <i>in vitro</i> using human dermal keratinocytes (HaCaT cells) and human umbilical vein endothelial cells as model cells for TM perforation healing. Both cell types demonstrated successful growth on these scaffolds. The presence of CNs resulted in improved indirect antimicrobial activity of the electrospun fiber meshes. HaCaT cells exhibited an upregulated mRNA expression at 6 and 24 h of key proinflammatory cytokines crucial for the wound healing process, indicating the potential benefits of CNs in the healing response. Overall, this study presents a natural and eco-sustainable fiber mesh with great promise for applications in TM repair, leveraging the synergistic effects of BC and CNs to possibly enhance tissue regeneration and healing. Impact statement Repair of tympanic membrane perforations following chronic otitis media is a main clinical issue in otologic surgery, where the underlying infection obstacles self-healing. To address this challenge, our study proposes a bio-based patch made of nanoscale carbohydrate materials (i.e., bacterial cellulose electrospun fibers and chitin nanofibrils) processed via green solvents. The scaffold is nonirritating <i>in vivo</i>, and cytocompatible with fibroblasts, endothelial cells, and keratinocytes. In epithelial cells, it stimulates the expression of the antimicrobial peptide human beta defensin 2, with a pathway of cytokine expression compatible with the wound healing process. Therefore, it could be applied with unsolved infective pathology.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92157559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tissue Engineering Part A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1