首页 > 最新文献

园艺研究(英文)最新文献

英文 中文
ERF5.1 modulates carotenoid accumulation by interacting with CCD4.1 in Lycium. ERF5.1通过与枸杞中的CCD4.1相互作用来调节类胡萝卜素的积累。
Pub Date : 2023-11-17 eCollection Date: 2023-12-01 DOI: 10.1093/hr/uhad230
Jianhua Zhao, Yuhui Xu, Haoxia Li, Xinlei Zhu, Yue Yin, Xiyan Zhang, Xiaoya Qin, Jun Zhou, Linyuan Duan, Xiaojie Liang, Ting Huang, Bo Zhang, Ru Wan, Zhigang Shi, Youlong Cao, Wei An

Carotenoids are important natural pigments and have medical and health functions for humans. Carotenoid cleavage dioxygenase 4 (CCD4) and ethylene responsive factor (ERF) participate in carotenoid metabolism, but their roles in Lycium have not been discovered. Here, we annotated LbCCDs from the Lycium reference genome and found that LbCCD4.1 expression was significantly correlated with the carotenoid metabolites during Lycium five fruit developmental stages. Over-expression of LbCCD4.1 in NQ's leaves resulted in a series of significantly lower contents of carotenoid metabolites, including β-carotene and β-cryptoxanthin. Moreover, LbERF5.1, a transcription factor belonging to the ERF family that was located in the nucleus, was isolated. Significant reductions in the carotenoids, especially lutein, violaxanthin and their derivatives, were observed in over-expressing ERF5.1 transgenic NQ's leaves. Over-expression or virus-induced gene silencing of LbERF5.1 in NQ's leaves induced a consistent up- or down-expression, respectively, of LbCCD4.1. Furthermore, yeast one-hybrid and dual-luciferase reporter assays showed that ERF5.1 interacted with the promoter of CCD4.1 to increase its expression, and LbERF5.1 could bind to any one of the three predicted binding sites in the promoter of LbCCD4.1. A transcriptome analysis of LbERF5.1 and LbCCD4.1 over-expressed lines showed similar global transcript expression, and geranylgeranyl diphosphate synthase, phytoene synthase, lycopene δ-cyclase cytochrome, cytochrome P450-type monooxygenase 97A, cytochrome P450-type monooxygenase 97C, and zeaxanthin epoxidase in the carotenoid biosynthesis pathway were differentially expressed. In summary, we uncovered a novel molecular mechanism of carotenoid accumulation that involved an interaction between ERF5.1 and CCD4.1, which may be used to enhance carotenoid in Lycium.

类胡萝卜素是重要的天然色素,对人类具有医疗和保健功能。类胡萝卜素裂解二氧酶4(CCD4)和乙烯反应因子(ERF)参与类胡萝卜素代谢,但它们在枸杞中的作用尚未被发现。在此,我们注释了枸杞参考基因组中的LbCCDs,发现LbCCD4.1的表达与枸杞五个果实发育阶段的类胡萝卜素代谢产物显著相关。LbCCD4.1在NQ叶片中的过度表达导致β-胡萝卜素和β-隐黄素等一系列类胡萝卜素代谢物含量显著降低。此外,还分离出了位于细胞核中的ERF家族转录因子LbERF5.1。在过度表达ERF5.1的转基因NQ叶片中观察到类胡萝卜素显著减少,尤其是叶黄素、长叶黄素及其衍生物。过表达或病毒诱导的 LbERF5.1 基因沉默分别诱导 LbCCD4.1 的一致向上或向下表达。此外,酵母单杂交和双荧光素酶报告实验表明,ERF5.1与CCD4.1的启动子相互作用,提高了其表达量,而LbERF5.1可与LbCCD4.1启动子中三个预测结合位点中的任何一个结合。对LbERF5.1和LbCCD4.1过表达株的转录组分析表明,它们的全局转录本表达量相似,类胡萝卜素生物合成途径中的龙葵素二磷酸合成酶、植物烯合成酶、番茄红素δ-环化酶细胞色素、细胞色素P450型单氧化酶97A、细胞色素P450型单氧化酶97C和玉米黄质环氧化酶的表达量不同。总之,我们发现了一种新的类胡萝卜素积累的分子机制,其中涉及 ERF5.1 和 CCD4.1 之间的相互作用,该机制可用于提高枸杞中类胡萝卜素的含量。
{"title":"<i>ERF5.1</i> modulates carotenoid accumulation by interacting with <i>CCD4.1 in Lycium</i>.","authors":"Jianhua Zhao, Yuhui Xu, Haoxia Li, Xinlei Zhu, Yue Yin, Xiyan Zhang, Xiaoya Qin, Jun Zhou, Linyuan Duan, Xiaojie Liang, Ting Huang, Bo Zhang, Ru Wan, Zhigang Shi, Youlong Cao, Wei An","doi":"10.1093/hr/uhad230","DOIUrl":"https://doi.org/10.1093/hr/uhad230","url":null,"abstract":"<p><p>Carotenoids are important natural pigments and have medical and health functions for humans. Carotenoid cleavage dioxygenase 4 (<i>CCD4</i>) and ethylene responsive factor (ERF) participate in carotenoid metabolism, but their roles in <i>Lycium</i> have not been discovered. Here, we annotated <i>LbCCD</i>s from the <i>Lycium</i> reference genome and found that <i>LbCCD4.1</i> expression was significantly correlated with the carotenoid metabolites during <i>Lycium</i> five fruit developmental stages. Over-expression of <i>LbCCD4.1</i> in NQ's leaves resulted in a series of significantly lower contents of carotenoid metabolites, including β-carotene and β-cryptoxanthin. Moreover, <i>LbERF5.1</i>, a transcription factor belonging to the ERF family that was located in the nucleus, was isolated. Significant reductions in the carotenoids, especially lutein, violaxanthin and their derivatives, were observed in over-expressing <i>ERF5.1</i> transgenic NQ's leaves. Over-expression or virus-induced gene silencing of <i>LbERF5.1</i> in NQ's leaves induced a consistent up- or down-expression, respectively, of <i>LbCCD4.1</i>. Furthermore, yeast one-hybrid and dual-luciferase reporter assays showed that <i>ERF5.1</i> interacted with the promoter of <i>CCD4.1</i> to increase its expression, and <i>LbERF5.1</i> could bind to any one of the three predicted binding sites in the promoter of <i>LbCCD4.1</i>. A transcriptome analysis of <i>LbERF5.1</i> and <i>LbCCD4.1</i> over-expressed lines showed similar global transcript expression, and geranylgeranyl diphosphate synthase, phytoene synthase, lycopene δ-cyclase cytochrome, cytochrome P450-type monooxygenase 97A, cytochrome P450-type monooxygenase 97C, and zeaxanthin epoxidase in the carotenoid biosynthesis pathway were differentially expressed. In summary, we uncovered a novel molecular mechanism of carotenoid accumulation that involved an interaction between <i>ERF5.1</i> and <i>CCD4.1</i>, which may be used to enhance carotenoid in <i>Lycium</i>.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gap-free genome assembly and CYP450 gene family analysis reveal the biosynthesis of anthocyanins in Scutellaria baicalensis. 无间隙基因组组装和 CYP450 基因家族分析揭示了黄芩花青素的生物合成过程。
Pub Date : 2023-11-17 eCollection Date: 2023-12-01 DOI: 10.1093/hr/uhad235
Tianlin Pei, Sanming Zhu, Weizhi Liao, Yumin Fang, Jie Liu, Yu Kong, Mengxiao Yan, Mengying Cui, Qing Zhao

Scutellaria baicalensis Georgi, a member of the Lamiaceae family, is a widely utilized medicinal plant. The flavones extracted from S. baicalensis contribute to numerous health benefits, including anti-inflammatory, antiviral, and anti-tumor activities. However, the incomplete genome assembly hinders biological studies on S. baicalensis. This study presents the first telomere-to-telomere (T2T) gap-free genome assembly of S. baicalensis through the integration of Pacbio HiFi, Nanopore ultra-long and Hi-C technologies. A total of 384.59 Mb of genome size with a contig N50 of 42.44 Mb was obtained, and all sequences were anchored into nine pseudochromosomes without any gap or mismatch. In addition, we analysed the major cyanidin- and delphinidin-based anthocyanins involved in the determination of blue-purple flower using a widely-targeted metabolome approach. Based on the genome-wide identification of Cytochrome P450 (CYP450) gene family, three genes (SbFBH1, 2, and 5) encoding flavonoid 3'-hydroxylases (F3'Hs) and one gene (SbFBH7) encoding flavonoid 3'5'-hydroxylase (F3'5'H) were found to hydroxylate the B-ring of flavonoids. Our studies enrich the genomic information available for the Lamiaceae family and provide a toolkit for discovering CYP450 genes involved in the flavonoid decoration.

黄芩(Scutellaria baicalensis Georgi)是一种广泛使用的药用植物,属于唇形科植物。从黄芩中提取的黄酮具有多种保健功效,包括抗炎、抗病毒和抗肿瘤活性。然而,不完整的基因组组装阻碍了对黄芩的生物学研究。本研究通过整合 Pacbio HiFi、Nanopore ultra-long 和 Hi-C 技术,首次对黄芩进行了端粒到端粒(T2T)无间隙基因组组装。获得的基因组总大小为 384.59 Mb,等位基因 N50 为 42.44 Mb,所有序列都锚定在 9 个假染色体上,没有任何间隙或错配。此外,我们还利用广泛靶向的代谢组方法分析了参与蓝紫色花决定的主要花青素和蝶形花青素。在对细胞色素 P450(CYP450)基因家族进行全基因组鉴定的基础上,发现三个编码类黄酮 3'-羟化酶(F3'Hs)的基因(SbFBH1、2 和 5)和一个编码类黄酮 3'5'-羟化酶(F3'5'H)的基因(SbFBH7)可羟化类黄酮的 B 环。我们的研究丰富了唇形科植物的基因组信息,为发现参与类黄酮装饰的 CYP450 基因提供了一个工具包。
{"title":"Gap-free genome assembly and <i>CYP450</i> gene family analysis reveal the biosynthesis of anthocyanins in <i>Scutellaria baicalensis</i>.","authors":"Tianlin Pei, Sanming Zhu, Weizhi Liao, Yumin Fang, Jie Liu, Yu Kong, Mengxiao Yan, Mengying Cui, Qing Zhao","doi":"10.1093/hr/uhad235","DOIUrl":"10.1093/hr/uhad235","url":null,"abstract":"<p><p><i>Scutellaria baicalensis</i> Georgi, a member of the Lamiaceae family, is a widely utilized medicinal plant. The flavones extracted from <i>S. baicalensis</i> contribute to numerous health benefits, including anti-inflammatory, antiviral, and anti-tumor activities. However, the incomplete genome assembly hinders biological studies on <i>S. baicalensis</i>. This study presents the first telomere-to-telomere (T2T) gap-free genome assembly of <i>S. baicalensis</i> through the integration of Pacbio HiFi, Nanopore ultra-long and Hi-C technologies. A total of 384.59 Mb of genome size with a contig N50 of 42.44 Mb was obtained, and all sequences were anchored into nine pseudochromosomes without any gap or mismatch. In addition, we analysed the major cyanidin- and delphinidin-based anthocyanins involved in the determination of blue-purple flower using a widely-targeted metabolome approach. Based on the genome-wide identification of <i>Cytochrome P450 (CYP450)</i> gene family, three genes (<i>SbFBH1</i>, <i>2</i>, and <i>5</i>) encoding flavonoid 3'-hydroxylases (F3'Hs) and one gene (<i>SbFBH7</i>) encoding flavonoid 3'5'-hydroxylase (F3'5'H) were found to hydroxylate the B-ring of flavonoids. Our studies enrich the genomic information available for the Lamiaceae family and provide a toolkit for discovering <i>CYP450</i> genes involved in the flavonoid decoration.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The red/far-red light photoreceptor FvePhyB regulates tissue elongation and anthocyanin accumulation in woodland strawberry. 红/远红光感光器 FvePhyB 调节林地草莓的组织伸长和花青素积累。
Pub Date : 2023-11-17 eCollection Date: 2023-12-01 DOI: 10.1093/hr/uhad232
Qi Gao, Shaoqiang Hu, Xiaoli Wang, Fu Han, Huifeng Luo, Zhongchi Liu, Chunying Kang

Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (Fragaria vesca) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in FvePhyB leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the FvePhyB mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The srl mutant with a longer internode is caused by a mutation in the DELLA gene FveRGA1 (Repressor of GA1) in the gibberellin pathway. We found that the P8 srl double mutant has much longer internodes than srl, suggesting a synergistic role of FvePhyB and FveRGA1 in this process. Taken together, these results demonstrate the important role of FvePhyB in regulating plant architecture and anthocyanin content in woodland strawberry.

光是影响植物生长和发育的重要环境信号。在光感受器中,植物色素能感知红光/远红光,从而协调各种生物过程。然而,它们在草莓中的功能尚不清楚。在这项研究中,我们在林地草莓(Fragaria vesca)中发现了一种名为 P8 的 EMS 突变体,该突变体的植株高度大大增加,花青素含量却减少了。通过测序映射发现,FvePhyB 的因果突变导致翻译过早终止。光照处理试验表明,FvePhyB 是一个真正的红光/远红光光感受器,因为它能在红光下特异性地抑制下胚轴的长度。转录组分析表明,FvePhyB 突变会影响叶柄和果实中参与激素合成和信号转导以及花青素生物合成的基因的表达水平。具有较长节间的 srl 突变体是由赤霉素通路中的 DELLA 基因 FveRGA1(GA1 的抑制因子)突变引起的。我们发现,P8 srl 双突变体的节间比 srl 长很多,这表明 FvePhyB 和 FveRGA1 在这一过程中发挥了协同作用。综上所述,这些结果证明了 FvePhyB 在调节林地草莓植株结构和花青素含量方面的重要作用。
{"title":"The red/far-red light photoreceptor FvePhyB regulates tissue elongation and anthocyanin accumulation in woodland strawberry.","authors":"Qi Gao, Shaoqiang Hu, Xiaoli Wang, Fu Han, Huifeng Luo, Zhongchi Liu, Chunying Kang","doi":"10.1093/hr/uhad232","DOIUrl":"https://doi.org/10.1093/hr/uhad232","url":null,"abstract":"<p><p>Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (<i>Fragaria vesca</i>) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in <i>FvePhyB</i> leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the <i>FvePhyB</i> mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The <i>srl</i> mutant with a longer internode is caused by a mutation in the DELLA gene <i>FveRGA1</i> (<i>Repressor of GA1</i>) in the gibberellin pathway. We found that the P8 <i>srl</i> double mutant has much longer internodes than <i>srl</i>, suggesting a synergistic role of <i>FvePhyB</i> and <i>FveRGA1</i> in this process. Taken together, these results demonstrate the important role of <i>FvePhyB</i> in regulating plant architecture and anthocyanin content in woodland strawberry.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene editing of authentic Brassica rapa flavonol synthase 1 generates dihydroflavonol-accumulating Chinese cabbage. 对正宗甘蓝型大白菜黄酮醇合成酶 1 进行基因编辑,可产生富含双氢黄酮醇的大白菜。
Pub Date : 2023-11-14 eCollection Date: 2023-12-01 DOI: 10.1093/hr/uhad239
Sangkyu Park, Hyo Lee, Jaeeun Song, Chan Ju Lim, Jinpyo Oh, Sang Hoon Lee, Saet Buyl Lee, Jong-Yeol Lee, Sunhyung Lim, Jin A Kim, Beom-Gi Kim

Flavonols are the major class of flavonoids of green Chinese cabbage (Brassica rapa subsp. pekinensis). The B. rapa genome harbors seven flavonol synthase genes (BrFLSs), but they have not been functionally characterized. Here, transcriptome analysis showed four BrFLSs mainly expressed in Chinese cabbage. Among them, only BrFLS1 showed major FLS activity and additional flavanone 3β-hydroxylase (F3H) activity, while BrFLS2 and BrFLS3.1 exhibited only marginal F3H activities. We generated BrFLS1-knockout (BrFLS1-KO) Chinese cabbages using CRISPR/Cas9-mediated genome editing and obtained transgene-free homozygous plants without off-target mutation in the T1 generation, which were further advanced to the T2 generation showing normal phenotype. UPLC-ESI-QTOF-MS analysis revealed that flavonol glycosides were dramatically decreased in the T2 plants, while dihydroflavonol glycosides accumulated concomitantly to levels corresponding to the reduced levels of flavonols. Quantitative PCR analysis revealed that the early steps of phenylpropanoid and flavonoid biosynthetic pathway were upregulated in the BrFLS1-KO plants. In accordance, total phenolic contents were slightly enhanced in the BrFLS1-KO plants, which suggests a negative role of flavonols in phenylpropanoid and flavonoid biosynthesis in Chinese cabbage. Phenotypic surveys revealed that the BrFLS1-KO Chinese cabbages showed normal head formation and reproductive phenotypes, but subtle morphological changes in their heads were observed. In addition, their seedlings were susceptible to osmotic stress compared to the controls, suggesting that flavonols play a positive role for osmotic stress tolerance in B.rapa seedling. In this study, we showed that CRISPR/Cas9-mediated BrFLS1-KO successfully generated a valuable breeding resource of Chinese cabbage with distinctive metabolic traits and that CRISPR/Cas9 can be efficiently applied in functional Chinese cabbage breeding.

黄酮醇是青江菜(Brassica rapa subsp.)B. rapa 基因组中含有七个黄酮醇合成酶基因(BrFLSs),但尚未对它们进行功能表征。在此,转录组分析显示了主要在大白菜中表达的四个 BrFLSs。其中,只有BrFLS1表现出主要的FLS活性和额外的黄烷酮3β-羟化酶(F3H)活性,而BrFLS2和BrFLS3.1仅表现出微弱的F3H活性。我们利用 CRISPR/Cas9 介导的基因组编辑技术生成了 BrFLS1 基因敲除(BrFLS1-KO)的大白菜,并在 T1 代获得了没有脱靶突变的无转基因同源植株,这些植株在 T2 代表现出正常的表型。UPLC-ESI-QTOF-MS分析表明,在T2代植株中,黄酮醇苷显著减少,而二氢黄酮醇苷同时积累到与黄酮醇减少水平相对应的水平。定量 PCR 分析表明,在 BrFLS1-KO 植株中,苯丙醇和类黄酮生物合成途径的早期步骤被上调。与此相对应,BrFLS1-KO植株的总酚含量略有增加,这表明黄酮类化合物在大白菜的苯丙类和黄酮类化合物生物合成中起负作用。表型调查显示,BrFLS1-KO 大白菜的头部形成和生殖表型正常,但头部出现了细微的形态变化。此外,与对照组相比,它们的幼苗易受渗透胁迫的影响,这表明黄酮醇对 B.rapa 幼苗的渗透胁迫耐受性起着积极的作用。本研究表明,CRISPR/Cas9介导的BrFLS1-KO成功产生了具有独特代谢性状的大白菜育种资源,CRISPR/Cas9可有效应用于大白菜功能育种。
{"title":"Gene editing of authentic <i>Brassica rapa flavonol synthase 1</i> generates dihydroflavonol-accumulating Chinese cabbage.","authors":"Sangkyu Park, Hyo Lee, Jaeeun Song, Chan Ju Lim, Jinpyo Oh, Sang Hoon Lee, Saet Buyl Lee, Jong-Yeol Lee, Sunhyung Lim, Jin A Kim, Beom-Gi Kim","doi":"10.1093/hr/uhad239","DOIUrl":"https://doi.org/10.1093/hr/uhad239","url":null,"abstract":"<p><p>Flavonols are the major class of flavonoids of green Chinese cabbage (<i>Brassica rapa</i> subsp. <i>pekinensis</i>). The <i>B. rapa</i> genome harbors seven <i>flavonol synthase</i> genes (<i>BrFLS</i>s), but they have not been functionally characterized. Here, transcriptome analysis showed four <i>BrFLS</i>s mainly expressed in Chinese cabbage. Among them, only BrFLS1 showed major FLS activity and additional flavanone 3<i>β</i>-hydroxylase (F3H) activity, while BrFLS2 and BrFLS3.1 exhibited only marginal F3H activities. We generated <i>BrFLS1</i>-knockout (<i>BrFLS1-</i>KO) Chinese cabbages using CRISPR/Cas9-mediated genome editing and obtained transgene-free homozygous plants without off-target mutation in the T<sub>1</sub> generation, which were further advanced to the T<sub>2</sub> generation showing normal phenotype. UPLC-ESI-QTOF-MS analysis revealed that flavonol glycosides were dramatically decreased in the T<sub>2</sub> plants, while dihydroflavonol glycosides accumulated concomitantly to levels corresponding to the reduced levels of flavonols. Quantitative PCR analysis revealed that the early steps of phenylpropanoid and flavonoid biosynthetic pathway were upregulated in the <i>BrFLS1-</i>KO plants. In accordance, total phenolic contents were slightly enhanced in the <i>BrFLS1-</i>KO plants, which suggests a negative role of flavonols in phenylpropanoid and flavonoid biosynthesis in Chinese cabbage. Phenotypic surveys revealed that the <i>BrFLS1-KO</i> Chinese cabbages showed normal head formation and reproductive phenotypes, but subtle morphological changes in their heads were observed. In addition, their seedlings were susceptible to osmotic stress compared to the controls, suggesting that flavonols play a positive role for osmotic stress tolerance in <i>B.rapa</i> seedling. In this study, we showed that CRISPR/Cas9-mediated <i>BrFLS1</i>-KO successfully generated a valuable breeding resource of Chinese cabbage with distinctive metabolic traits and that CRISPR/Cas9 can be efficiently applied in functional Chinese cabbage breeding.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics landscape to decrypt the distinct flavonoid biosynthesis of Scutellaria baicalensis across multiple tissues. 多组学图谱解密黄芩跨多种组织的独特类黄酮生物合成。
Pub Date : 2023-11-13 eCollection Date: 2024-01-01 DOI: 10.1093/hr/uhad258
Dandan Guo, Zhenyu Zhu, Zhe Wang, Fei Feng, Qi Cao, Zhewei Xia, Xinlei Jia, Diya Lv, Ting Han, Xiaofei Chen

Scutellaria baicalensis Georgi, also known as huang-qin in traditional Chinese medicine, is a widely used herbal remedy due to its anticancer, antivirus, and hepatoprotective properties. The S. baicalensis genome was sequenced many years ago; by contrast, the proteome as the executer of most biological processes of S. baicalensis in the aerial parts, as well as the secondary structure of the roots (xylem, phloem, and periderm), is far less comprehensively characterized. Here we attempt to depict the molecular landscape of the non-model plant S. baicalensis through a multi-omics approach, with the goal of constructing a highly informative and valuable reference dataset. Furthermore, we provide an in-depth characterization dissection to explain the two distinct flavonoid biosynthesis pathways that exist in the aerial parts and root, at the protein and phosphorylated protein levels. Our study provides detailed spatial proteomic and phosphoproteomic information in the context of secondary structures, with implications for the molecular profiling of secondary metabolite biosynthesis in non-model medicinal plants.

黄芩(Scutellaria baicalensis Georgi)在中药中又称黄芩,因其具有抗癌、抗病毒和保肝的功效而被广泛使用。多年前,黄芩的基因组就已测序完成;相比之下,作为黄芩气生部分大部分生物过程的执行者的蛋白质组,以及根部的次生结构(木质部、韧皮部和外皮),其特征却远没有这么全面。在此,我们尝试通过多组学方法描绘非模式植物黄芩的分子图谱,目的是构建一个信息量大、有价值的参考数据集。此外,我们还提供了深入的特征剖析,从蛋白质和磷酸化蛋白质水平解释了存在于气生部分和根部的两种不同的类黄酮生物合成途径。我们的研究提供了二级结构背景下详细的空间蛋白质组和磷酸化蛋白质组信息,对非模式药用植物中二级代谢物生物合成的分子剖析具有重要意义。
{"title":"Multi-omics landscape to decrypt the distinct flavonoid biosynthesis of <i>Scutellaria baicalensis</i> across multiple tissues.","authors":"Dandan Guo, Zhenyu Zhu, Zhe Wang, Fei Feng, Qi Cao, Zhewei Xia, Xinlei Jia, Diya Lv, Ting Han, Xiaofei Chen","doi":"10.1093/hr/uhad258","DOIUrl":"10.1093/hr/uhad258","url":null,"abstract":"<p><p><i>Scutellaria baicalensis</i> Georgi, also known as huang-qin in traditional Chinese medicine, is a widely used herbal remedy due to its anticancer, antivirus, and hepatoprotective properties. The <i>S. baicalensis</i> genome was sequenced many years ago; by contrast, the proteome as the executer of most biological processes of <i>S. baicalensis</i> in the aerial parts, as well as the secondary structure of the roots (xylem, phloem, and periderm), is far less comprehensively characterized. Here we attempt to depict the molecular landscape of the non-model plant <i>S. baicalensis</i> through a multi-omics approach, with the goal of constructing a highly informative and valuable reference dataset. Furthermore, we provide an in-depth characterization dissection to explain the two distinct flavonoid biosynthesis pathways that exist in the aerial parts and root, at the protein and phosphorylated protein levels. Our study provides detailed spatial proteomic and phosphoproteomic information in the context of secondary structures, with implications for the molecular profiling of secondary metabolite biosynthesis in non-model medicinal plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse O-methyltransferases catalyze the biosynthesis of floral benzenoids that repel aphids from the flowers of waterlily Nymphaea prolifera. 多种 O-甲基转移酶催化了能驱赶睡莲 Nymphaea prolifera 花中蚜虫的花苯类化合物的生物合成。
Pub Date : 2023-11-06 eCollection Date: 2023-12-01 DOI: 10.1093/hr/uhad237
Guanhua Liu, Jianyu Fu, Lingyun Wang, Mingya Fang, Wanbo Zhang, Mei Yang, Xuemin Yang, Yingchun Xu, Lin Shi, Xiaoying Ma, Qian Wang, Hui Chen, Cuiwei Yu, Dongbei Yu, Feng Chen, Yifan Jiang

Nymphaea is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily Nymphaea prolifera. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of N. prolifera is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in N. prolifera exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of N. prolifera flowers, 12 oxygen methyltransferases (NpOMTs) were functionally identified. By in vitro enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of NpOMTs provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a Nymphaea-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant N. prolifera has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.

睡莲(Nymphaea)是基生开花植物 ANA 级(Amborellales, Nymphaeales, and Austrobaileyales)的一个重要属,是研究花性状早期进化的一个重要模型。本研究全面考察了夜开睡莲 Nymphaea prolifera 花香的散发、生物合成和生物功能。顶空挥发物收集和气相色谱-质谱分析表明,N. prolifera 的花香主要由甲基化苯类化合物组成,包括苯甲醚、藜芦、愈创木酚和甲氧基苯甲醚。此外,N. prolifera 中这些花香类苯甲醚的释放具有时空模式、昼夜节律和组织特异性。通过创建和挖掘N. prolifera花的转录组,确定了12个氧甲氧基转移酶(NpOMTs)的功能。通过体外酶促实验,NpOMT3、6 和 7 能产生苯甲醚,NpOMT5、7、9 能产生愈创木酚,而 NpOMT3、6、9、11 能催化形成 veratrole。甲氧基苯甲醚被确定为所有 NpOMTs 的通用产物。NpOMTs 的表达模式暗示了它们在生产相应苯并类化合物中的作用。对 OMTs 的系统进化分析表明,OMT 家族的扩展具有蛱蝶的特异性,这表明了其特定品系功能的进化。在生物测定中,发现花苯甲酮中的苯甲醚、维拉樟脑和愈创木酚在驱避睡莲蚜虫方面发挥了关键作用。总之,这项研究表明,基生开花植物 N. prolifera 进化出了多种复杂的 OMT 基因,用于生物合成甲基化类苯酮,从而驱赶昆虫取食花朵。这些发现为早期分化的有花植物花香的进化机制和生态学意义提供了新的见解。
{"title":"Diverse <i>O</i>-methyltransferases catalyze the biosynthesis of floral benzenoids that repel aphids from the flowers of waterlily <i>Nymphaea prolifera</i>.","authors":"Guanhua Liu, Jianyu Fu, Lingyun Wang, Mingya Fang, Wanbo Zhang, Mei Yang, Xuemin Yang, Yingchun Xu, Lin Shi, Xiaoying Ma, Qian Wang, Hui Chen, Cuiwei Yu, Dongbei Yu, Feng Chen, Yifan Jiang","doi":"10.1093/hr/uhad237","DOIUrl":"10.1093/hr/uhad237","url":null,"abstract":"<p><p><i>Nymphaea</i> is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily <i>Nymphaea prolifera</i>. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of <i>N. prolifera</i> is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in <i>N. prolifera</i> exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of <i>N. prolifera</i> flowers, 12 oxygen methyltransferases (<i>NpOMTs</i>) were functionally identified. By <i>in vitro</i> enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of <i>NpOMTs</i> provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a <i>Nymphaea</i>-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant <i>N. prolifera</i> has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomere-to-telomere genome assembly of melon (Cucumis melo L. var. inodorus) provides a high-quality reference for meta-QTL analysis of important traits. 甜瓜(Cucumis melo L.var.inodorus)的端粒-端粒基因组组装为重要性状的meta QTL分析提供了高质量的参考。
Pub Date : 2023-09-28 eCollection Date: 2023-10-01 DOI: 10.1093/hr/uhad189
Minghua Wei, Ying Huang, Changjuan Mo, Haiyan Wang, Qingguo Zeng, Wenli Yang, Jihao Chen, Xuejun Zhang, Qiusheng Kong

Melon is an important horticultural crop with extensive diversity in many horticultural groups. To explore its genomic diversity, it is necessary to assemble more high-quality complete genomes from different melon accessions. Meanwhile, a large number of QTLs have been mapped in several studies. Integration of the published QTLs onto a complete genome can provide more accurate information for candidate gene cloning. To address these problems, a telomere-to-telomere (T2T) genome of the elite melon landrace Kuizilikjiz (Cucumis melo L. var. inodorus) was de novo assembled and all the published QTLs were projected onto it in this study. The results showed that a high-quality Kuizilikjiz genome with the size of 379.2 Mb and N50 of 31.7 Mb was de novo assembled using the combination of short reads, PacBio high-fidelity long reads, Hi-C data, and a high-density genetic map. Each chromosome contained the centromere and telomeres at both ends. A large number of structural variations were observed between Kuizilikjiz and the other published genomes. A total of 1294 QTLs published in 67 studies were collected and projected onto the T2T genome. Several clustered, co-localized, and overlapped QTLs were determined. Furthermore, 20 stable meta-QTLs were identified, which significantly reduced the mapping intervals of the initial QTLs and greatly facilitated identification of the candidate genes. Collectively, the T2T genome assembly together with the numerous projected QTLs will not only broaden the high-quality genome resources but also provide valuable and abundant QTL information for cloning the genes controlling important traits in melon.

甜瓜是一种重要的园艺作物,在许多园艺类群中具有广泛的多样性。为了探索其基因组多样性,有必要从不同的甜瓜材料中组装更多高质量的完整基因组。同时,在一些研究中已经定位了大量的QTL。将已发表的QTL整合到一个完整的基因组上可以为候选基因的克隆提供更准确的信息。为了解决这些问题,在本研究中,对优质甜瓜地方品种Kuizilikjiz(Cucumis melo L.var.Inorus)的端粒到端粒(T2T)基因组进行了重新组装,并将所有已发表的QTL投射到其上。结果表明,使用短读数、PacBio高保真长读数、Hi-C数据和高密度遗传图谱的组合,重新组装了大小为379.2Mb、N50为31.7Mb的高质量Kuizilikjiz基因组。每条染色体的两端都含有着丝粒和端粒。在Kuizilikjiz和其他已发表的基因组之间观察到大量的结构变异。共收集了67项研究中发表的1294个QTL,并将其投影到T2T基因组上。确定了几个聚类、共定位和重叠的QTL。此外,还鉴定出20个稳定的间位QTL,显著缩短了初始QTL的定位间隔,极大地促进了候选基因的鉴定。总的来说,T2T基因组组装和大量的QTL投影不仅将拓宽高质量的基因组资源,而且为克隆甜瓜重要性状的基因提供有价值和丰富的QTL信息。
{"title":"Telomere-to-telomere genome assembly of melon (<i>Cucumis melo</i> L. var. <i>inodorus</i>) provides a high-quality reference for meta-QTL analysis of important traits.","authors":"Minghua Wei,&nbsp;Ying Huang,&nbsp;Changjuan Mo,&nbsp;Haiyan Wang,&nbsp;Qingguo Zeng,&nbsp;Wenli Yang,&nbsp;Jihao Chen,&nbsp;Xuejun Zhang,&nbsp;Qiusheng Kong","doi":"10.1093/hr/uhad189","DOIUrl":"https://doi.org/10.1093/hr/uhad189","url":null,"abstract":"<p><p>Melon is an important horticultural crop with extensive diversity in many horticultural groups. To explore its genomic diversity, it is necessary to assemble more high-quality complete genomes from different melon accessions. Meanwhile, a large number of QTLs have been mapped in several studies. Integration of the published QTLs onto a complete genome can provide more accurate information for candidate gene cloning. To address these problems, a telomere-to-telomere (T2T) genome of the elite melon landrace Kuizilikjiz (<i>Cucumis melo</i> L. var. <i>inodorus</i>) was <i>de novo</i> assembled and all the published QTLs were projected onto it in this study. The results showed that a high-quality Kuizilikjiz genome with the size of 379.2 Mb and N50 of 31.7 Mb was <i>de novo</i> assembled using the combination of short reads, PacBio high-fidelity long reads, Hi-C data, and a high-density genetic map. Each chromosome contained the centromere and telomeres at both ends. A large number of structural variations were observed between Kuizilikjiz and the other published genomes. A total of 1294 QTLs published in 67 studies were collected and projected onto the T2T genome. Several clustered, co-localized, and overlapped QTLs were determined. Furthermore, 20 stable meta-QTLs were identified, which significantly reduced the mapping intervals of the initial QTLs and greatly facilitated identification of the candidate genes. Collectively, the T2T genome assembly together with the numerous projected QTLs will not only broaden the high-quality genome resources but also provide valuable and abundant QTL information for cloning the genes controlling important traits in melon.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal miRNA and transcriptomic network dynamically regulate the developmental and senescence processes of poplar leaves. 时空miRNA和转录组网络动态调控杨树叶片的发育和衰老过程。
Pub Date : 2023-09-26 eCollection Date: 2023-10-01 DOI: 10.1093/hr/uhad186
Kang Du, Shenxiu Jiang, Hao Chen, Yufei Xia, Ruihua Guo, Aoyu Ling, Ting Liao, Wenqi Wu, Xiangyang Kang

Poplar is an important afforestation and urban greening species. Poplar leaf development occurs in stages, from young to mature and then from mature to senescent; these are accompanied by various phenotypic and physiological changes. However, the associated transcriptional regulatory network is relatively unexplored. We first used principal component analysis to classify poplar leaves at different leaf positions into two stages: developmental maturity (the stage of maximum photosynthetic capacity); and the stage when photosynthetic capacity started to decline and gradually changed to senescence. The two stages were then further subdivided into five intervals by gene expression clustering analysis: young leaves, the period of cell genesis and functional differentiation (L1); young leaves, the period of development and initial formation of photosynthetic capacity (L3-L7); the period of maximum photosynthetic capacity of functional leaves (L9-L13); the period of decreasing photosynthetic capacity of functional leaves (L15-L27); and the period of senescent leaves (L29). Using a weighted co-expression gene network analysis of regulatory genes, high-resolution spatiotemporal transcriptional regulatory networks were constructed to reveal the core regulators that regulate leaf development. Spatiotemporal transcriptome data of poplar leaves revealed dynamic changes in genes and miRNAs during leaf development and identified several core regulators of leaf development, such as GRF5 and MYB5. This in-depth analysis of transcriptional regulation during leaf development provides a theoretical basis for exploring the biological basis of the transcriptional regulation of leaf development and the molecular design of breeding for delaying leaf senescence.

杨树是重要的造林绿化树种。杨树叶片发育分阶段进行,从幼龄到成熟,再从成熟到衰老;这些都伴随着各种表型和生理变化。然而,相关的转录调控网络相对未被探索。我们首先利用主成分分析将不同叶位的杨树叶片分为两个阶段:发育成熟期(光合能力最大的阶段);以及光合能力开始下降并逐渐向衰老转变的阶段。然后通过基因表达聚类分析将这两个阶段进一步细分为五个区间:幼叶、细胞发生和功能分化期(L1);幼叶、发育期和光合能力的初步形成(L3-L7);功能叶最大光合能力期(L9-L13);功能叶光合能力下降期(L15-L27);叶片衰老期(L29)。通过对调控基因的加权共表达基因网络分析,构建了高分辨率的时空转录调控网络,揭示了调控叶片发育的核心调控因子。杨树叶片的时空转录组数据揭示了叶片发育过程中基因和miRNA的动态变化,并确定了叶片发育的几个核心调控因子,如GRF5和MYB5。对叶片发育过程中转录调控的深入分析,为探索叶片发育转录调控的生物学基础和延缓叶片衰老育种的分子设计提供了理论依据。
{"title":"Spatiotemporal miRNA and transcriptomic network dynamically regulate the developmental and senescence processes of poplar leaves.","authors":"Kang Du,&nbsp;Shenxiu Jiang,&nbsp;Hao Chen,&nbsp;Yufei Xia,&nbsp;Ruihua Guo,&nbsp;Aoyu Ling,&nbsp;Ting Liao,&nbsp;Wenqi Wu,&nbsp;Xiangyang Kang","doi":"10.1093/hr/uhad186","DOIUrl":"https://doi.org/10.1093/hr/uhad186","url":null,"abstract":"<p><p>Poplar is an important afforestation and urban greening species. Poplar leaf development occurs in stages, from young to mature and then from mature to senescent; these are accompanied by various phenotypic and physiological changes. However, the associated transcriptional regulatory network is relatively unexplored. We first used principal component analysis to classify poplar leaves at different leaf positions into two stages: developmental maturity (the stage of maximum photosynthetic capacity); and the stage when photosynthetic capacity started to decline and gradually changed to senescence. The two stages were then further subdivided into five intervals by gene expression clustering analysis: young leaves, the period of cell genesis and functional differentiation (L1); young leaves, the period of development and initial formation of photosynthetic capacity (L3-L7); the period of maximum photosynthetic capacity of functional leaves (L9-L13); the period of decreasing photosynthetic capacity of functional leaves (L15-L27); and the period of senescent leaves (L29). Using a weighted co-expression gene network analysis of regulatory genes, high-resolution spatiotemporal transcriptional regulatory networks were constructed to reveal the core regulators that regulate leaf development. Spatiotemporal transcriptome data of poplar leaves revealed dynamic changes in genes and miRNAs during leaf development and identified several core regulators of leaf development, such as GRF5 and MYB5. This in-depth analysis of transcriptional regulation during leaf development provides a theoretical basis for exploring the biological basis of the transcriptional regulation of leaf development and the molecular design of breeding for delaying leaf senescence.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Almond population genomics and non-additive GWAS reveal new insights into almond dissemination history and candidate genes for nut traits and blooming time. 杏仁群体基因组学和非加性GWAS揭示了对杏仁传播史、坚果性状和开花时间的候选基因的新见解。
Pub Date : 2023-09-25 eCollection Date: 2023-10-01 DOI: 10.1093/hr/uhad193
Felipe Pérez de Los Cobos, Eva Coindre, Naima Dlalah, Bénédicte Quilot-Turion, Ignasi Batlle, Pere Arús, Iban Eduardo, Henri Duval

Domestication drastically changed crop genomes, fixing alleles of interest and creating different genetic populations. Genome-wide association studies (GWASs) are a powerful tool to detect these alleles of interest (and so QTLs). In this study, we explored the genetic structure as well as additive and non-additive genotype-phenotype associations in a collection of 243 almond accessions. Our genetic structure analysis strongly supported the subdivision of the accessions into five ancestral groups, all formed by accessions with a common origin. One of these groups was formed exclusively by Spanish accessions, while the rest were mainly formed by accessions from China, Italy, France, and the USA. These results agree with archaeological and historical evidence that separate modern almond dissemination into four phases: Asiatic, Mediterranean, Californian, and southern hemisphere. In total, we found 13 independent QTLs for nut weight, crack-out percentage, double kernels percentage, and blooming time. Of the 13 QTLs found, only one had an additive effect. Through candidate gene analysis, we proposed Prudul26A013473 as a candidate gene responsible for the main QTL found in crack-out percentage, Prudul26A012082 and Prudul26A017782 as candidate genes for the QTLs found in double kernels percentage, and Prudul26A000954 as a candidate gene for the QTL found in blooming time. Our study enhances our knowledge of almond dissemination history and will have a great impact on almond breeding.

驯化极大地改变了作物基因组,固定了感兴趣的等位基因,并创造了不同的遗传群体。全基因组关联研究(GWAS)是检测这些感兴趣的等位基因(以及QTL)的有力工具。在本研究中,我们对243份杏仁材料的遗传结构以及加性和非加性基因型表型关联进行了探索。我们的遗传结构分析有力地支持将材料细分为五个祖先群体,所有这些群体都是由具有共同起源的材料形成的。其中一个群体完全由西班牙的材料形成,而其他群体主要由中国、意大利、法国和美国的材料形成。这些结果与考古和历史证据一致,这些证据将现代杏仁传播分为四个阶段:亚洲、地中海、加利福尼亚和南半球。我们总共发现了13个独立的QTL,分别用于坚果重量、开裂率、双仁率和开花时间。在发现的13个QTL中,只有一个具有加性效应。通过候选基因分析,我们提出Prudul26A013473是负责裂出率中发现的主要QTL的候选基因,Prudul26 A012082和Prudul26%A017782是负责双粒率中发现QTL的候选者基因,Prudel26A00954是负责开花期发现的QTL的候选基因。我们的研究提高了我们对杏仁传播史的了解,并将对杏仁育种产生重大影响。
{"title":"Almond population genomics and non-additive GWAS reveal new insights into almond dissemination history and candidate genes for nut traits and blooming time.","authors":"Felipe Pérez de Los Cobos, Eva Coindre, Naima Dlalah, Bénédicte Quilot-Turion, Ignasi Batlle, Pere Arús, Iban Eduardo, Henri Duval","doi":"10.1093/hr/uhad193","DOIUrl":"10.1093/hr/uhad193","url":null,"abstract":"<p><p>Domestication drastically changed crop genomes, fixing alleles of interest and creating different genetic populations. Genome-wide association studies (GWASs) are a powerful tool to detect these alleles of interest (and so QTLs). In this study, we explored the genetic structure as well as additive and non-additive genotype-phenotype associations in a collection of 243 almond accessions. Our genetic structure analysis strongly supported the subdivision of the accessions into five ancestral groups, all formed by accessions with a common origin. One of these groups was formed exclusively by Spanish accessions, while the rest were mainly formed by accessions from China, Italy, France, and the USA. These results agree with archaeological and historical evidence that separate modern almond dissemination into four phases: Asiatic, Mediterranean, Californian, and southern hemisphere. In total, we found 13 independent QTLs for nut weight, crack-out percentage, double kernels percentage, and blooming time. Of the 13 QTLs found, only one had an additive effect. Through candidate gene analysis, we proposed <i>Prudul26A013473</i> as a candidate gene responsible for the main QTL found in crack-out percentage, <i>Prudul26A012082</i> and <i>Prudul26A017782</i> as candidate genes for the QTLs found in double kernels percentage, and <i>Prudul26A000954</i> as a candidate gene for the QTL found in blooming time. Our study enhances our knowledge of almond dissemination history and will have a great impact on almond breeding.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71489485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PbrChiA: a key chitinase of pear in response to Botryosphaeria dothidea infection by interacting with PbrLYK1b2 and down-regulating ROS accumulation. PbrChiA:一种关键的梨几丁质酶,通过与PbrLYK1b2相互作用并下调ROS的积累来应对斑点球孢菌的感染。
Pub Date : 2023-09-19 eCollection Date: 2023-10-01 DOI: 10.1093/hr/uhad188
Qiming Chen, Huizhen Dong, Qionghou Li, Xun Sun, Xin Qiao, Hao Yin, Zhihua Xie, Kaijie Qi, Xiaosan Huang, Shaoling Zhang

Pear ring rot, caused by the pathogenic fungi Botryosphaeria dothidea, seriously affects pear production. While the infection-induced reactive oxygen species (ROS) burst of infected plants limits the proliferation of B. dothidea during the early infection stage, high ROS levels can also contribute to their growth during the later necrotrophic infection stage. Therefore, it is important to understand how plants balance ROS levels and resistance to pathogenic B. dothidea during the later stage. In this study, we identified PbrChiA, a glycosyl hydrolases 18 (GH18) chitinase-encoding gene with high infection-induced expression, through a comparative transcriptome analysis. Artificial substitution, stable overexpression, and virus induced gene silencing (VIGS) experiments demonstrated that PbrChiA can positively regulate pear resistance as a secreted chitinase to break down B. dothidea mycelium in vitro and that overexpression of PbrChiA suppressed infection-induced ROS accumulation. Further analysis revealed that PbrChiA can bind to the ectodomain of PbrLYK1b2, and this interaction suppressed PbrLYK1b2-mediated chitin-induced ROS accumulation. Collectively, we propose that the combination of higher antifungal activity from abundant PbrChiA and lower ROS levels during later necrotrophic infection stage confer resistance of pear against B. dothidea.

梨环腐病是由病原真菌梨孢菌引起的,严重影响梨的生产。虽然受感染植物的感染诱导的活性氧(ROS)爆发在感染早期限制了B.dothidea的增殖,但高ROS水平也有助于它们在后期坏死营养感染阶段的生长。因此,了解植物在后期如何平衡ROS水平和对致病性斑点线虫的抗性是很重要的。在本研究中,我们通过比较转录组分析鉴定了PbrChiA,一种编码糖基水解酶18(GH18)几丁质酶的基因,具有高感染诱导表达。人工替代、稳定过表达和病毒诱导的基因沉默(VIGS)实验表明,PbrChiA可以作为一种分泌的几丁质酶在体外分解B.dothidea菌丝体,积极调节梨的抗性,并且PbrChiA的过表达抑制了感染诱导的ROS积累。进一步的分析表明,PbrChiA可以与PbrLYK1b2的外结构域结合,这种相互作用抑制了PbrLYK1 b2介导的几丁质诱导的ROS积累。总之,我们提出,在后期坏死营养感染阶段,来自丰富的PbrChiA的较高抗真菌活性和较低的ROS水平相结合,赋予梨对B.dothidea的抗性。
{"title":"PbrChiA: a key chitinase of pear in response to <i>Botryosphaeria dothidea</i> infection by interacting with PbrLYK1b2 and down-regulating ROS accumulation.","authors":"Qiming Chen,&nbsp;Huizhen Dong,&nbsp;Qionghou Li,&nbsp;Xun Sun,&nbsp;Xin Qiao,&nbsp;Hao Yin,&nbsp;Zhihua Xie,&nbsp;Kaijie Qi,&nbsp;Xiaosan Huang,&nbsp;Shaoling Zhang","doi":"10.1093/hr/uhad188","DOIUrl":"https://doi.org/10.1093/hr/uhad188","url":null,"abstract":"<p><p>Pear ring rot, caused by the pathogenic fungi <i>Botryosphaeria dothidea</i>, seriously affects pear production. While the infection-induced reactive oxygen species (ROS) burst of infected plants limits the proliferation of <i>B. dothidea</i> during the early infection stage, high ROS levels can also contribute to their growth during the later necrotrophic infection stage. Therefore, it is important to understand how plants balance ROS levels and resistance to pathogenic <i>B. dothidea</i> during the later stage. In this study, we identified <i>PbrChiA</i>, a glycosyl hydrolases 18 (GH18) chitinase-encoding gene with high infection-induced expression, through a comparative transcriptome analysis. Artificial substitution, stable overexpression, and virus induced gene silencing (VIGS) experiments demonstrated that PbrChiA can positively regulate pear resistance as a secreted chitinase to break down <i>B. dothidea</i> mycelium <i>in vitro</i> and that overexpression of <i>PbrChiA</i> suppressed infection-induced ROS accumulation. Further analysis revealed that PbrChiA can bind to the ectodomain of PbrLYK1b2, and this interaction suppressed PbrLYK1b2-mediated chitin-induced ROS accumulation. Collectively, we propose that the combination of higher antifungal activity from abundant PbrChiA and lower ROS levels during later necrotrophic infection stage confer resistance of pear against <i>B. dothidea</i>.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
园艺研究(英文)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1