Nitrogen atom doping has been found to enhance the electrochemical performance of porous carbon (PC). In this study, hollow tubular nitrogen-doped porous carbon (N/PC) was synthesized using polyvinylpyrrolidone as the carbon–nitrogen source and fibrous brucite as the template through carbonization. The effects of nitrogen and argon protective atmospheres on the nitrogen content, the specific surface area (SSA), and electrochemical properties of N/PC were investigated. The results showed that compared with N/FBC-Ar, N/FBC-N2 prepared in nitrogen protective atmosphere had a higher nitrogen content and a larger proportion of pyrrolic nitrogen (N-5) and pyridinic nitrogen (N-6). N/FBC-N2 displayed a specific capacitance (C) of 194.1 F·g−1 at 1 A·g−1, greater than that of N/FBC-Ar (174.3 F·g−1). This work reveals that the nitrogen doping with a higher nitrogen content in nitrogen protective atmosphere is more favorable. Furthermore, a larger proportion of pyrrolic nitrogen and pyridinic nitrogen in the doped nitrogen atoms significantly enhances the electrochemical performance.
{"title":"Effect of carbonization atmosphere on electrochemical properties of nitrogen-doped porous carbon","authors":"Fangfang Liu, Jinan Niu, Xiuyun Chuan, Yupeng Zhao","doi":"10.1007/s11706-023-0669-1","DOIUrl":"10.1007/s11706-023-0669-1","url":null,"abstract":"<div><p>Nitrogen atom doping has been found to enhance the electrochemical performance of porous carbon (PC). In this study, hollow tubular nitrogen-doped porous carbon (N/PC) was synthesized using polyvinylpyrrolidone as the carbon–nitrogen source and fibrous brucite as the template through carbonization. The effects of nitrogen and argon protective atmospheres on the nitrogen content, the specific surface area (SSA), and electrochemical properties of N/PC were investigated. The results showed that compared with N/FBC-Ar, N/FBC-N<sub>2</sub> prepared in nitrogen protective atmosphere had a higher nitrogen content and a larger proportion of pyrrolic nitrogen (N-5) and pyridinic nitrogen (N-6). N/FBC-N<sub>2</sub> displayed a specific capacitance (<i>C</i>) of 194.1 F·g<sup>−1</sup> at 1 A·g<sup>−1</sup>, greater than that of N/FBC-Ar (174.3 F·g<sup>−1</sup>). This work reveals that the nitrogen doping with a higher nitrogen content in nitrogen protective atmosphere is more favorable. Furthermore, a larger proportion of pyrrolic nitrogen and pyridinic nitrogen in the doped nitrogen atoms significantly enhances the electrochemical performance.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138480837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.1007/s11706-023-0667-3
Changxin Hou, Huike Xing, Xubo Yuan
Monoclonal antibodies have been used in many diseases, but how to improve their delivery efficiency is still a key issue. As the modification of zwitterionic polymers can maintain the stability and biological activity of monoclonal antibodies, in this study, zwitterionic monomers, sulfobetaine methacrylate (SBMA), and 3-[[2-(methacryloyloxy) ethyl] dimethylammonio] propionate (CBMA) were used to prepare monoclonal antibody-loaded zwitterionic nanoparticles with the aid of the crosslinker of MMP-2 enzyme-responsive peptide which was a rapid synthesis process under mild conditions. The results from dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) indicated that a series of zwitterionic nanoparticles had been successfully prepared by the in situ free radical polymerization using the MMP-2 enzyme-responsive peptide as the cross-linking agent. These nanoparticles were spherical with the sizes of (18.7±1.9) nm (SBMA nanoparticle) and (18.2±2.1) nm (CBMA nanoparticle), and the surface contained zwitterionic polymers. It was revealed that they had no cytotoxicity, could be released in tumor microenvironment by enzyme to inhibit the growth of tumor cells, and was able to effectively penetrate endothelial cells (> 2%) by transwell. Therefore, the development of this strategy has a great prospect for the delivery of monoclonal antibodies.
{"title":"Preparation and characterization of enzyme-responsive zwitterionic nanoparticles for monoclonal antibody delivery","authors":"Changxin Hou, Huike Xing, Xubo Yuan","doi":"10.1007/s11706-023-0667-3","DOIUrl":"10.1007/s11706-023-0667-3","url":null,"abstract":"<div><p>Monoclonal antibodies have been used in many diseases, but how to improve their delivery efficiency is still a key issue. As the modification of zwitterionic polymers can maintain the stability and biological activity of monoclonal antibodies, in this study, zwitterionic monomers, sulfobetaine methacrylate (SBMA), and 3-[[2-(methacryloyloxy) ethyl] dimethylammonio] propionate (CBMA) were used to prepare monoclonal antibody-loaded zwitterionic nanoparticles with the aid of the crosslinker of MMP-2 enzyme-responsive peptide which was a rapid synthesis process under mild conditions. The results from dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) indicated that a series of zwitterionic nanoparticles had been successfully prepared by the <i>in situ</i> free radical polymerization using the MMP-2 enzyme-responsive peptide as the cross-linking agent. These nanoparticles were spherical with the sizes of (18.7±1.9) nm (SBMA nanoparticle) and (18.2±2.1) nm (CBMA nanoparticle), and the surface contained zwitterionic polymers. It was revealed that they had no cytotoxicity, could be released in tumor microenvironment by enzyme to inhibit the growth of tumor cells, and was able to effectively penetrate endothelial cells (> 2%) by transwell. Therefore, the development of this strategy has a great prospect for the delivery of monoclonal antibodies.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1007/s11706-023-0666-4
Tingting Huang, Tao Huang, Pin Luo, Di Xiao, Yiping Huang, Shenyu Yang, Rong Zeng, Mei Tu
Pore characteristics have been identified as key design parameters for osteoimmunomodulation. The strategy reported here is to create an appropriate immune microenvironment by regulating pore characteristics of scaffolds, thereby promoting early angiogenesis and enhancing osteogenesis. A series of collagen/nanohydroxyapatite (Col/nHAP) composite scaffolds with ordered lamellar structures and different layer spacings were prepared by mimicking the ordered lamellar topology of the bone matrix. Our research indicated that the layer spacing and ordered topology of the scaffold exerted an important influence on phenotype transformation of macrophages and the secretion of angiogenic factors. The Col/nHAP-O(135) with large layer spacing not only supported cell attachment and diffusion in vitro, but also promoted early angiogenesis by timely switching from M1 to M2 macrophage phenotype. In vivo data showed that the layer spacing and the ordered structure of the scaffold synergistically regulated the inflammatory response and triggered macrophages to secrete more angiogenesis related cytokines. Col/nHAP-O(135) considerably promoted the neovascularization and new bone formation in the defect site, indicating that Col/nHAP-O(135) could significantly enhance the osteogenic activity of stem cells with the involvement of macrophages.
{"title":"Biomimetic construction of oriented lamellar Col/nHAP composite scaffolds and mediation of macrophages to promote angiogenesis and bone regeneration","authors":"Tingting Huang, Tao Huang, Pin Luo, Di Xiao, Yiping Huang, Shenyu Yang, Rong Zeng, Mei Tu","doi":"10.1007/s11706-023-0666-4","DOIUrl":"10.1007/s11706-023-0666-4","url":null,"abstract":"<div><p>Pore characteristics have been identified as key design parameters for osteoimmunomodulation. The strategy reported here is to create an appropriate immune microenvironment by regulating pore characteristics of scaffolds, thereby promoting early angiogenesis and enhancing osteogenesis. A series of collagen/nanohydroxyapatite (Col/nHAP) composite scaffolds with ordered lamellar structures and different layer spacings were prepared by mimicking the ordered lamellar topology of the bone matrix. Our research indicated that the layer spacing and ordered topology of the scaffold exerted an important influence on phenotype transformation of macrophages and the secretion of angiogenic factors. The Col/nHAP-O(135) with large layer spacing not only supported cell attachment and diffusion <i>in vitro</i>, but also promoted early angiogenesis by timely switching from M1 to M2 macrophage phenotype. <i>In vivo</i> data showed that the layer spacing and the ordered structure of the scaffold synergistically regulated the inflammatory response and triggered macrophages to secrete more angiogenesis related cytokines. Col/nHAP-O(135) considerably promoted the neovascularization and new bone formation in the defect site, indicating that Col/nHAP-O(135) could significantly enhance the osteogenic activity of stem cells with the involvement of macrophages.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.1007/s11706-023-0660-x
Hao Zhang, Siyuan Luo, Weili Yang, Qisheng Luo, Perumal Ramesh Kannan, Yao Li, Xiangdong Kong
Uncontrolled hemorrhage resulting from traumas causes severe health risks. There is an urgent need for expeditious hemostatic materials to treat bleeding incidents. Here, we developed a natural protein-based hemostatic sponge extracted from nonmulberry cocoons that exhibited rapid coagulation and effective absorption. We first built a degumming and dissolution system suitable for the Dictyoploca japonica cocoons to obtain regenerated silk fibroin (DSF). The DSF was then combined with carboxymethyl chitosan (CMCS) by glutaraldehyde (GA) crosslinking to ensure the structural stability of sponges. The resulting DSF–CMCS–GA exhibited remarkable hemostatic properties, displaying the highest absorption rate. It also demonstrated comparable efficacy to commercial hemostatic sponges. The blood-clotting index and hemolysis test showed that the prepared sponge possessed hemostatic activity and good hemocompatibility. Compared with mulberry silk fibroin hemostatic sponges (SF–CMCS–GA), DSF–CMCS–GA showed slightly better effects, making them a potential alternative to mulberry silk. In conclusion, our study introduces the use of Dictyoploca japonica silk fibroin for hemostasis, highlighting the exploitation of wild silkworm resources and providing an excellent silk fibroin-based hemostatic sealant for acute accident wounds and biomedical applications involving massive hemorrhage.
{"title":"A nonmulberry silk fibroin-based robust mandruka for rapid hemostasis treatment","authors":"Hao Zhang, Siyuan Luo, Weili Yang, Qisheng Luo, Perumal Ramesh Kannan, Yao Li, Xiangdong Kong","doi":"10.1007/s11706-023-0660-x","DOIUrl":"10.1007/s11706-023-0660-x","url":null,"abstract":"<div><p>Uncontrolled hemorrhage resulting from traumas causes severe health risks. There is an urgent need for expeditious hemostatic materials to treat bleeding incidents. Here, we developed a natural protein-based hemostatic sponge extracted from nonmulberry cocoons that exhibited rapid coagulation and effective absorption. We first built a degumming and dissolution system suitable for the <i>Dictyoploca japonica</i> cocoons to obtain regenerated silk fibroin (DSF). The DSF was then combined with carboxymethyl chitosan (CMCS) by glutaraldehyde (GA) crosslinking to ensure the structural stability of sponges. The resulting DSF–CMCS–GA exhibited remarkable hemostatic properties, displaying the highest absorption rate. It also demonstrated comparable efficacy to commercial hemostatic sponges. The blood-clotting index and hemolysis test showed that the prepared sponge possessed hemostatic activity and good hemocompatibility. Compared with mulberry silk fibroin hemostatic sponges (SF–CMCS–GA), DSF–CMCS–GA showed slightly better effects, making them a potential alternative to mulberry silk. In conclusion, our study introduces the use of <i>Dictyoploca japonica</i> silk fibroin for hemostasis, highlighting the exploitation of wild silkworm resources and providing an excellent silk fibroin-based hemostatic sealant for acute accident wounds and biomedical applications involving massive hemorrhage.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134878354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tin dioxide nanotubes with N-doped carbon layer (SnO2/N-C NTs) were synthesized through a MoO3 nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO2/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g−1 at 0.1 A·g−1 and a high capacity of 1369.3 mAh·g−1 over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li+ and electrons, and alleviates the volume change of the anode to a certain extent.
{"title":"SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes","authors":"Junhai Wang, Jiandong Zheng, Liping Gao, Chunyu Meng, Jiarui Huang, Sang Woo Joo","doi":"10.1007/s11706-023-0663-7","DOIUrl":"10.1007/s11706-023-0663-7","url":null,"abstract":"<div><p>Tin dioxide nanotubes with N-doped carbon layer (SnO<sub>2</sub>/N-C NTs) were synthesized through a MoO<sub>3</sub> nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO<sub>2</sub>/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> and a high capacity of 1369.3 mAh·g<sup>−1</sup> over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li<sup>+</sup> and electrons, and alleviates the volume change of the anode to a certain extent.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 4","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, a novel visible-light-responsive photocatalyst with high efficiency was firstly synthesized at room temperature. The mild synthetic method resulted in a uniform spherical triazine-based covalent organic framework (TrCOF2) with ultra-high specific surface area as well as chemical stability. Due to the synergistic effect between the self-assembled uniform spherical structure and the abundant triazine-based structure, photoelectron–hole pairs were efficiently separated and migrated on the catalysts. On this basis, TrCOF2 was successfully applied to efficiently degrade bisphenol A (BPA). More than 98% of BPA was deraded after 60 min of visible light treatment, where the active specie of •O