Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.1210020
Aman Messou, Pétémanagnan Jean-Marie Ouattara, FranckMichael Zahui, L. Coulibaly
{"title":"Influence of Lead and Cadmium Concentration on the Accumulation Capacity of <i>Panicum maximum</i>","authors":"Aman Messou, Pétémanagnan Jean-Marie Ouattara, FranckMichael Zahui, L. Coulibaly","doi":"10.4236/ojss.2022.1210020","DOIUrl":"https://doi.org/10.4236/ojss.2022.1210020","url":null,"abstract":"","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70633743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.124006
Fary Diome, Landing Biaye
Soil degradation due to shrinkage and swelling of these clay soils is a problem for agriculture. To understand the physical properties of the soils in this agricultural area, we will use an undisturbed soil monolith 60 cm high and 23 cm in diameter in the laboratory. This study quantified the swelling and shrinkage of these soils during a 10-month experiment. The determination of the hydrodynamic parameters of this monolith made it possible to simulate water transfers in a soil of constant volume and a water transfer in a soil of variable volume. The results of this simulation show significant differences between these two cases, hence the need to integrate the variations in soil volume into the simulation processes of water transfers.
{"title":"Study of Shrinkage and Swelling Phenomena in Clay Soils of Fanaye (Middle Senegal River Valley): Simulation of Water Transfers in a Soil Column","authors":"Fary Diome, Landing Biaye","doi":"10.4236/ojss.2022.124006","DOIUrl":"https://doi.org/10.4236/ojss.2022.124006","url":null,"abstract":"Soil degradation due to shrinkage and swelling of these clay soils is a problem for agriculture. To understand the physical properties of the soils in this agricultural area, we will use an undisturbed soil monolith 60 cm high and 23 cm in diameter in the laboratory. This study quantified the swelling and shrinkage of these soils during a 10-month experiment. The determination of the hydrodynamic parameters of this monolith made it possible to simulate water transfers in a soil of constant volume and a water transfer in a soil of variable volume. The results of this simulation show significant differences between these two cases, hence the need to integrate the variations in soil volume into the simulation processes of water transfers.","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70634288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.1210022
Souoré Irène, B. Simon, Doumnang Mbaigane Jean-Claude, Ngaro M’baïti
{"title":"Study of a Toposequence of West Mayo-Kani Soils (Far North Cameroon)","authors":"Souoré Irène, B. Simon, Doumnang Mbaigane Jean-Claude, Ngaro M’baïti","doi":"10.4236/ojss.2022.1210022","DOIUrl":"https://doi.org/10.4236/ojss.2022.1210022","url":null,"abstract":"","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70633916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.125007
Kenneth Ray Olson
Land subsidence and rising sea levels could result in 40% of the Mekong Delta being covered by the South China Sea within the next few decades. The impact of groundwater withdrawal, in the SE Asia mega deltas of Ganges-Brahmaputra Delta, Jakarta Delta, Chao Phraya Delta and Mekong Delta, is a major reason these deltas are sinking. There are lessons to be learned from both failures and successful remediation efforts in other mega deltas as Vietnam policy makers seek to address Mekong Delta subsidence. Without a significant Vietnam government remediation and mitigation efforts, land subsidence in the Mekong Delta will continue. Land subsidence has occurred in the Mekong Delta as a result of the retention of sediments behind the China and Laos dams on the main stem of the Mekong River, reduced flooding peaks, climate change, sea level rise, storm surges and flooding. In addition, subsidence has been exascerbated by compaction, groundwater extraction for shrimp ponds, rice paddies and the household and drinking water needs of approximately 20 million people living on the Mekong Delta in Vietnam and Cambodia. The Mekong Delta shorelines are eroding and significant land areas, including wetlands, are becoming open water. The wetlands and land mass are also subsiding as a result of the reduction in sediment deposition. Large dams on the mainstem of the Mekong River in China and Laos have reduced peak flows and reduced sediment loads in lower Mekong River. Population and industrial growth have increased groundwater extraction and salt water intrusion as the delta subsides leading to consolidation and reduction in the current plumes flowing into the South China Sea. The primary objective of this paper is to assess the impact of groundwater withdrawals for rice paddies, shrimp ponds, aquaculture, industry and drinking water on Mekong Delta land subsidence. The second-ary objective is to identify mitigation efforts used in other Southeast Asia deltas and make remediation recommendations for the sinking Mekong Delta. Promising mitigation approaches are injecting river water deep into the underlying alluvial sediments, return of the sediments trapped in China and Laos reservoirs to the Mekong River mainstem, increase in the Mekong River flooding peaks, and construction of sea and floodwalls, dykes, polders and levees. The addition of Mekong River sediments to build up existing floodplains, the reduction of coastal shoreline erosion, the planting of mangroves and protection of urban and agricultural areas from being covered by the South China Sea are strategies that could help remediate land subsidence in the Mekong Delta.
{"title":"The Mekong Delta in Vietnam and Cambodia Is Subsiding and in Need of Remediation","authors":"Kenneth Ray Olson","doi":"10.4236/ojss.2022.125007","DOIUrl":"https://doi.org/10.4236/ojss.2022.125007","url":null,"abstract":"Land subsidence and rising sea levels could result in 40% of the Mekong Delta being covered by the South China Sea within the next few decades. The impact of groundwater withdrawal, in the SE Asia mega deltas of Ganges-Brahmaputra Delta, Jakarta Delta, Chao Phraya Delta and Mekong Delta, is a major reason these deltas are sinking. There are lessons to be learned from both failures and successful remediation efforts in other mega deltas as Vietnam policy makers seek to address Mekong Delta subsidence. Without a significant Vietnam government remediation and mitigation efforts, land subsidence in the Mekong Delta will continue. Land subsidence has occurred in the Mekong Delta as a result of the retention of sediments behind the China and Laos dams on the main stem of the Mekong River, reduced flooding peaks, climate change, sea level rise, storm surges and flooding. In addition, subsidence has been exascerbated by compaction, groundwater extraction for shrimp ponds, rice paddies and the household and drinking water needs of approximately 20 million people living on the Mekong Delta in Vietnam and Cambodia. The Mekong Delta shorelines are eroding and significant land areas, including wetlands, are becoming open water. The wetlands and land mass are also subsiding as a result of the reduction in sediment deposition. Large dams on the mainstem of the Mekong River in China and Laos have reduced peak flows and reduced sediment loads in lower Mekong River. Population and industrial growth have increased groundwater extraction and salt water intrusion as the delta subsides leading to consolidation and reduction in the current plumes flowing into the South China Sea. The primary objective of this paper is to assess the impact of groundwater withdrawals for rice paddies, shrimp ponds, aquaculture, industry and drinking water on Mekong Delta land subsidence. The second-ary objective is to identify mitigation efforts used in other Southeast Asia deltas and make remediation recommendations for the sinking Mekong Delta. Promising mitigation approaches are injecting river water deep into the underlying alluvial sediments, return of the sediments trapped in China and Laos reservoirs to the Mekong River mainstem, increase in the Mekong River flooding peaks, and construction of sea and floodwalls, dykes, polders and levees. The addition of Mekong River sediments to build up existing floodplains, the reduction of coastal shoreline erosion, the planting of mangroves and protection of urban and agricultural areas from being covered by the South China Sea are strategies that could help remediate land subsidence in the Mekong Delta.","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70633968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.126011
J. Wright
{"title":"Value of Water Based upon Retail Sales Tax Revenue","authors":"J. Wright","doi":"10.4236/ojss.2022.126011","DOIUrl":"https://doi.org/10.4236/ojss.2022.126011","url":null,"abstract":"","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70634738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.123003
Md. Aliuzzaman Sheik, Anjuman Ara Rajonee, M. H. Rahman
{"title":"Nutrient Dynamics in Recycled Organic Amended Alkaline Soil","authors":"Md. Aliuzzaman Sheik, Anjuman Ara Rajonee, M. H. Rahman","doi":"10.4236/ojss.2022.123003","DOIUrl":"https://doi.org/10.4236/ojss.2022.123003","url":null,"abstract":"","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70634138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.127012
Kenneth Ray Olson, L. Cihacek
Agent Blue, a mixture of cacodylic acid (CH 3 ) As O 2 H) and sodium cacodylate (C 2 H 6 AsNaO 2 ), was a tactical arsenic-based herbicide used during the Vietnam War to destroy grasses and rice crops. Natural and synthetic sources of arsenic can degrade into water-soluble forms and persist in groundwater and potentially contribute to elevating As levels in drinking water. The United States Department of Defense (DOD) and United States Department of Agricultural (USDA) Operation Ranch Hand records for tactical herbicides including Agent Blue sprayed in southern Vietnam during the Vietnam War (1961-1971) are very detailed, rather complete and publicly available. The same is not true for tactical herbicides sprayed by the Republic of Vietnam (RV) during the Khai Quang program which was supported by the U.S. Army, U.S. Navy and Central Intelligence Agency (CIA) in the Mekong Delta. Agent Blue was sprayed by the RV military for three years before the official start of the American-Vietnam War. Few, if any, RV military, US Army, US Navy and CIA spray records exist from 1962 to 1965. Vietnam War veterans, historians and scholars have reported the spraying of 3.2 million liters (468,008 kg As) of Agent Blue on rice paddies and mangrove forests in the Mekong Delta and Central Highlands by the RV military with the support of the US Army, US Navy and CIA. The Institute of Medicine estimated that 3.2 million liters (468,000 bicides sprayed (over 4,712,000 liters (664,392 kg As) from 1961-1971. The RV military and US military (Army and Navy) spray equipment included hand and backpack sprayers, sprayers mounted on Brown Water Navy boats, on Army track vehicles and Army land-based helicopters and helicopters based on the decks of Blue Water Navy ships. Some of these spray missions were a military secret and spray records were classified or if kept were not maintained. Agent Blue containing cacodylic acid had a short half-life and degraded to water-soluble arsenic, which was released into the surface water and/or leached into the groundwater. Once the water-soluble arsenic leached into the Vietnam Mekong Delta groundwater, the arsenic-rich water was pumped back to the surface by tens of thousands of tube wells for urban and agricultural use. The primary objectives of this research are to explore the conditions during the Vietnam War under which 1) the RV military herbicide spray program with the support of the US Navy, CIA and US Army, and 2) the US Air Force spray program during Operation Ranch Hand may have significantly contributed to the natural and anthropic As spikes found in the Mekong Delta today. The environmental impacts of Agent Blue, on the Menominee River at manufacturing sites in the United States, were studied to identify possible As remediation and mitigation strategies. The lessons previously learned at the manufacturing sites in Wisconsin and Michigan, United States can be considered and applied to the Mekong Delta to help mitigate and remedia
{"title":"Agent Blue Spraying in the Mekong Delta during the Vietnam War: Fate of the Arsenic Based Herbicide Weapon Used to Destroy Rice Crop and Mangrove Forests","authors":"Kenneth Ray Olson, L. Cihacek","doi":"10.4236/ojss.2022.127012","DOIUrl":"https://doi.org/10.4236/ojss.2022.127012","url":null,"abstract":"Agent Blue, a mixture of cacodylic acid (CH 3 ) As O 2 H) and sodium cacodylate (C 2 H 6 AsNaO 2 ), was a tactical arsenic-based herbicide used during the Vietnam War to destroy grasses and rice crops. Natural and synthetic sources of arsenic can degrade into water-soluble forms and persist in groundwater and potentially contribute to elevating As levels in drinking water. The United States Department of Defense (DOD) and United States Department of Agricultural (USDA) Operation Ranch Hand records for tactical herbicides including Agent Blue sprayed in southern Vietnam during the Vietnam War (1961-1971) are very detailed, rather complete and publicly available. The same is not true for tactical herbicides sprayed by the Republic of Vietnam (RV) during the Khai Quang program which was supported by the U.S. Army, U.S. Navy and Central Intelligence Agency (CIA) in the Mekong Delta. Agent Blue was sprayed by the RV military for three years before the official start of the American-Vietnam War. Few, if any, RV military, US Army, US Navy and CIA spray records exist from 1962 to 1965. Vietnam War veterans, historians and scholars have reported the spraying of 3.2 million liters (468,008 kg As) of Agent Blue on rice paddies and mangrove forests in the Mekong Delta and Central Highlands by the RV military with the support of the US Army, US Navy and CIA. The Institute of Medicine estimated that 3.2 million liters (468,000 bicides sprayed (over 4,712,000 liters (664,392 kg As) from 1961-1971. The RV military and US military (Army and Navy) spray equipment included hand and backpack sprayers, sprayers mounted on Brown Water Navy boats, on Army track vehicles and Army land-based helicopters and helicopters based on the decks of Blue Water Navy ships. Some of these spray missions were a military secret and spray records were classified or if kept were not maintained. Agent Blue containing cacodylic acid had a short half-life and degraded to water-soluble arsenic, which was released into the surface water and/or leached into the groundwater. Once the water-soluble arsenic leached into the Vietnam Mekong Delta groundwater, the arsenic-rich water was pumped back to the surface by tens of thousands of tube wells for urban and agricultural use. The primary objectives of this research are to explore the conditions during the Vietnam War under which 1) the RV military herbicide spray program with the support of the US Navy, CIA and US Army, and 2) the US Air Force spray program during Operation Ranch Hand may have significantly contributed to the natural and anthropic As spikes found in the Mekong Delta today. The environmental impacts of Agent Blue, on the Menominee River at manufacturing sites in the United States, were studied to identify possible As remediation and mitigation strategies. The lessons previously learned at the manufacturing sites in Wisconsin and Michigan, United States can be considered and applied to the Mekong Delta to help mitigate and remedia","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70634384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.1210019
D. Amara, Ibrahim Benya, S. Kanu, D. Saidu, Raymond Morie Musa, O. S. Vonu, Fayia Brima, Joseph Christian Adamu Mboma, Michael Jusu, F. Turay, A. Kamara
{"title":"Effect of Land Uses on Soil Erodibility in the Njala Area of Southern Sierra Leone","authors":"D. Amara, Ibrahim Benya, S. Kanu, D. Saidu, Raymond Morie Musa, O. S. Vonu, Fayia Brima, Joseph Christian Adamu Mboma, Michael Jusu, F. Turay, A. Kamara","doi":"10.4236/ojss.2022.1210019","DOIUrl":"https://doi.org/10.4236/ojss.2022.1210019","url":null,"abstract":"","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70633704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojss.2022.1210021
Stéphanie Batchakoué Maïga-Yaleu, Abdul-Charif Cissé, Sibiry Albert Kaboré, Damien Hauswirth, O. Issa, M. Kairé, I. Moussa, H. Nacro
{"title":"Evaluation of Combined Landscape Restoration Practices on Soil Organic Carbon Stocks in Semiarid Regions of Burkina Faso","authors":"Stéphanie Batchakoué Maïga-Yaleu, Abdul-Charif Cissé, Sibiry Albert Kaboré, Damien Hauswirth, O. Issa, M. Kairé, I. Moussa, H. Nacro","doi":"10.4236/ojss.2022.1210021","DOIUrl":"https://doi.org/10.4236/ojss.2022.1210021","url":null,"abstract":"","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70633476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}