首页 > 最新文献

Foundations of Physics最新文献

英文 中文
On the Quasi-Separability of Atoms and Molecules 论原子和分子的准分离性
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-12-05 DOI: 10.1007/s10701-023-00736-4
Alejandro López-Castillo

Atoms and molecules are particular kinds of restricted n-body systems, which generally behave as quasi-separable, unlike other n-body systems, e.g., Newtonian ones. The Coulomb repulsion and the Pauli exclusion principle in atoms and molecules are responsible for that separability. Additionally, chemical bonds, especially covalent bonds, enhance the separability of molecules. Independent particle models do not describe atoms and molecules since first-order energy corrections are high. However, these corrections obtained by the first-order perturbation or mean-field strongly converge, implying a one-electron effective potential description. Consequently, stable states of atoms and molecules can be reasonably described by one-electron effective potentials, which strongly differ from other n-body problems. We discuss the peculiarities of the correlation motion of generic systems in the context of the four fundamental forces. In particular, we have shown that the two components (attraction and repulsion) of the electromagnetic force confer a relatively low correlation motion to atoms and molecules. We discuss the physical and chemical nature of atoms and molecules, comparing the degrees of separability between different systems. For example, the separability of Newtonian systems is generally possible in particular classes of restricted systems due to relative mass differences. However, for atoms and molecules, the separability is much broader.

原子和分子是一种特殊的受限 n 体系统,与其他 n 体系统(如牛顿系统)不同,它们通常表现为准可分离性。原子和分子中的库仑斥力和保利排他原理是造成这种可分离性的原因。此外,化学键,尤其是共价键,也增强了分子的可分离性。独立粒子模型无法描述原子和分子,因为一阶能量修正很高。然而,通过一阶扰动或均值场获得的这些修正强烈收敛,意味着单电子有效势描述。因此,原子和分子的稳定态可以用单电子有效势来合理描述,这与其他 n 体问题有很大不同。我们以四种基本力为背景,讨论了一般系统相关运动的特殊性。特别是,我们证明了电磁力的两个分量(吸引力和排斥力)赋予原子和分子相对较低的相关运动。我们讨论了原子和分子的物理和化学性质,比较了不同系统之间的可分离性程度。例如,由于相对质量的差异,牛顿系统的可分离性在特定类别的受限系统中一般是可能的。然而,原子和分子的可分离性要广泛得多。
{"title":"On the Quasi-Separability of Atoms and Molecules","authors":"Alejandro López-Castillo","doi":"10.1007/s10701-023-00736-4","DOIUrl":"10.1007/s10701-023-00736-4","url":null,"abstract":"<div><p>Atoms and molecules are particular kinds of restricted n-body systems, which generally behave as quasi-separable, unlike other n-body systems, e.g., Newtonian ones. The Coulomb repulsion and the Pauli exclusion principle in atoms and molecules are responsible for that separability. Additionally, chemical bonds, especially covalent bonds, enhance the separability of molecules. Independent particle models do not describe atoms and molecules since first-order energy corrections are high. However, these corrections obtained by the first-order perturbation or mean-field strongly converge, implying a one-electron effective potential description. Consequently, stable states of atoms and molecules can be reasonably described by one-electron effective potentials, which strongly differ from other n-body problems. We discuss the peculiarities of the correlation motion of generic systems in the context of the four fundamental forces. In particular, we have shown that the two components (attraction and repulsion) of the electromagnetic force confer a relatively low correlation motion to atoms and molecules. We discuss the physical and chemical nature of atoms and molecules, comparing the degrees of separability between different systems. For example, the separability of Newtonian systems is generally possible in particular classes of restricted systems due to relative mass differences. However, for atoms and molecules, the separability is much broader.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138491266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Proposal for a New Kind of Spontaneous Collapse Model 关于新型自发坍塌模型的建议
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-12-05 DOI: 10.1007/s10701-023-00739-1
Nicolò Piccione

Spontaneous collapse models are modifications of standard quantum mechanics in which a physical mechanism is responsible for the collapse of the wavefunction, thus providing a way to solve the so-called “measurement problem”. The two most famous of these models are the Ghirardi–Rimini–Weber (GRW) model and the Continuous Spontaneous Localisation (CSL) models. Here, we propose a new kind of non-relativistic spontaneous collapse model based on the idea of collapse points situated at fixed spacetime coordinates. This model shares properties of both GRW and CSL models, while starting from different assumptions. We show that it can lead to a dynamics quite similar to that of the GRW model while also naturally solving the problem of indistinguishable particles. On the other hand, we can also obtain the same master equation of the CSL models. Then, we show how our proposed model solves the measurement problem in a manner conceptually similar to the GRW model. Finally, we show how the proposed model can also accommodate for Newtonian gravity by treating the collapses as gravitational sources.

自发坍缩模型是对标准量子力学的修正,其中一种物理机制负责波函数的坍缩,从而提供了一种解决所谓 "测量问题 "的方法。其中最有名的两个模型是吉拉尔迪-里米尼-韦伯(GRW)模型和连续自发定位(CSL)模型。在此,我们基于坍缩点位于固定时空坐标的思想,提出了一种新的非相对论自发坍缩模型。该模型与 GRW 和 CSL 模型具有相同的属性,但出发点不同。我们证明,它可以产生与 GRW 模型十分相似的动力学,同时也自然地解决了粒子不可分辨的问题。另一方面,我们也可以得到与 CSL 模型相同的主方程。然后,我们将展示我们提出的模型是如何以与 GRW 模型概念相似的方式解决测量问题的。最后,我们展示了所提出的模型如何通过把坍缩视为引力源来适应牛顿引力。
{"title":"A Proposal for a New Kind of Spontaneous Collapse Model","authors":"Nicolò Piccione","doi":"10.1007/s10701-023-00739-1","DOIUrl":"10.1007/s10701-023-00739-1","url":null,"abstract":"<div><p>Spontaneous collapse models are modifications of standard quantum mechanics in which a physical mechanism is responsible for the collapse of the wavefunction, thus providing a way to solve the so-called “measurement problem”. The two most famous of these models are the Ghirardi–Rimini–Weber (GRW) model and the Continuous Spontaneous Localisation (CSL) models. Here, we propose a new kind of non-relativistic spontaneous collapse model based on the idea of collapse points situated at fixed spacetime coordinates. This model shares properties of both GRW and CSL models, while starting from different assumptions. We show that it can lead to a dynamics quite similar to that of the GRW model while also naturally solving the problem of indistinguishable particles. On the other hand, we can also obtain the same master equation of the CSL models. Then, we show how our proposed model solves the measurement problem in a manner conceptually similar to the GRW model. Finally, we show how the proposed model can also accommodate for Newtonian gravity by treating the collapses as gravitational sources.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138491346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical Time and Human Time 物理时间和人类时间
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-11-29 DOI: 10.1007/s10701-023-00738-2
George F. R. Ellis

This paper is a comment on both Bunamano and Rovelli (Bridging the neuroscience and physics of time arXiv:2110.01976. (2022)) and Gruber et al. (in Front. Psychol. Hypothesis Theory, 2022) and which discuss the relation between physical time and human time. I claim here, contrary to many views discussed there, that there is no foundational conflict between the way physics views the passage of time and the way the mind/brain perceives it. The problem rather resides in a number of misconceptions leading either to the representation of spacetime as a timeless Block Universe, or at least that physically relevant universe models cannot have preferred spatial sections. The physical expanding universe can be claimed to be an Evolving Block Universe with a time-dependent future boundary, representing the dynamic nature of the way spacetime develops as matter curves spacetime and spacetime tells matter how to move. This context establishes a global direction of time that determines the various local arrows of time. Furthermore time passes when quantum wave function collapse takes place to an eigenstate; during this process, information is lost. The mind/brain acts as an imperfect clock, which coarse-grains the physical passage of time along a world line to determine the experienced passage of time, because neural processes take time to occur. This happens in a contextual way, so experienced time is not linearly related to physical time in general. Finally I point out that the Universe is never infinitely old: its future endpoint always lies infinitely faraway in the future.

这篇论文是对Bunamano和Rovelli (Bridging the neuroscience and physics of time, arXiv:2110.01976)的评论。(2022))和Gruber等人(前面)。Psychol。假说理论,2022),其中讨论了物理时间和人类时间之间的关系。我在这里声明,与那里讨论的许多观点相反,物理学看待时间流逝的方式与心灵/大脑感知时间流逝的方式之间没有根本的冲突。相反,问题在于一些误解,这些误解要么导致将时空表示为一个永恒的块宇宙,要么至少导致物理上相关的宇宙模型不能有首选的空间部分。物理膨胀的宇宙可以被称为一个演化的块宇宙,具有依赖于时间的未来边界,代表了时空发展方式的动态本质,即物质弯曲时空,时空告诉物质如何运动。这个上下文建立了一个全局的时间方向,它决定了各种局部的时间箭头。当量子波函数坍缩到一个本征态时,时间就过去了;在这个过程中,信息丢失了。心灵/大脑就像一个不完美的时钟,它沿着世界线粗略地计算物理时间的流逝,以确定经验时间的流逝,因为神经过程需要时间才能发生。这是以一种情境的方式发生的,所以经验时间通常与物理时间没有线性关系。最后我指出,宇宙从来都不是无限古老的:它未来的终点总是在无限遥远的未来。
{"title":"Physical Time and Human Time","authors":"George F. R. Ellis","doi":"10.1007/s10701-023-00738-2","DOIUrl":"10.1007/s10701-023-00738-2","url":null,"abstract":"<div><p>This paper is a comment on both Bunamano and Rovelli (Bridging the neuroscience and physics of time arXiv:2110.01976. (2022)) and Gruber et al. (in Front. Psychol. Hypothesis Theory, 2022) and which discuss the relation between physical time and human time. I claim here, contrary to many views discussed there, that there is no foundational conflict between the way physics views the passage of time and the way the mind/brain perceives it. The problem rather resides in a number of misconceptions leading either to the representation of spacetime as a timeless Block Universe, or at least that physically relevant universe models cannot have preferred spatial sections. The physical expanding universe can be claimed to be an Evolving Block Universe with a time-dependent future boundary, representing the dynamic nature of the way spacetime develops as matter curves spacetime and spacetime tells matter how to move. This context establishes a global direction of time that determines the various local arrows of time. Furthermore time passes when quantum wave function collapse takes place to an eigenstate; during this process, information is lost. The mind/brain acts as an imperfect clock, which coarse-grains the physical passage of time along a world line to determine the experienced passage of time, because neural processes take time to occur. This happens in a contextual way, so experienced time is not linearly related to physical time in general. Finally I point out that the Universe is never infinitely old: its future endpoint always lies infinitely faraway in the future.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-023-00738-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evading Quantum Mechanics à la Sudarshan: Quantum-Mechanics-Free Subsystem as a Realization of Koopman-von Neumann Mechanics 逃避量子力学:作为库普曼-冯·诺伊曼力学实现的无量子力学子系统
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-11-16 DOI: 10.1007/s10701-023-00734-6
Zurab K. Silagadze

Tsang and Caves suggested the idea of a quantum-mechanics-free subsystem in 2012. We contend that Sudarshan’s viewpoint on Koopman-von Neumann mechanics is realized in the quantum-mechanics-free subsystem. Since quantum-mechanics-free subsystems are being experimentally realized, Koopman-von Neumann mechanics is essentially transformed into an engineering science.

Tsang和Caves在2012年提出了一个无量子力学子系统的想法。我们认为苏达山关于库普曼-冯·诺依曼力学的观点是在无量子力学子系统中实现的。由于量子力学的自由子系统正在实验实现,库普曼-冯·诺伊曼力学本质上转变为一门工程科学。
{"title":"Evading Quantum Mechanics à la Sudarshan: Quantum-Mechanics-Free Subsystem as a Realization of Koopman-von Neumann Mechanics","authors":"Zurab K. Silagadze","doi":"10.1007/s10701-023-00734-6","DOIUrl":"10.1007/s10701-023-00734-6","url":null,"abstract":"<div><p>Tsang and Caves suggested the idea of a quantum-mechanics-free subsystem in 2012. We contend that Sudarshan’s viewpoint on Koopman-von Neumann mechanics is realized in the quantum-mechanics-free subsystem. Since quantum-mechanics-free subsystems are being experimentally realized, Koopman-von Neumann mechanics is essentially transformed into an engineering science.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life, the Multiverse, and Fine-Tuning 生命、多元宇宙和微调
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-11-16 DOI: 10.1007/s10701-023-00732-8
Phillip Helbig

Few topics in cosmology are as hotly debated as the Multiverse: for some it is untestable and hence unscientific; for others it is unavoidable and a natural extension of previous science. A third position is that it is seen to follow from other theories, but those other theories might themselves be seen as too speculative. The idea of fine-tuning has a similar status. Some of this disagreement might be due to misunderstanding, in particular the degree to which probability distributions are necessary to interpret conclusions based on the Multiverse, especially with regard to the Anthropic Principle. I present undisputed facts, discuss some common misunderstandings, and investigate the role played by probability. The Multiverse is perhaps an important component necessary for interpreting cosmological and other physical parameters.

宇宙学中很少有话题能像多元宇宙那样引起激烈的争论:对一些人来说,它是不可测试的,因此是不科学的;对其他人来说,这是不可避免的,是先前科学的自然延伸。第三种观点是,它被认为是从其他理论推导出来的,但那些其他理论本身可能被认为过于投机。微调的概念具有类似的地位。其中一些分歧可能是由于误解,特别是在一定程度上,概率分布是解释基于多元宇宙的结论所必需的,特别是关于人择原理。我提出了无可争议的事实,讨论了一些常见的误解,并调查了概率所起的作用。多元宇宙也许是解释宇宙学和其他物理参数所必需的重要组成部分。
{"title":"Life, the Multiverse, and Fine-Tuning","authors":"Phillip Helbig","doi":"10.1007/s10701-023-00732-8","DOIUrl":"10.1007/s10701-023-00732-8","url":null,"abstract":"<div><p>Few topics in cosmology are as hotly debated as the Multiverse: for some it is untestable and hence unscientific; for others it is unavoidable and a natural extension of previous science. A third position is that it is seen to follow from other theories, but those other theories might themselves be seen as too speculative. The idea of fine-tuning has a similar status. Some of this disagreement might be due to misunderstanding, in particular the degree to which probability distributions are necessary to interpret conclusions based on the Multiverse, especially with regard to the Anthropic Principle. I present undisputed facts, discuss some common misunderstandings, and investigate the role played by probability. The Multiverse is perhaps an important component necessary for interpreting cosmological and other physical parameters.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can the Ontology of Bohmian Mechanics Consists Only in Particles? The PBR Theorem Says No 波米亚力学的本体论只能存在于粒子中吗?PBR定理说不
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-11-06 DOI: 10.1007/s10701-023-00731-9
Shan Gao

The meaning of the wave function is an important unresolved issue in Bohmian mechanics. On the one hand, according to the nomological view, the wave function of the universe or the universal wave function is nomological, like a law of nature. On the other hand, the PBR theorem proves that the wave function in quantum mechanics or the effective wave function in Bohmian mechanics is ontic, representing the ontic state of a physical system in the universe. It is usually thought that the nomological view of the universal wave function is compatible with the ontic view of the effective wave function, and thus the PBR theorem has no implications for the nomological view. In this paper, I argue that this is not the case, and these two views are in fact incompatible. This means that if the effective wave function is ontic as the PBR theorem proves, then the universal wave function cannot be nomological, and the ontology of Bohmian mechanics cannot consist only in particles. This incompatibility result holds true not only for Humeanism and dispositionalism but also for primitivism about laws of nature, which attributes a fundamental ontic role to the universal wave function. Moreover, I argue that although the nomological view can be held by rejecting one key assumption of the PBR theorem, the rejection will lead to serious problems, such as that the results of measurements and their probabilities cannot be explained in ontology in Bohmian mechanics. Finally, I briefly discuss three (psi)-ontologies, namely a physical field in a fundamental high-dimensional space, a multi-field in three-dimensional space, and RDMP (Random Discontinuous Motion of Particles) in three-dimensional space, and argue that the RDMP ontology can answer the objections to the (psi)-ontology raised by the proponents of the nomological view.

波函数的意义是波面力学中一个尚未解决的重要问题。一方面,根据法理观点,宇宙的波函数或普遍波函数是法理的,就像自然定律一样。另一方面,PBR定理证明了量子力学中的波函数或波米亚力学中的有效波函数是本体的,代表了宇宙中物理系统的本体状态。人们通常认为普遍波函数的法理观点与有效波函数的本体观点是相容的,因此PBR定理对法理观点没有任何意义。在本文中,我认为事实并非如此,这两种观点实际上是不相容的。这意味着,如果有效波函数像PBR定理所证明的那样是本体的,那么普适波函数就不可能是诺模学的,波米亚力学的本体也不可能只存在于粒子中。这种不相容的结果不仅适用于休谟主义和处置主义,也适用于关于自然规律的原始主义,它将根本的本体作用归因于普遍的波函数。此外,我认为,尽管可以通过拒绝PBR定理的一个关键假设来持有法理观点,但拒绝会导致严重的问题,例如在波米亚力学中,测量结果及其概率无法用本体论来解释。最后,我简要讨论了三个本体论,即基本高维空间中的物理场、三维空间中的多场和三维空间中粒子的随机不连续运动,并认为RDMP本体论可以回答诺模学观点支持者对本体论的反对。
{"title":"Can the Ontology of Bohmian Mechanics Consists Only in Particles? The PBR Theorem Says No","authors":"Shan Gao","doi":"10.1007/s10701-023-00731-9","DOIUrl":"10.1007/s10701-023-00731-9","url":null,"abstract":"<div><p>The meaning of the wave function is an important unresolved issue in Bohmian mechanics. On the one hand, according to the nomological view, the wave function of the universe or the universal wave function is nomological, like a law of nature. On the other hand, the PBR theorem proves that the wave function in quantum mechanics or the effective wave function in Bohmian mechanics is ontic, representing the ontic state of a physical system in the universe. It is usually thought that the nomological view of the universal wave function is compatible with the ontic view of the effective wave function, and thus the PBR theorem has no implications for the nomological view. In this paper, I argue that this is not the case, and these two views are in fact incompatible. This means that if the effective wave function is ontic as the PBR theorem proves, then the universal wave function cannot be nomological, and the ontology of Bohmian mechanics cannot consist only in particles. This incompatibility result holds true not only for Humeanism and dispositionalism but also for primitivism about laws of nature, which attributes a fundamental ontic role to the universal wave function. Moreover, I argue that although the nomological view can be held by rejecting one key assumption of the PBR theorem, the rejection will lead to serious problems, such as that the results of measurements and their probabilities cannot be explained in ontology in Bohmian mechanics. Finally, I briefly discuss three <span>(psi)</span>-ontologies, namely a physical field in a fundamental high-dimensional space, a multi-field in three-dimensional space, and RDMP (Random Discontinuous Motion of Particles) in three-dimensional space, and argue that the RDMP ontology can answer the objections to the <span>(psi)</span>-ontology raised by the proponents of the nomological view.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71908821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Completely Discretized, Finite Quantum Mechanics 完全离散的有限量子力学
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-11-06 DOI: 10.1007/s10701-023-00726-6
Sean M. Carroll

I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schrödinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete and finite set of state vectors. The biggest challenges to the viability of such a model come from cosmological considerations. The theory may have implications for questions of mathematical realism and finitism.

我提出了一种量子力学的版本,其特征是离散和有限数量的状态,这似乎是真实世界的模型。该模型基于具有有限维希尔伯特空间的封闭系统的标准酉量子理论。给定哈密顿量谱上的某些简单条件,薛定谔的演化是周期性的,用离散形式取代连续时间是很简单的,结果是系统只访问离散和有限的状态向量集。这种模型的可行性面临的最大挑战来自宇宙学方面的考虑。该理论可能对数学实在论和有限性问题有启示。
{"title":"Completely Discretized, Finite Quantum Mechanics","authors":"Sean M. Carroll","doi":"10.1007/s10701-023-00726-6","DOIUrl":"10.1007/s10701-023-00726-6","url":null,"abstract":"<div><p>I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schrödinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete and finite set of state vectors. The biggest challenges to the viability of such a model come from cosmological considerations. The theory may have implications for questions of mathematical realism and finitism.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71908820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relaxation to Quantum Equilibrium and the Born Rule in Nelson’s Stochastic Dynamics 量子平衡的松弛与Nelson随机动力学中的Born规则
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-11-06 DOI: 10.1007/s10701-023-00730-w
Vincent Hardel, Paul-Antoine Hervieux, Giovanni Manfredi

Nelson’s stochastic quantum mechanics provides an ideal arena to test how the Born rule is established from an initial probability distribution that is not identical to the square modulus of the wavefunction. Here, we investigate numerically this problem for three relevant cases: a double-slit interference setup, a harmonic oscillator, and a quantum particle in a uniform gravitational field. For all cases, Nelson’s stochastic trajectories are initially localized at a definite position, thereby violating the Born rule. For the double slit and harmonic oscillator, typical quantum phenomena, such as interferences, always occur well after the establishment of the Born rule. In contrast, for the case of quantum particles free-falling in the gravity field of the Earth, an interference pattern is observed before the completion of the quantum relaxation. This finding may pave the way to experiments able to discriminate standard quantum mechanics, where the Born rule is always satisfied, from Nelson’s theory, for which an early subquantum dynamics may be present before full quantum relaxation has occurred. Although the mechanism through which a quantum particle might violate the Born rule remains unknown to date, we speculate that this may occur during fundamental processes, such as beta decay or particle-antiparticle pair production.

Nelson的随机量子力学提供了一个理想的领域来测试Born规则是如何从与波函数的平方模不相同的初始概率分布中建立的。在这里,我们对三种相关情况下的这个问题进行了数值研究:双缝干涉装置、谐振子和均匀引力场中的量子粒子。对于所有情况,Nelson的随机轨迹最初都定位在一个确定的位置,从而违反了Born规则。对于双缝谐振子,在玻恩规则建立之后,通常会出现典型的量子现象,如干涉。相反,对于量子粒子在地球重力场中自由下落的情况,在量子弛豫完成之前观察到干涉模式。这一发现可能为能够区分标准量子力学和纳尔逊理论的实验铺平道路,在纳尔逊理论中,Born规则总是得到满足,在完全量子弛豫发生之前,可能存在早期的亚量子动力学。尽管迄今为止,量子粒子可能违反Born规则的机制仍然未知,但我们推测,这可能发生在基本过程中,如β衰变或粒子反粒子对的产生。
{"title":"Relaxation to Quantum Equilibrium and the Born Rule in Nelson’s Stochastic Dynamics","authors":"Vincent Hardel,&nbsp;Paul-Antoine Hervieux,&nbsp;Giovanni Manfredi","doi":"10.1007/s10701-023-00730-w","DOIUrl":"10.1007/s10701-023-00730-w","url":null,"abstract":"<div><p>Nelson’s stochastic quantum mechanics provides an ideal arena to test how the Born rule is established from an initial probability distribution that is not identical to the square modulus of the wavefunction. Here, we investigate numerically this problem for three relevant cases: a double-slit interference setup, a harmonic oscillator, and a quantum particle in a uniform gravitational field. For all cases, Nelson’s stochastic trajectories are initially localized at a definite position, thereby violating the Born rule. For the double slit and harmonic oscillator, typical quantum phenomena, such as interferences, always occur well after the establishment of the Born rule. In contrast, for the case of quantum particles free-falling in the gravity field of the Earth, an interference pattern is observed <i>before</i> the completion of the quantum relaxation. This finding may pave the way to experiments able to discriminate standard quantum mechanics, where the Born rule is always satisfied, from Nelson’s theory, for which an early subquantum dynamics may be present before full quantum relaxation has occurred. Although the mechanism through which a quantum particle might violate the Born rule remains unknown to date, we speculate that this may occur during fundamental processes, such as beta decay or particle-antiparticle pair production.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71908819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantum and Relativistic Corrections to Maxwell–Boltzmann Ideal Gas Model from a Quantum Phase Space Approach 从量子相空间方法对麦克斯韦-玻尔兹曼理想气体模型的量子和相对论修正
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-03 DOI: 10.1007/s10701-023-00727-5
Rivo Herivola Manjakamanana Ravelonjato, Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Roland Raboanary, Hanitriarivo Rakotoson, Naivo Rabesiranana

The quantum corrections related to the ideal gas model often considered are those associated to the bosonic or fermionic nature of particles. However, in this work, other kinds of corrections related to the quantum nature of phase space are highlighted. These corrections are introduced as improvements in the expression of the partition function of an ideal gas. Then corrected thermodynamics properties of the ideal gas are deduced. Both the non-relativistic quantum and relativistic quantum cases are considered. It is shown that the corrections in the non-relativistic quantum case may be particularly useful to describe the deviation from the Maxwell–Boltzmann model at low temperature and/or in confined space. These corrections can be considered as including the description of quantum size and shape effects. For the relativistic quantum case, the corrections could be relevant for confined space and when the thermal energy of each particle is comparable to their rest energy. The corrections appear mainly as modifications in the thermodynamic equation of state and in the expressions of the partition function and thermodynamic functions like entropy, internal energy and free energy. Expressions corresponding to the Maxwell–Boltzmann model are shown to be asymptotic limits of the corrected expressions.

与理想气体模型有关的量子修正通常被认为是与粒子的玻色子或费米子性质有关的量子修正。然而,在这项工作中,强调了与相空间的量子性质有关的其他类型的校正。这些修正是作为理想气体配分函数表达式的改进而引入的。然后推导了理想气体的修正热力学性质。同时考虑了非相对论性量子和相对论性量子两种情况。结果表明,非相对论性量子情况下的修正对于描述低温和/或密闭空间中与麦克斯韦-玻尔兹曼模型的偏差可能特别有用。这些修正可以被认为包括对量子大小和形状效应的描述。对于相对论性量子的情况,当每个粒子的热能与其静止能量相当时,修正可能与有限空间有关。这些修正主要表现在热力学状态方程、配分函数和熵、内能、自由能等热力学函数的表达式上。与麦克斯韦-玻尔兹曼模型相对应的表达式被证明是修正表达式的渐近极限。
{"title":"Quantum and Relativistic Corrections to Maxwell–Boltzmann Ideal Gas Model from a Quantum Phase Space Approach","authors":"Rivo Herivola Manjakamanana Ravelonjato,&nbsp;Ravo Tokiniaina Ranaivoson,&nbsp;Raoelina Andriambololona,&nbsp;Roland Raboanary,&nbsp;Hanitriarivo Rakotoson,&nbsp;Naivo Rabesiranana","doi":"10.1007/s10701-023-00727-5","DOIUrl":"10.1007/s10701-023-00727-5","url":null,"abstract":"<div><p>The quantum corrections related to the ideal gas model often considered are those associated to the bosonic or fermionic nature of particles. However, in this work, other kinds of corrections related to the quantum nature of phase space are highlighted. These corrections are introduced as improvements in the expression of the partition function of an ideal gas. Then corrected thermodynamics properties of the ideal gas are deduced. Both the non-relativistic quantum and relativistic quantum cases are considered. It is shown that the corrections in the non-relativistic quantum case may be particularly useful to describe the deviation from the Maxwell–Boltzmann model at low temperature and/or in confined space. These corrections can be considered as including the description of quantum size and shape effects. For the relativistic quantum case, the corrections could be relevant for confined space and when the thermal energy of each particle is comparable to their rest energy. The corrections appear mainly as modifications in the thermodynamic equation of state and in the expressions of the partition function and thermodynamic functions like entropy, internal energy and free energy. Expressions corresponding to the Maxwell–Boltzmann model are shown to be asymptotic limits of the corrected expressions.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 5","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Is Superluminal Signaling Possible in Collapse Theories of Quantum Mechanics? 量子力学坍缩理论中可能存在超光速信号吗?
IF 1.5 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-09-23 DOI: 10.1007/s10701-023-00729-3
Shan Gao

It is a received view that superluminal signaling is prohibited in collapse theories of quantum mechanics. In this paper, I argue that this may be not the case. I propose two possible mechanisms of superluminal signaling in collapse theories. The first one is based on the well-accepted solution to the tails problem, and the second one is based on certain assumptions about the minds of observers. Finally, I also discuss how collapse theories can avoid such superluminal signaling.

一般认为,在量子力学的坍缩理论中,超光速信号是被禁止的。在本文中,我认为情况可能并非如此。我提出了坍缩理论中超光速信号传导的两种可能机制。第一个是基于对反面问题的普遍接受的解决方案,第二个是基于对观察者思想的某些假设。最后,我还讨论了坍缩理论如何避免这种超光速信号。
{"title":"Is Superluminal Signaling Possible in Collapse Theories of Quantum Mechanics?","authors":"Shan Gao","doi":"10.1007/s10701-023-00729-3","DOIUrl":"10.1007/s10701-023-00729-3","url":null,"abstract":"<div><p>It is a received view that superluminal signaling is prohibited in collapse theories of quantum mechanics. In this paper, I argue that this may be not the case. I propose two possible mechanisms of superluminal signaling in collapse theories. The first one is based on the well-accepted solution to the tails problem, and the second one is based on certain assumptions about the minds of observers. Finally, I also discuss how collapse theories can avoid such superluminal signaling.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 5","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134878290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Foundations of Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1