首页 > 最新文献

Frontiers of Materials Science最新文献

英文 中文
Fabrication of alginate-derived MoS2@C photocatalyst with enhanced visible-light activity for tetracycline degradation 海藻酸盐衍生的具有增强可见光活性的四环素降解光催化剂MoS2@C的制备
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-12 DOI: 10.1007/s11706-025-0711-6
Jingkun Zhao, Shuaikang Yao, Yingjie Huang, Siyu Gao, Shangru Zhai, Qingda An, Zuoyi Xiao, Feng Zhang

It is undoubtedly a challenge to design an efficient and recyclable photocatalyst for the degradation of tetracycline (TC). In this study, a MoS2@C composite catalyst was fabricated through the simple sulfurization of alginate-based spheres encapsulating ammonium molybdate by thiourea. The incorporation of porous carbon as a co-catalyst significantly augmented reactive active sites, endowing it with great specific surface area and effectively preventing the aggregation of MoS2 nanoparticles. While offering abundant catalytic sites for the reaction, the structure with interconnected channels promoted the adsorption of the reactant. The MoS2@C composites showed excellent photocatalytic performance, achieving a photodegradation ratio of 87.01% for TC within 60 min, superior to that of pure MoS2. Additionally, the photocatalytic mechanism for the degradation of TC was also investigated through free radical trapping experiments in combination with the electron spin resonance technique.

设计一种高效、可回收的降解四环素的光催化剂无疑是一个挑战。本研究通过硫脲包封钼酸铵的藻酸盐基球简单硫化制备了MoS2@C复合催化剂。多孔碳作为助催化剂的掺入显著增加了反应活性位点,使其具有较大的比表面积,有效地阻止了MoS2纳米颗粒的聚集。在为反应提供丰富的催化位点的同时,具有连通通道的结构促进了反应物的吸附。MoS2@C复合材料表现出优异的光催化性能,在60 min内对TC的光降解率达到87.01%,优于纯MoS2。此外,通过自由基捕获实验结合电子自旋共振技术研究了光催化降解TC的机理。
{"title":"Fabrication of alginate-derived MoS2@C photocatalyst with enhanced visible-light activity for tetracycline degradation","authors":"Jingkun Zhao,&nbsp;Shuaikang Yao,&nbsp;Yingjie Huang,&nbsp;Siyu Gao,&nbsp;Shangru Zhai,&nbsp;Qingda An,&nbsp;Zuoyi Xiao,&nbsp;Feng Zhang","doi":"10.1007/s11706-025-0711-6","DOIUrl":"10.1007/s11706-025-0711-6","url":null,"abstract":"<div><p>It is undoubtedly a challenge to design an efficient and recyclable photocatalyst for the degradation of tetracycline (TC). In this study, a MoS<sub>2</sub>@C composite catalyst was fabricated through the simple sulfurization of alginate-based spheres encapsulating ammonium molybdate by thiourea. The incorporation of porous carbon as a co-catalyst significantly augmented reactive active sites, endowing it with great specific surface area and effectively preventing the aggregation of MoS<sub>2</sub> nanoparticles. While offering abundant catalytic sites for the reaction, the structure with interconnected channels promoted the adsorption of the reactant. The MoS<sub>2</sub>@C composites showed excellent photocatalytic performance, achieving a photodegradation ratio of 87.01% for TC within 60 min, superior to that of pure MoS<sub>2</sub>. Additionally, the photocatalytic mechanism for the degradation of TC was also investigated through free radical trapping experiments in combination with the electron spin resonance technique.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yarn-based superhydrophobic wearable sensors for ammonia gas detection at room temperature 用于室温下氨气检测的纱线超疏水可穿戴传感器
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-12 DOI: 10.1007/s11706-025-0715-2
Hao Zhao, Tao Yang, Hao-Kai Peng, Hai-Tao Ren, Bing-Chiuan Shiu, Jia-Horng Lin, Ting-Ting Li, Ching-Wen Lou

Conventional metal-oxide-semiconductor (MOS) gas sensors are limited in wearable gas detection due to their non-flexibility, high operating temperature, and less durability. In this study, a yarn-based superhydrophobic flexible wearable sensor for room-temperature ammonia gas detection was prepared based on the nano-size effect of both nanocore yarns prepared through electrostatic spinning and MOS gas-sensitive materials synthesized via a two-step hydrothermal synthesis approach. The yarn sensor has a response sensitivity of 13.11 towards 100 ppm (1 ppm = 10−6) ammonia at room temperature, a response time and a recovery time of 36 and 21 s, respectively, and a detection limit as low as 10 ppm with the sensitivity of up to 4.76 towards ammonia. In addition, it displays commendable linearity within the concentration range of 10–100 ppm, accompanied by remarkable selectivity and stability, while the hydrophobicity angle reaches 155.74°. Furthermore, its sensing performance still maintains stability even after repeated bending and prolonged operation. The sensor also has stable mechanical properties and flexibility, and can be affixed onto the fabric surface through sewing, which has a specific potential for clothing use.

传统的金属氧化物半导体(MOS)气体传感器由于其不灵活、工作温度高、耐用性差,在可穿戴式气体检测中受到限制。本研究利用静电纺丝制备的纳米芯纱和水热两步法合成的MOS气敏材料的纳米尺寸效应,制备了一种基于纱线的室温氨气检测超疏水柔性可穿戴传感器。纱线传感器在室温下对100 ppm (1 ppm = 10−6)氨的响应灵敏度为13.11,响应时间和恢复时间分别为36和21 s,检测限低至10 ppm,对氨的灵敏度高达4.76。在10 ~ 100 ppm的浓度范围内具有良好的线性关系,具有良好的选择性和稳定性,疏水性角达到155.74°。而且,即使经过多次弯曲和长时间工作,其传感性能仍保持稳定。该传感器还具有稳定的机械性能和柔韧性,可以通过缝纫贴在织物表面,具有特定的服装应用潜力。
{"title":"Yarn-based superhydrophobic wearable sensors for ammonia gas detection at room temperature","authors":"Hao Zhao,&nbsp;Tao Yang,&nbsp;Hao-Kai Peng,&nbsp;Hai-Tao Ren,&nbsp;Bing-Chiuan Shiu,&nbsp;Jia-Horng Lin,&nbsp;Ting-Ting Li,&nbsp;Ching-Wen Lou","doi":"10.1007/s11706-025-0715-2","DOIUrl":"10.1007/s11706-025-0715-2","url":null,"abstract":"<div><p>Conventional metal-oxide-semiconductor (MOS) gas sensors are limited in wearable gas detection due to their non-flexibility, high operating temperature, and less durability. In this study, a yarn-based superhydrophobic flexible wearable sensor for room-temperature ammonia gas detection was prepared based on the nano-size effect of both nanocore yarns prepared through electrostatic spinning and MOS gas-sensitive materials synthesized via a two-step hydrothermal synthesis approach. The yarn sensor has a response sensitivity of 13.11 towards 100 ppm (1 ppm = 10<sup>−6</sup>) ammonia at room temperature, a response time and a recovery time of 36 and 21 s, respectively, and a detection limit as low as 10 ppm with the sensitivity of up to 4.76 towards ammonia. In addition, it displays commendable linearity within the concentration range of 10–100 ppm, accompanied by remarkable selectivity and stability, while the hydrophobicity angle reaches 155.74°. Furthermore, its sensing performance still maintains stability even after repeated bending and prolonged operation. The sensor also has stable mechanical properties and flexibility, and can be affixed onto the fabric surface through sewing, which has a specific potential for clothing use.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Facile preparation and property analyses of L-CNC/SiO2-based composite superhydrophobic coating L-CNC/ sio2基复合超疏水涂层的制备及性能分析
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-12 DOI: 10.1007/s11706-025-0714-3
Wentao Huang, Qihui Ye, Changying Ren, Youwei Lu, Yuxin Cai, Wenbiao Zhang, Jingda Huang
{"title":"Erratum to: Facile preparation and property analyses of L-CNC/SiO2-based composite superhydrophobic coating","authors":"Wentao Huang,&nbsp;Qihui Ye,&nbsp;Changying Ren,&nbsp;Youwei Lu,&nbsp;Yuxin Cai,&nbsp;Wenbiao Zhang,&nbsp;Jingda Huang","doi":"10.1007/s11706-025-0714-3","DOIUrl":"10.1007/s11706-025-0714-3","url":null,"abstract":"","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An electroconductive ink containing the reduced graphene oxide-metal oxide-carbon nanotube semiconductor applied to flexible electronic circuits 一种用于柔性电子电路的含有还原氧化石墨烯-金属氧化物-碳纳米管半导体的导电油墨
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-12 DOI: 10.1007/s11706-025-0712-5
Hassan Oriyomi Shoyiga, Bice Suzan Martincigh, Vincent Onserio Nyamori

We present an interesting low-cost, green, and scalable technique for direct ink writing for flexible electronic applications different from traditional fabrication techniques. In this work, a reduced graphene oxide (RGO)-bismuth oxide (Bi2O3)/carbon nanotube (CNT) (RGBC) ternary conductive ink was prepared by an initial synthesis of RGO-Bi2O3 (RGB) via a hydrothermal method. This was followed by the fabrication of conductive ink through homogenous mixing of the binary nanocomposite with CNTs in a mixture of ethanol, ethylene glycol, glycerol, and double-distilled water as the solvent. Electronic circuits were fabricated through directly writing the prepared ink on flexible nanocrystalline cellulose (NCC) thin film substrates. The nanocomposites consisted of rod-shaped nanoparticles that were grown on the surface of the nanographene sheet. The semiconductor nanocomposite exhibited excellent conductivity and further confirmed by applying it as an electrode in the electrical circuit to light a light-emitting diode (LED) bulb. The highest electrical conductivity achieved was 2.84 × 103 S·m−1 with a contact angle of 37°. The electronic circuit written using the conductive ink exhibited good homogeneity, uniformity, and adhesion. The LED experiment demonstrates the good conductivity of the electroconductive circuit and prepared ink. Hence, the NCC substrate and RGBC conductive ink showcase an excellent potential for flexible electronic applications.

我们提出了一种有趣的低成本,绿色和可扩展的技术,用于柔性电子应用的直接墨水书写,不同于传统的制造技术。本研究通过水热法初步合成氧化石墨烯-氧化铋(Bi2O3)/碳纳米管(CNT) (RGBC)三元导电油墨。随后,通过在乙醇、乙二醇、甘油和双蒸馏水的混合物中均匀混合含有碳纳米管的二元纳米复合材料,制备导电油墨。将制备好的墨水直接写入柔性纳米晶纤维素(NCC)薄膜衬底上,制备了电子电路。纳米复合材料由生长在纳米石墨烯片表面的棒状纳米颗粒组成。半导体纳米复合材料表现出优异的导电性,并通过将其作为电极应用于电路中以点亮发光二极管(LED)灯泡进一步证实。在接触角为37°时,获得的最高电导率为2.84 × 103 S·m−1。使用导电墨水书写的电子电路表现出良好的均匀性、均匀性和附着力。LED实验表明,所制备的导电电路和油墨具有良好的导电性。因此,NCC基板和RGBC导电油墨在柔性电子应用中显示出良好的潜力。
{"title":"An electroconductive ink containing the reduced graphene oxide-metal oxide-carbon nanotube semiconductor applied to flexible electronic circuits","authors":"Hassan Oriyomi Shoyiga,&nbsp;Bice Suzan Martincigh,&nbsp;Vincent Onserio Nyamori","doi":"10.1007/s11706-025-0712-5","DOIUrl":"10.1007/s11706-025-0712-5","url":null,"abstract":"<div><p>We present an interesting low-cost, green, and scalable technique for direct ink writing for flexible electronic applications different from traditional fabrication techniques. In this work, a reduced graphene oxide (RGO)-bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>)/carbon nanotube (CNT) (RGBC) ternary conductive ink was prepared by an initial synthesis of RGO-Bi<sub>2</sub>O<sub>3</sub> (RGB) via a hydrothermal method. This was followed by the fabrication of conductive ink through homogenous mixing of the binary nanocomposite with CNTs in a mixture of ethanol, ethylene glycol, glycerol, and double-distilled water as the solvent. Electronic circuits were fabricated through directly writing the prepared ink on flexible nanocrystalline cellulose (NCC) thin film substrates. The nanocomposites consisted of rod-shaped nanoparticles that were grown on the surface of the nanographene sheet. The semiconductor nanocomposite exhibited excellent conductivity and further confirmed by applying it as an electrode in the electrical circuit to light a light-emitting diode (LED) bulb. The highest electrical conductivity achieved was 2.84 × 10<sup>3</sup> S·m<sup>−1</sup> with a contact angle of 37°. The electronic circuit written using the conductive ink exhibited good homogeneity, uniformity, and adhesion. The LED experiment demonstrates the good conductivity of the electroconductive circuit and prepared ink. Hence, the NCC substrate and RGBC conductive ink showcase an excellent potential for flexible electronic applications.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surfactant-free emulsion electrospinning of curcumin-loaded poly(ε-caprolactone)/bovine serum albumin composite fibers for biomedical applications 姜黄素负载聚(ε-己内酯)/牛血清白蛋白复合纤维的无表面活性剂乳液静电纺丝研究
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-12 DOI: 10.1007/s11706-025-0717-0
Peng-Hui Zhu, Shu-Hua Teng, Peng Wang

A novel and eco-friendly ethyl acetate/water solvent system was employed to create stable water-in-oil (W/O) emulsions of curcumin (Cur)-loaded poly(ε-caprolactone) (PCL)/bovine serum albumin (BSA) without the need for surfactants. The size of emulsion droplets decreased with the rise of the BSA concentration but increased with the drop of the oil-to-water (OTW) volume ratio. Upon electrospinning, the morphology of Cur-loaded PCL/BSA composites transformed from bead-like structures to uniform fibers as the BSA concentration rose from 0% (w/v) to 10% (w/v). With the enhancement of the OTW volume ratio, the composite fibers displayed an increased diameter and a consistently uniform morphology. The highest modulus of elasticity (0.198 MPa) and the largest elongation at break (199%) of fibers were achieved at the OTW volume ratio of 7:3, while the maximum tensile strength (3.83 MPa) was obtained at 8:2. Notably, the presence of BSA resulted in the superhydrophilicity of composite fibers. Moreover, all composite fibers exhibited sustained drug release behaviors, especially for those with the OTW volume ratio of 7:3, the release behavior of which was the best to match the first-order model. This study is expected to improve biofunctions of hydrophobic PCL and expand its applications in biomedical fields.

采用新型环保的乙酸乙酯/水溶剂体系制备了负载姜黄素(Cur)的聚ε-己内酯(PCL)/牛血清白蛋白(BSA)的油包水(W/O)乳液,无需添加表面活性剂。乳状液液滴大小随BSA浓度的升高而减小,随OTW体积比的减小而增大。静电纺丝后,随着BSA浓度从0% (w/v)增加到10% (w/v),负载cu的PCL/BSA复合材料的形貌由珠状结构转变为均匀纤维。随着OTW体积比的增大,复合纤维的直径增大,形貌一致。当OTW体积比为7:3时,纤维的弹性模量最高(0.198 MPa),断裂伸长率最高(199%),拉伸强度最大(3.83 MPa)。值得注意的是,BSA的存在导致了复合纤维的超亲水性。此外,所有复合纤维均表现出持续的药物释放行为,特别是当OTW体积比为7:3时,其释放行为最符合一阶模型。本研究有望进一步完善疏水性聚乳酸的生物功能,扩大其在生物医学领域的应用。
{"title":"Surfactant-free emulsion electrospinning of curcumin-loaded poly(ε-caprolactone)/bovine serum albumin composite fibers for biomedical applications","authors":"Peng-Hui Zhu,&nbsp;Shu-Hua Teng,&nbsp;Peng Wang","doi":"10.1007/s11706-025-0717-0","DOIUrl":"10.1007/s11706-025-0717-0","url":null,"abstract":"<div><p>A novel and eco-friendly ethyl acetate/water solvent system was employed to create stable water-in-oil (W/O) emulsions of curcumin (Cur)-loaded poly(ε-caprolactone) (PCL)/bovine serum albumin (BSA) without the need for surfactants. The size of emulsion droplets decreased with the rise of the BSA concentration but increased with the drop of the oil-to-water (OTW) volume ratio. Upon electrospinning, the morphology of Cur-loaded PCL/BSA composites transformed from bead-like structures to uniform fibers as the BSA concentration rose from 0% (w/v) to 10% (w/v). With the enhancement of the OTW volume ratio, the composite fibers displayed an increased diameter and a consistently uniform morphology. The highest modulus of elasticity (0.198 MPa) and the largest elongation at break (199%) of fibers were achieved at the OTW volume ratio of 7:3, while the maximum tensile strength (3.83 MPa) was obtained at 8:2. Notably, the presence of BSA resulted in the superhydrophilicity of composite fibers. Moreover, all composite fibers exhibited sustained drug release behaviors, especially for those with the OTW volume ratio of 7:3, the release behavior of which was the best to match the first-order model. This study is expected to improve biofunctions of hydrophobic PCL and expand its applications in biomedical fields.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium sulfate microparticle size modification for improved alginate hydrogel fabrication and its application in 3D cell culture 改良海藻酸盐水凝胶制备及其在三维细胞培养中的应用
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-27 DOI: 10.1007/s11706-025-0713-4
Joo Ho Kim, Siddharth Iyer, Christian Tessman, Shashank Vummidi Lakshman, Heemin Kang, Luo Gu

Calcium ion-crosslinked alginate hydrogels are widely used as a materials system for investigating cell behavior in 3D environments in vitro. Suspensions of calcium sulfate particles are often used as the source of Ca2+ to control the rate of gelation. However, the instability of calcium sulfate suspensions can increase chances of reduced homogeneity of the resulting gel and requires researcher’s proficiency. Here, we show that ball-milled calcium sulfate microparticles (MPs) with smaller sizes can create more stable crosslinker suspensions than unprocessed or simply autoclaved calcium sulfate particles. In particular, 15 µm ball-milled calcium sulfate MPs result in gels that are more homogeneous with a balanced gelation rate, which facilitates fabrication of gels with consistent mechanical properties and reliable performance for 3D cell culture. Overall, these MPs represent an improved method for alginate hydrogel fabrication that can increase experimental reliability and quality for 3D cell culture.

钙离子交联海藻酸盐水凝胶作为一种材料体系被广泛应用于体外三维环境中细胞行为的研究。硫酸钙颗粒悬浮液通常用作Ca2+的来源,以控制凝胶化的速度。然而,硫酸钙悬浮液的不稳定性会增加凝胶均匀性降低的机会,需要研究人员的熟练程度。在这里,我们表明,球磨硫酸钙微粒(MPs)具有更小的尺寸可以产生更稳定的交联剂悬浮液比未经处理或简单的蒸压硫酸钙颗粒。特别是,15µm球磨硫酸钙MPs的凝胶更加均匀,凝胶速率平衡,有利于制造具有一致机械性能和可靠性能的凝胶,用于3D细胞培养。总的来说,这些MPs代表了一种改进的海藻酸盐水凝胶制造方法,可以提高3D细胞培养的实验可靠性和质量。
{"title":"Calcium sulfate microparticle size modification for improved alginate hydrogel fabrication and its application in 3D cell culture","authors":"Joo Ho Kim,&nbsp;Siddharth Iyer,&nbsp;Christian Tessman,&nbsp;Shashank Vummidi Lakshman,&nbsp;Heemin Kang,&nbsp;Luo Gu","doi":"10.1007/s11706-025-0713-4","DOIUrl":"10.1007/s11706-025-0713-4","url":null,"abstract":"<div><p>Calcium ion-crosslinked alginate hydrogels are widely used as a materials system for investigating cell behavior in 3D environments <i>in vitro</i>. Suspensions of calcium sulfate particles are often used as the source of Ca<sup>2+</sup> to control the rate of gelation. However, the instability of calcium sulfate suspensions can increase chances of reduced homogeneity of the resulting gel and requires researcher’s proficiency. Here, we show that ball-milled calcium sulfate microparticles (MPs) with smaller sizes can create more stable crosslinker suspensions than unprocessed or simply autoclaved calcium sulfate particles. In particular, 15 µm ball-milled calcium sulfate MPs result in gels that are more homogeneous with a balanced gelation rate, which facilitates fabrication of gels with consistent mechanical properties and reliable performance for 3D cell culture. Overall, these MPs represent an improved method for alginate hydrogel fabrication that can increase experimental reliability and quality for 3D cell culture.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of collagen and nano-hydroxyapatite-based novel self-healing cartilage 开发基于胶原蛋白和纳米羟基磷灰石的新型自愈合软骨
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-20 DOI: 10.1007/s11706-024-0684-x
Priyanka Mankotia, Kashma Sharma, Vishal Sharma, Yogendra Kumar Mishra, Vijay Kumar

In recent years, research on self-healing polymers for diverse biomedical applications has surged due to their resemblance to the native extracellular matrix. Here, we introduce a novel self-healing hydrogel scaffold made from collagen (Col) and nano-hydroxyapatite (nHA) via a one-pot-synthesis approach under the influence of heating in less than 10 min. Process parameters, including the quantities of Col, guar gum, solvent, nHA, borax, and glycerol in the system were optimized for the minimization of the self-healing time. The synthesized hydrogel and polymers underwent characterization via FTIR, SEM, EDS, TGA, and 13C-NMR. Additionally, the hydrogel showed hemocompatibility with only 6.76% hemolysis at 10 µg·mL−1, while the scaffold maintained cellular metabolic activity at all concentrations for 24 h, with the optimal viability at 1 and 2.5 µg·mL−1, sustaining 93.5% and 90% viability, respectively. Moreover, the hydrogel scaffold exhibited rapid self-healing within 30 s of damage, alongside a tough and flexible nature, as indicated by its swelling rate, biodegradation under various biological pH solutions, and tensile strength of 0.75 MPa. Hence, the innovative Col and nHA self-healing hydrogel scaffold emerges as an ideal, non-toxic, cost-effective, and easily synthesized material with promising potential in cartilage repair applications.

近年来,由于其与天然细胞外基质的相似性,对各种生物医学应用的自修复聚合物的研究激增。在此,我们介绍了一种新型的自修复水凝胶支架,由胶原蛋白(Col)和纳米羟基磷灰石(nHA)在加热的影响下,在不到10分钟的时间内通过一锅合成的方法制成。优化了工艺参数,包括Col、瓜尔胶、溶剂、nHA、硼砂和甘油的数量,以最大限度地缩短自修复时间。合成的水凝胶和聚合物通过FTIR、SEM、EDS、TGA和13C-NMR进行了表征。此外,在10µg·mL−1浓度下,水凝胶表现出血液相容性,溶血率仅为6.76%,而支架在所有浓度下保持细胞代谢活性24 h,在1和2.5µg·mL−1浓度下的最佳活力分别为93.5%和90%。此外,水凝胶支架在损伤后30秒内表现出快速自愈,同时具有韧性和柔韧性,其膨胀率、在各种生物pH溶液下的生物降解以及抗拉强度为0.75 MPa。因此,创新的Col和nHA自愈水凝胶支架作为一种理想的、无毒的、具有成本效益的、易于合成的材料,在软骨修复应用中具有很大的潜力。
{"title":"Development of collagen and nano-hydroxyapatite-based novel self-healing cartilage","authors":"Priyanka Mankotia,&nbsp;Kashma Sharma,&nbsp;Vishal Sharma,&nbsp;Yogendra Kumar Mishra,&nbsp;Vijay Kumar","doi":"10.1007/s11706-024-0684-x","DOIUrl":"10.1007/s11706-024-0684-x","url":null,"abstract":"<div><p>In recent years, research on self-healing polymers for diverse biomedical applications has surged due to their resemblance to the native extracellular matrix. Here, we introduce a novel self-healing hydrogel scaffold made from collagen (Col) and nano-hydroxyapatite (nHA) via a one-pot-synthesis approach under the influence of heating in less than 10 min. Process parameters, including the quantities of Col, guar gum, solvent, nHA, borax, and glycerol in the system were optimized for the minimization of the self-healing time. The synthesized hydrogel and polymers underwent characterization via FTIR, SEM, EDS, TGA, and <sup>13</sup>C-NMR. Additionally, the hydrogel showed hemocompatibility with only 6.76% hemolysis at 10 µg·mL<sup>−1</sup>, while the scaffold maintained cellular metabolic activity at all concentrations for 24 h, with the optimal viability at 1 and 2.5 µg·mL<sup>−1</sup>, sustaining 93.5% and 90% viability, respectively. Moreover, the hydrogel scaffold exhibited rapid self-healing within 30 s of damage, alongside a tough and flexible nature, as indicated by its swelling rate, biodegradation under various biological pH solutions, and tensile strength of 0.75 MPa. Hence, the innovative Col and nHA self-healing hydrogel scaffold emerges as an ideal, non-toxic, cost-effective, and easily synthesized material with promising potential in cartilage repair applications.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying functional groups in the active layer of polyamide nanofiltration membranes via the dye adsorption method 染料吸附法定量聚酰胺纳滤膜活性层中的官能团
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-10 DOI: 10.1007/s11706-024-0706-8
Li-ping Yue, Fan-xin Kong, Jin-fu Chen, Ai-guo Zhou, Guang-dong Sun

Ionized amine group (R-NH2) and carboxyl group (R-COOH) within the active layer of polyamide (PA) nanofiltration membranes result in the formation of positive (R-NH +3 ) and negative (R-COO) functional groups, respectively, which determines membrane performance and is essential for membrane fabrication and modification. Herein, a facile dye adsorption/desorption method using Orange II and Toluidine Blue O dyes was developed to measure the densities of R-NH2, R-NH +3 , R-COOH, or R-COO on surfaces of six PA membranes, and the correlation between the density of such groups and the zeta potential was established. The dye adsorption method was proven reliable due to its lower standard deviation, detection limit, and quantification limit values. Furthermore, the densities of R-NH +3 or R-COO under different pH values were measured, fitting well with results calculated from the acid-base equilibrium theory. Additionally, a correlation was established between the net surface density ([R-NH +3 ] − [R-COO]) and the surface charge density (σ) calculated via the Gouy–Chapman model based on zeta potential results. The resulted correlation (σ/(mC·m−2) = (3.67 ± 0.08) × ([R-NH +3 ] − [R-COO])/(nmol·cm−2) + (0.295 ± 0.08)) effectively predicts the σ value of the membrane. This study provides a facile and reliable dye adsorption method for measuring the density of R-NH2, R-NH +3 , R-COOH, or R-COO, enabling an in-depth understanding of membrane charge properties.

聚酰胺(PA)纳滤膜活性层内的离子胺基(R-NH2)和羧基(R-COOH)分别形成正官能团(R-NH +3)和负官能团(R-COO−),这决定了膜的性能,是制备和修饰膜的必要条件。本文建立了一种简便的染料吸附/解吸方法,利用橙色II和甲苯胺蓝O染料测量了6种PA膜表面的R-NH2、r - nh3、R-COOH和R-COO−的密度,并建立了这些基团的密度与zeta电位之间的关系。染料吸附法具有较低的标准偏差、检出限和定量限。测定了不同pH值下R-NH +3和R-COO−的密度,结果与酸碱平衡理论的计算结果吻合较好。此外,基于zeta电位结果,通过Gouy-Chapman模型计算得到净表面密度([R-NH +3]−[R-COO−])与表面电荷密度(σ)之间存在相关性。得到的相关性(σ/(mC·m−2)=(3.67±0.08)× ([R-NH +3] - [R-COO−])/(nmol·cm−2)+(0.295±0.08))有效地预测了膜的σ值。本研究提供了一种简便可靠的染料吸附方法来测量R-NH2、R-NH +3、R-COOH或R-COO−的密度,从而能够深入了解膜电荷性质。
{"title":"Quantifying functional groups in the active layer of polyamide nanofiltration membranes via the dye adsorption method","authors":"Li-ping Yue,&nbsp;Fan-xin Kong,&nbsp;Jin-fu Chen,&nbsp;Ai-guo Zhou,&nbsp;Guang-dong Sun","doi":"10.1007/s11706-024-0706-8","DOIUrl":"10.1007/s11706-024-0706-8","url":null,"abstract":"<div><p>Ionized amine group (R-NH<sub>2</sub>) and carboxyl group (R-COOH) within the active layer of polyamide (PA) nanofiltration membranes result in the formation of positive (R-NH<span>\u0000 <sup>+</sup><sub>3</sub>\u0000 \u0000 </span>) and negative (R-COO<sup>−</sup>) functional groups, respectively, which determines membrane performance and is essential for membrane fabrication and modification. Herein, a facile dye adsorption/desorption method using Orange II and Toluidine Blue O dyes was developed to measure the densities of R-NH<sub>2</sub>, R-NH<span>\u0000 <sup>+</sup><sub>3</sub>\u0000 \u0000 </span>, R-COOH, or R-COO<sup>−</sup> on surfaces of six PA membranes, and the correlation between the density of such groups and the zeta potential was established. The dye adsorption method was proven reliable due to its lower standard deviation, detection limit, and quantification limit values. Furthermore, the densities of R-NH<span>\u0000 <sup>+</sup><sub>3</sub>\u0000 \u0000 </span> or R-COO<sup>−</sup> under different pH values were measured, fitting well with results calculated from the acid-base equilibrium theory. Additionally, a correlation was established between the net surface density ([R-NH<span>\u0000 <sup>+</sup><sub>3</sub>\u0000 \u0000 </span>] − [R-COO<sup>−</sup>]) and the surface charge density (<i>σ</i>) calculated via the Gouy–Chapman model based on zeta potential results. The resulted correlation (<i>σ</i>/(mC·m<sup>−2</sup>) = (3.67 ± 0.08) × ([R-NH<span>\u0000 <sup>+</sup><sub>3</sub>\u0000 \u0000 </span>] − [R-COO<sup>−</sup>])/(nmol·cm<sup>−2</sup>) + (0.295 ± 0.08)) effectively predicts the <i>σ</i> value of the membrane. This study provides a facile and reliable dye adsorption method for measuring the density of R-NH<sub>2</sub>, R-NH<span>\u0000 <sup>+</sup><sub>3</sub>\u0000 \u0000 </span>, R-COOH, or R-COO<sup>−</sup>, enabling an in-depth understanding of membrane charge properties.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion 基于定制扫描策略的TC11合金激光粉末床熔合工艺参数优化
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-10 DOI: 10.1007/s11706-024-0710-z
Chang Shu, Zhiyu Zheng, Peiran Lei, Haijie Xu, Xuedao Shu, Khamis Essa

TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s−1 scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ∼33% (∼400 MPa) greater tensile strength over the line scanning strategy and ∼12% (∼170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks.

TC11的标称成分为Ti-6.5Al-3.5Mo-1.5Zr-0.3Si,采用高性能双相钛合金,可有效提高发动机气动效率和使用可靠性,是发动机叶片的首选材料。然而,在TC11的激光粉末床熔融(L-PBF)中,缺陷控制不足、零件质量不一致、关键工艺参数优化有限等挑战阻碍了工艺的可靠性和可扩展性。本研究采用计算流体力学(CFD)方法对L-PBF过程进行模拟,并采用实验设计(DoE)方法分析工艺参数的影响,确定最佳工艺设置。激光功率对孔隙率的影响最大。最佳工艺参数为:激光功率170 W,扫描速度1100 mm·s−1,舱口间距0.1 mm。采用最优工艺参数实现了条纹、直线和棋盘扫描策略。条纹扫描策略的抗拉强度比线扫描策略高约33%(约400 MPa),比棋盘扫描策略高约12%(约170 MPa)。本研究为获得高性能TC11磁盘提供技术支持。
{"title":"Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion","authors":"Chang Shu,&nbsp;Zhiyu Zheng,&nbsp;Peiran Lei,&nbsp;Haijie Xu,&nbsp;Xuedao Shu,&nbsp;Khamis Essa","doi":"10.1007/s11706-024-0710-z","DOIUrl":"10.1007/s11706-024-0710-z","url":null,"abstract":"<div><p>TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s<sup>−1</sup> scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ∼33% (∼400 MPa) greater tensile strength over the line scanning strategy and ∼12% (∼170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of SEM-CL system in the characterization of material microstructures SEM-CL系统在材料微结构表征中的应用
IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-10 DOI: 10.1007/s11706-024-0709-5
Rongrong Jiang, Yirong Yao, Jianmin Guan, Jiafeng Shen, Huanming Lu, Ming Li

Cathodoluminescence (CL) characterization technology refers to a technical approach for evaluating the luminescent properties of samples by collecting photon signals generated under electron beam excitation. By detecting the intensity and wavelength of the emitted light, the energy band structure and forbidden bandwidth of a sample can be identified. After a CL spectrometer is mounted on a scanning electron microscope (SEM), functions are integrated, such as high spatial resolution, morphological observation, and energy-dispersive spectroscopy (EDS) to analyze samples, offering unique and irreplaceable advantages for the microstructural analysis of certain materials. This paper reviews the applications of SEM-CL systems in the characterization of material microstructures in recent years, illustrating the utility of the SEM-CL system in various materials including geological minerals, perovskite materials, semiconductor materials, non-metallic inclusions, and functional ceramics through typical case studies.

阴极发光(CL)表征技术是指通过收集电子束激发下产生的光子信号来评价样品发光特性的技术方法。通过检测发射光的强度和波长,可以识别样品的能带结构和禁带带宽。将CL光谱仪安装在扫描电子显微镜(SEM)上,集高空间分辨率、形态观察、能谱分析(EDS)等功能于一体,对样品进行分析,为某些材料的微观结构分析提供了独特的、不可替代的优势。本文综述了近年来SEM-CL系统在材料微结构表征中的应用,通过典型案例说明了SEM-CL系统在地质矿物、钙钛矿材料、半导体材料、非金属夹杂物、功能陶瓷等材料中的应用。
{"title":"Application of SEM-CL system in the characterization of material microstructures","authors":"Rongrong Jiang,&nbsp;Yirong Yao,&nbsp;Jianmin Guan,&nbsp;Jiafeng Shen,&nbsp;Huanming Lu,&nbsp;Ming Li","doi":"10.1007/s11706-024-0709-5","DOIUrl":"10.1007/s11706-024-0709-5","url":null,"abstract":"<div><p>Cathodoluminescence (CL) characterization technology refers to a technical approach for evaluating the luminescent properties of samples by collecting photon signals generated under electron beam excitation. By detecting the intensity and wavelength of the emitted light, the energy band structure and forbidden bandwidth of a sample can be identified. After a CL spectrometer is mounted on a scanning electron microscope (SEM), functions are integrated, such as high spatial resolution, morphological observation, and energy-dispersive spectroscopy (EDS) to analyze samples, offering unique and irreplaceable advantages for the microstructural analysis of certain materials. This paper reviews the applications of SEM-CL systems in the characterization of material microstructures in recent years, illustrating the utility of the SEM-CL system in various materials including geological minerals, perovskite materials, semiconductor materials, non-metallic inclusions, and functional ceramics through typical case studies.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers of Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1