Pub Date : 2023-11-27eCollection Date: 2024-01-01DOI: 10.1093/hr/uhad244
Lan Lan, Luhong Leng, Weichao Liu, Yonglin Ren, Wayne Reeve, Xiaopeng Fu, Zhiqiang Wu, Xiaoni Zhang
Carnation (Dianthus caryophyllus) is one of the most valuable commercial flowers, due to its richness of color and form, and its excellent storage and vase life. The diverse demands of the market require faster breeding in carnations. A full understanding of carnations is therefore required to guide the direction of breeding. Hence, we assembled the haplotype-resolved gap-free carnation genome of the variety 'Baltico', which is the most common white standard variety worldwide. Based on high-depth HiFi, ultra-long nanopore, and Hi-C sequencing data, we assembled the telomere-to-telomere (T2T) genome to be 564 479 117 and 568 266 215 bp for the two haplotypes Hap1 and Hap2, respectively. This T2T genome exhibited great improvement in genome assembly and annotation results compared with the former version. The improvements were seen when different approaches to evaluation were used. Our T2T genome first informs the analysis of the telomere and centromere region, enabling us to speculate about specific centromere characteristics that cannot be identified by high-order repeats in carnations. We analyzed allele-specific expression in three tissues and the relationship between genome architecture and gene expression in the haplotypes. This demonstrated that the length of the genes, coding sequences, and introns, the exon numbers and the transposable element insertions correlate with gene expression ratios and levels. The insertions of transposable elements repress expression in gene regulatory networks in carnation. This gap-free finished T2T carnation genome provides a valuable resource to illustrate the genome characteristics and for functional genomics analysis in further studies and molecular breeding.
{"title":"The haplotype-resolved telomere-to-telomere carnation (<i>Dianthus caryophyllus</i>) genome reveals the correlation between genome architecture and gene expression.","authors":"Lan Lan, Luhong Leng, Weichao Liu, Yonglin Ren, Wayne Reeve, Xiaopeng Fu, Zhiqiang Wu, Xiaoni Zhang","doi":"10.1093/hr/uhad244","DOIUrl":"10.1093/hr/uhad244","url":null,"abstract":"<p><p>Carnation (<i>Dianthus caryophyllus</i>) is one of the most valuable commercial flowers, due to its richness of color and form, and its excellent storage and vase life. The diverse demands of the market require faster breeding in carnations. A full understanding of carnations is therefore required to guide the direction of breeding. Hence, we assembled the haplotype-resolved gap-free carnation genome of the variety 'Baltico', which is the most common white standard variety worldwide. Based on high-depth HiFi, ultra-long nanopore, and Hi-C sequencing data, we assembled the telomere-to-telomere (T2T) genome to be 564 479 117 and 568 266 215 bp for the two haplotypes Hap1 and Hap2, respectively. This T2T genome exhibited great improvement in genome assembly and annotation results compared with the former version. The improvements were seen when different approaches to evaluation were used. Our T2T genome first informs the analysis of the telomere and centromere region, enabling us to speculate about specific centromere characteristics that cannot be identified by high-order repeats in carnations. We analyzed allele-specific expression in three tissues and the relationship between genome architecture and gene expression in the haplotypes. This demonstrated that the length of the genes, coding sequences, and introns, the exon numbers and the transposable element insertions correlate with gene expression ratios and levels. The insertions of transposable elements repress expression in gene regulatory networks in carnation. This gap-free finished T2T carnation genome provides a valuable resource to illustrate the genome characteristics and for functional genomics analysis in further studies and molecular breeding.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 1","pages":"uhad244"},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yellow horn (Xanthoceras sorbifolium Bunge) is a woody oilseed tree species whose seed oil is rich in unsaturated fatty acids and rare neuronic acids, and can be used as a high-grade edible oil or as a feedstock for biodiesel production. However, the genetic mechanisms related to seed yield in yellow horn are not well elucidated. This study identified 2 164 863 SNP loci based on 222 genome-wide resequencing data of yellow horn germplasm. We conducted genome-wide association study (GWAS) analysis on three core traits (hundred-grain weight, single-fruit seed mass, and single-fruit seed number) that influence seed yield for the years 2022 and 2020, and identified 399 significant SNP loci. Among these loci, the Chr10_24013014 and Chr10_24012613 loci caught our attention due to their consistent associations across multiple analyses. Through Sanger sequencing, we validated the genotypes of these two loci across 16 germplasms, confirming their consistency with the GWAS analysis results. Downstream of these two significant loci, we identified a candidate gene encoding an AP2 transcription factor protein, which we named XsAP2. RT-qPCR analysis revealed high expression of the XsAP2 gene in seeds, and a significant negative correlation between its expression levels and seed hundred-grain weight, as well as single-fruit seed mass, suggesting its potential role in the normal seed development process. Transgenic Arabidopsis lines with the overexpressed XsAP2 gene exhibited varying degrees of reduction in seed size, number of seeds per silique, and number of siliques per plant compared with wild-type Arabidopsis. Combining these results, we hypothesize that the XsAP2 gene may have a negative regulatory effect on seed yield of yellow horn. These results provide a reference for the molecular breeding of high-yielding yellow horn.
{"title":"Genome-wide association analysis identifies a candidate gene controlling seed size and yield in <i>Xanthoceras sorbifolium</i> Bunge.","authors":"Ziquan Zhao, Chongjun Liang, Wei Zhang, Yingying Yang, Quanxin Bi, Haiyan Yu, Libing Wang","doi":"10.1093/hr/uhad243","DOIUrl":"10.1093/hr/uhad243","url":null,"abstract":"<p><p>Yellow horn (<i>Xanthoceras sorbifolium</i> Bunge) is a woody oilseed tree species whose seed oil is rich in unsaturated fatty acids and rare neuronic acids, and can be used as a high-grade edible oil or as a feedstock for biodiesel production. However, the genetic mechanisms related to seed yield in yellow horn are not well elucidated. This study identified 2 164 863 SNP loci based on 222 genome-wide resequencing data of yellow horn germplasm. We conducted genome-wide association study (GWAS) analysis on three core traits (hundred-grain weight, single-fruit seed mass, and single-fruit seed number) that influence seed yield for the years 2022 and 2020, and identified 399 significant SNP loci. Among these loci, the Chr10_24013014 and Chr10_24012613 loci caught our attention due to their consistent associations across multiple analyses. Through Sanger sequencing, we validated the genotypes of these two loci across 16 germplasms, confirming their consistency with the GWAS analysis results. Downstream of these two significant loci, we identified a candidate gene encoding an AP2 transcription factor protein, which we named <i>XsAP2</i>. RT-qPCR analysis revealed high expression of the <i>XsAP2</i> gene in seeds, and a significant negative correlation between its expression levels and seed hundred-grain weight, as well as single-fruit seed mass, suggesting its potential role in the normal seed development process. Transgenic <i>Arabidopsis</i> lines with the overexpressed <i>XsAP2</i> gene exhibited varying degrees of reduction in seed size, number of seeds per silique, and number of siliques per plant compared with wild-type <i>Arabidopsis</i>. Combining these results, we hypothesize that the <i>XsAP2</i> gene may have a negative regulatory effect on seed yield of yellow horn. These results provide a reference for the molecular breeding of high-yielding yellow horn.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 1","pages":"uhad243"},"PeriodicalIF":7.6,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-17eCollection Date: 2024-01-01DOI: 10.1093/hr/uhad231
Ying Ye, Ru-Yi Liu, Xin Li, Xin-Qiang Zheng, Jian-Liang Lu, Yue-Rong Liang, Chao-Ling Wei, Yong-Quan Xu, Jian-Hui Ye
Flavonoids are important compounds in tea leaves imparting bitter and astringent taste, which also play key roles in tea plants responding to environmental stress. Our previous study showed that the expression level of CsMYB67 was positively correlated with the accumulation of flavonoids in tea leaves as exposed to sunlight. Here, we newly reported the function of CsMYB67 in regulating flavonoid biosynthesis in tea leaves. CsMYB67 was localized in the nucleus and responded to temperature. The results of transient expression assays showed the co-transformation of CsMYB67 and CsTTG1 promoted the transcription of CsANS promoter in the tobacco system. CsTTG1 was bound to the promoter of CsANS based on the results of yeast one-hybrid (Y1H) and transient expression assays, while CsMYB67 enhanced the transcription of CsANS through protein interaction with CsTTG1 according to the results of yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). Thus, CsMYB67-CsTTG1 module enhanced the anthocyanin biosynthesis through up-regulating the transcription of CsANS. Besides, CsMYB67 also enhanced the transcription of CsFLS and CsUFGT through forming transcription factor complexes. The function of CsMYB67 on flavonoid biosynthesis in tea leaves was validated by gene suppression assay. As CsMYB67 was suppressed, the transcriptional level of CsFLS was greatly reduced, leading to a significant increase in the contents of total catechins and total anthocyanidins. Hence, CsMYB67 plays an important role in regulating the downstream pathway of flavonoid biosynthesis in summer tea leaves.
{"title":"CsMYB67 participates in the flavonoid biosynthesis of summer tea leaves.","authors":"Ying Ye, Ru-Yi Liu, Xin Li, Xin-Qiang Zheng, Jian-Liang Lu, Yue-Rong Liang, Chao-Ling Wei, Yong-Quan Xu, Jian-Hui Ye","doi":"10.1093/hr/uhad231","DOIUrl":"10.1093/hr/uhad231","url":null,"abstract":"<p><p>Flavonoids are important compounds in tea leaves imparting bitter and astringent taste, which also play key roles in tea plants responding to environmental stress. Our previous study showed that the expression level of <i>CsMYB67</i> was positively correlated with the accumulation of flavonoids in tea leaves as exposed to sunlight. Here, we newly reported the function of CsMYB67 in regulating flavonoid biosynthesis in tea leaves. CsMYB67 was localized in the nucleus and responded to temperature. The results of transient expression assays showed the co-transformation of <i>CsMYB67</i> and <i>CsTTG1</i> promoted the transcription of <i>CsANS</i> promoter in the tobacco system. CsTTG1 was bound to the promoter of <i>CsANS</i> based on the results of yeast one-hybrid (Y1H) and transient expression assays, while CsMYB67 enhanced the transcription of <i>CsANS</i> through protein interaction with CsTTG1 according to the results of yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). Thus, CsMYB67-CsTTG1 module enhanced the anthocyanin biosynthesis through up-regulating the transcription of <i>CsANS</i>. Besides, CsMYB67 also enhanced the transcription of <i>CsFLS</i> and <i>CsUFGT</i> through forming transcription factor complexes. The function of <i>CsMYB67</i> on flavonoid biosynthesis in tea leaves was validated by gene suppression assay. As <i>CsMYB67</i> was suppressed, the transcriptional level of <i>CsFLS</i> was greatly reduced, leading to a significant increase in the contents of total catechins and total anthocyanidins. Hence, CsMYB67 plays an important role in regulating the downstream pathway of flavonoid biosynthesis in summer tea leaves.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 1","pages":"uhad231"},"PeriodicalIF":7.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-17eCollection Date: 2024-01-01DOI: 10.1093/hr/uhad233
Seo-Young Lee, Bomi Kang, Jelli Venkatesh, Joung-Ho Lee, Seyoung Lee, Jung-Min Kim, Seungki Back, Jin-Kyung Kwon, Byoung-Cheorl Kang
Genome editing (GE) using CRISPR/Cas systems has revolutionized plant mutagenesis. However, conventional transgene-mediated GE methods have limitations due to the time-consuming generation of stable transgenic lines expressing the Cas9/single guide RNA (sgRNA) module through tissue cultures. Virus-induced genome editing (VIGE) systems have been successfully employed in model plants, such as Arabidopsis thaliana and Nicotiana spp. In this study, we developed two VIGE methods for Solanaceous plants. First, we used the tobacco rattle virus (TRV) vector to deliver sgRNAs into a transgenic tomato (Solanum lycopersicum) line of cultivar Micro-Tom expressing Cas9. Second, we devised a transgene-free GE method based on a potato virus X (PVX) vector to deliver Cas9 and sgRNAs. We designed and cloned sgRNAs targeting Phytoene desaturase in the VIGE vectors and determined optimal conditions for VIGE. We evaluated VIGE efficiency through deep sequencing of the target gene after viral vector inoculation, detecting 40.3% and 36.5% mutation rates for TRV- and PVX-mediated GE, respectively. To improve editing efficiency, we applied a 37°C heat treatment, which increased the editing efficiency by 33% to 46% and 56% to 76% for TRV- and PVX-mediated VIGE, respectively. To obtain edited plants, we subjected inoculated cotyledons to tissue culture, yielding successful editing events. We also demonstrated that PVX-mediated GE can be applied to other Solanaceous crops, such as potato (Solanum tuberosum) and eggplant (Solanum melongena). These simple and highly efficient VIGE methods have great potential for generating genome-edited plants in Solanaceous crops.
{"title":"Development of virus-induced genome editing methods in Solanaceous crops.","authors":"Seo-Young Lee, Bomi Kang, Jelli Venkatesh, Joung-Ho Lee, Seyoung Lee, Jung-Min Kim, Seungki Back, Jin-Kyung Kwon, Byoung-Cheorl Kang","doi":"10.1093/hr/uhad233","DOIUrl":"10.1093/hr/uhad233","url":null,"abstract":"<p><p>Genome editing (GE) using CRISPR/Cas systems has revolutionized plant mutagenesis. However, conventional transgene-mediated GE methods have limitations due to the time-consuming generation of stable transgenic lines expressing the Cas9/single guide RNA (sgRNA) module through tissue cultures. Virus-induced genome editing (VIGE) systems have been successfully employed in model plants, such as <i>Arabidopsis thaliana</i> and <i>Nicotiana</i> spp<i>.</i> In this study, we developed two VIGE methods for Solanaceous plants. First, we used the <i>tobacco rattle virus</i> (TRV) vector to deliver sgRNAs into a transgenic tomato (<i>Solanum lycopersicum</i>) line of cultivar Micro-Tom expressing <i>Cas9</i>. Second, we devised a transgene-free GE method based on a <i>potato virus X</i> (PVX) vector to deliver <i>Cas9</i> and sgRNAs. We designed and cloned sgRNAs targeting <i>Phytoene desaturase</i> in the VIGE vectors and determined optimal conditions for VIGE. We evaluated VIGE efficiency through deep sequencing of the target gene after viral vector inoculation, detecting 40.3% and 36.5% mutation rates for TRV- and PVX-mediated GE, respectively. To improve editing efficiency, we applied a 37°C heat treatment, which increased the editing efficiency by 33% to 46% and 56% to 76% for TRV- and PVX-mediated VIGE, respectively. To obtain edited plants, we subjected inoculated cotyledons to tissue culture, yielding successful editing events. We also demonstrated that PVX-mediated GE can be applied to other Solanaceous crops, such as potato (<i>Solanum tuberosum</i>) and eggplant (<i>Solanum melongena</i>). These simple and highly efficient VIGE methods have great potential for generating genome-edited plants in Solanaceous crops.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 1","pages":"uhad233"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carotenoids are important natural pigments and have medical and health functions for humans. Carotenoid cleavage dioxygenase 4 (CCD4) and ethylene responsive factor (ERF) participate in carotenoid metabolism, but their roles in Lycium have not been discovered. Here, we annotated LbCCDs from the Lycium reference genome and found that LbCCD4.1 expression was significantly correlated with the carotenoid metabolites during Lycium five fruit developmental stages. Over-expression of LbCCD4.1 in NQ's leaves resulted in a series of significantly lower contents of carotenoid metabolites, including β-carotene and β-cryptoxanthin. Moreover, LbERF5.1, a transcription factor belonging to the ERF family that was located in the nucleus, was isolated. Significant reductions in the carotenoids, especially lutein, violaxanthin and their derivatives, were observed in over-expressing ERF5.1 transgenic NQ's leaves. Over-expression or virus-induced gene silencing of LbERF5.1 in NQ's leaves induced a consistent up- or down-expression, respectively, of LbCCD4.1. Furthermore, yeast one-hybrid and dual-luciferase reporter assays showed that ERF5.1 interacted with the promoter of CCD4.1 to increase its expression, and LbERF5.1 could bind to any one of the three predicted binding sites in the promoter of LbCCD4.1. A transcriptome analysis of LbERF5.1 and LbCCD4.1 over-expressed lines showed similar global transcript expression, and geranylgeranyl diphosphate synthase, phytoene synthase, lycopene δ-cyclase cytochrome, cytochrome P450-type monooxygenase 97A, cytochrome P450-type monooxygenase 97C, and zeaxanthin epoxidase in the carotenoid biosynthesis pathway were differentially expressed. In summary, we uncovered a novel molecular mechanism of carotenoid accumulation that involved an interaction between ERF5.1 and CCD4.1, which may be used to enhance carotenoid in Lycium.
{"title":"<i>ERF5.1</i> modulates carotenoid accumulation by interacting with <i>CCD4.1 in Lycium</i>.","authors":"Jianhua Zhao, Yuhui Xu, Haoxia Li, Xinlei Zhu, Yue Yin, Xiyan Zhang, Xiaoya Qin, Jun Zhou, Linyuan Duan, Xiaojie Liang, Ting Huang, Bo Zhang, Ru Wan, Zhigang Shi, Youlong Cao, Wei An","doi":"10.1093/hr/uhad230","DOIUrl":"10.1093/hr/uhad230","url":null,"abstract":"<p><p>Carotenoids are important natural pigments and have medical and health functions for humans. Carotenoid cleavage dioxygenase 4 (<i>CCD4</i>) and ethylene responsive factor (ERF) participate in carotenoid metabolism, but their roles in <i>Lycium</i> have not been discovered. Here, we annotated <i>LbCCD</i>s from the <i>Lycium</i> reference genome and found that <i>LbCCD4.1</i> expression was significantly correlated with the carotenoid metabolites during <i>Lycium</i> five fruit developmental stages. Over-expression of <i>LbCCD4.1</i> in NQ's leaves resulted in a series of significantly lower contents of carotenoid metabolites, including β-carotene and β-cryptoxanthin. Moreover, <i>LbERF5.1</i>, a transcription factor belonging to the ERF family that was located in the nucleus, was isolated. Significant reductions in the carotenoids, especially lutein, violaxanthin and their derivatives, were observed in over-expressing <i>ERF5.1</i> transgenic NQ's leaves. Over-expression or virus-induced gene silencing of <i>LbERF5.1</i> in NQ's leaves induced a consistent up- or down-expression, respectively, of <i>LbCCD4.1</i>. Furthermore, yeast one-hybrid and dual-luciferase reporter assays showed that <i>ERF5.1</i> interacted with the promoter of <i>CCD4.1</i> to increase its expression, and <i>LbERF5.1</i> could bind to any one of the three predicted binding sites in the promoter of <i>LbCCD4.1</i>. A transcriptome analysis of <i>LbERF5.1</i> and <i>LbCCD4.1</i> over-expressed lines showed similar global transcript expression, and geranylgeranyl diphosphate synthase, phytoene synthase, lycopene δ-cyclase cytochrome, cytochrome P450-type monooxygenase 97A, cytochrome P450-type monooxygenase 97C, and zeaxanthin epoxidase in the carotenoid biosynthesis pathway were differentially expressed. In summary, we uncovered a novel molecular mechanism of carotenoid accumulation that involved an interaction between <i>ERF5.1</i> and <i>CCD4.1</i>, which may be used to enhance carotenoid in <i>Lycium</i>.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 12","pages":"uhad230"},"PeriodicalIF":7.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scutellaria baicalensis Georgi, a member of the Lamiaceae family, is a widely utilized medicinal plant. The flavones extracted from S. baicalensis contribute to numerous health benefits, including anti-inflammatory, antiviral, and anti-tumor activities. However, the incomplete genome assembly hinders biological studies on S. baicalensis. This study presents the first telomere-to-telomere (T2T) gap-free genome assembly of S. baicalensis through the integration of Pacbio HiFi, Nanopore ultra-long and Hi-C technologies. A total of 384.59 Mb of genome size with a contig N50 of 42.44 Mb was obtained, and all sequences were anchored into nine pseudochromosomes without any gap or mismatch. In addition, we analysed the major cyanidin- and delphinidin-based anthocyanins involved in the determination of blue-purple flower using a widely-targeted metabolome approach. Based on the genome-wide identification of Cytochrome P450 (CYP450) gene family, three genes (SbFBH1, 2, and 5) encoding flavonoid 3'-hydroxylases (F3'Hs) and one gene (SbFBH7) encoding flavonoid 3'5'-hydroxylase (F3'5'H) were found to hydroxylate the B-ring of flavonoids. Our studies enrich the genomic information available for the Lamiaceae family and provide a toolkit for discovering CYP450 genes involved in the flavonoid decoration.
{"title":"Gap-free genome assembly and <i>CYP450</i> gene family analysis reveal the biosynthesis of anthocyanins in <i>Scutellaria baicalensis</i>.","authors":"Tianlin Pei, Sanming Zhu, Weizhi Liao, Yumin Fang, Jie Liu, Yu Kong, Mengxiao Yan, Mengying Cui, Qing Zhao","doi":"10.1093/hr/uhad235","DOIUrl":"10.1093/hr/uhad235","url":null,"abstract":"<p><p><i>Scutellaria baicalensis</i> Georgi, a member of the Lamiaceae family, is a widely utilized medicinal plant. The flavones extracted from <i>S. baicalensis</i> contribute to numerous health benefits, including anti-inflammatory, antiviral, and anti-tumor activities. However, the incomplete genome assembly hinders biological studies on <i>S. baicalensis</i>. This study presents the first telomere-to-telomere (T2T) gap-free genome assembly of <i>S. baicalensis</i> through the integration of Pacbio HiFi, Nanopore ultra-long and Hi-C technologies. A total of 384.59 Mb of genome size with a contig N50 of 42.44 Mb was obtained, and all sequences were anchored into nine pseudochromosomes without any gap or mismatch. In addition, we analysed the major cyanidin- and delphinidin-based anthocyanins involved in the determination of blue-purple flower using a widely-targeted metabolome approach. Based on the genome-wide identification of <i>Cytochrome P450 (CYP450)</i> gene family, three genes (<i>SbFBH1</i>, <i>2</i>, and <i>5</i>) encoding flavonoid 3'-hydroxylases (F3'Hs) and one gene (<i>SbFBH7</i>) encoding flavonoid 3'5'-hydroxylase (F3'5'H) were found to hydroxylate the B-ring of flavonoids. Our studies enrich the genomic information available for the Lamiaceae family and provide a toolkit for discovering <i>CYP450</i> genes involved in the flavonoid decoration.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 12","pages":"uhad235"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-17eCollection Date: 2023-12-01DOI: 10.1093/hr/uhad232
Qi Gao, Shaoqiang Hu, Xiaoli Wang, Fu Han, Huifeng Luo, Zhongchi Liu, Chunying Kang
Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (Fragaria vesca) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in FvePhyB leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the FvePhyB mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The srl mutant with a longer internode is caused by a mutation in the DELLA gene FveRGA1 (Repressor of GA1) in the gibberellin pathway. We found that the P8 srl double mutant has much longer internodes than srl, suggesting a synergistic role of FvePhyB and FveRGA1 in this process. Taken together, these results demonstrate the important role of FvePhyB in regulating plant architecture and anthocyanin content in woodland strawberry.
{"title":"The red/far-red light photoreceptor FvePhyB regulates tissue elongation and anthocyanin accumulation in woodland strawberry.","authors":"Qi Gao, Shaoqiang Hu, Xiaoli Wang, Fu Han, Huifeng Luo, Zhongchi Liu, Chunying Kang","doi":"10.1093/hr/uhad232","DOIUrl":"https://doi.org/10.1093/hr/uhad232","url":null,"abstract":"<p><p>Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (<i>Fragaria vesca</i>) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in <i>FvePhyB</i> leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the <i>FvePhyB</i> mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The <i>srl</i> mutant with a longer internode is caused by a mutation in the DELLA gene <i>FveRGA1</i> (<i>Repressor of GA1</i>) in the gibberellin pathway. We found that the P8 <i>srl</i> double mutant has much longer internodes than <i>srl</i>, suggesting a synergistic role of <i>FvePhyB</i> and <i>FveRGA1</i> in this process. Taken together, these results demonstrate the important role of <i>FvePhyB</i> in regulating plant architecture and anthocyanin content in woodland strawberry.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 12","pages":"uhad232"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-14eCollection Date: 2023-12-01DOI: 10.1093/hr/uhad239
Sangkyu Park, Hyo Lee, Jaeeun Song, Chan Ju Lim, Jinpyo Oh, Sang Hoon Lee, Saet Buyl Lee, Jong-Yeol Lee, Sunhyung Lim, Jin A Kim, Beom-Gi Kim
Flavonols are the major class of flavonoids of green Chinese cabbage (Brassica rapa subsp. pekinensis). The B. rapa genome harbors seven flavonol synthase genes (BrFLSs), but they have not been functionally characterized. Here, transcriptome analysis showed four BrFLSs mainly expressed in Chinese cabbage. Among them, only BrFLS1 showed major FLS activity and additional flavanone 3β-hydroxylase (F3H) activity, while BrFLS2 and BrFLS3.1 exhibited only marginal F3H activities. We generated BrFLS1-knockout (BrFLS1-KO) Chinese cabbages using CRISPR/Cas9-mediated genome editing and obtained transgene-free homozygous plants without off-target mutation in the T1 generation, which were further advanced to the T2 generation showing normal phenotype. UPLC-ESI-QTOF-MS analysis revealed that flavonol glycosides were dramatically decreased in the T2 plants, while dihydroflavonol glycosides accumulated concomitantly to levels corresponding to the reduced levels of flavonols. Quantitative PCR analysis revealed that the early steps of phenylpropanoid and flavonoid biosynthetic pathway were upregulated in the BrFLS1-KO plants. In accordance, total phenolic contents were slightly enhanced in the BrFLS1-KO plants, which suggests a negative role of flavonols in phenylpropanoid and flavonoid biosynthesis in Chinese cabbage. Phenotypic surveys revealed that the BrFLS1-KO Chinese cabbages showed normal head formation and reproductive phenotypes, but subtle morphological changes in their heads were observed. In addition, their seedlings were susceptible to osmotic stress compared to the controls, suggesting that flavonols play a positive role for osmotic stress tolerance in B.rapa seedling. In this study, we showed that CRISPR/Cas9-mediated BrFLS1-KO successfully generated a valuable breeding resource of Chinese cabbage with distinctive metabolic traits and that CRISPR/Cas9 can be efficiently applied in functional Chinese cabbage breeding.
{"title":"Gene editing of authentic <i>Brassica rapa flavonol synthase 1</i> generates dihydroflavonol-accumulating Chinese cabbage.","authors":"Sangkyu Park, Hyo Lee, Jaeeun Song, Chan Ju Lim, Jinpyo Oh, Sang Hoon Lee, Saet Buyl Lee, Jong-Yeol Lee, Sunhyung Lim, Jin A Kim, Beom-Gi Kim","doi":"10.1093/hr/uhad239","DOIUrl":"https://doi.org/10.1093/hr/uhad239","url":null,"abstract":"<p><p>Flavonols are the major class of flavonoids of green Chinese cabbage (<i>Brassica rapa</i> subsp. <i>pekinensis</i>). The <i>B. rapa</i> genome harbors seven <i>flavonol synthase</i> genes (<i>BrFLS</i>s), but they have not been functionally characterized. Here, transcriptome analysis showed four <i>BrFLS</i>s mainly expressed in Chinese cabbage. Among them, only BrFLS1 showed major FLS activity and additional flavanone 3<i>β</i>-hydroxylase (F3H) activity, while BrFLS2 and BrFLS3.1 exhibited only marginal F3H activities. We generated <i>BrFLS1</i>-knockout (<i>BrFLS1-</i>KO) Chinese cabbages using CRISPR/Cas9-mediated genome editing and obtained transgene-free homozygous plants without off-target mutation in the T<sub>1</sub> generation, which were further advanced to the T<sub>2</sub> generation showing normal phenotype. UPLC-ESI-QTOF-MS analysis revealed that flavonol glycosides were dramatically decreased in the T<sub>2</sub> plants, while dihydroflavonol glycosides accumulated concomitantly to levels corresponding to the reduced levels of flavonols. Quantitative PCR analysis revealed that the early steps of phenylpropanoid and flavonoid biosynthetic pathway were upregulated in the <i>BrFLS1-</i>KO plants. In accordance, total phenolic contents were slightly enhanced in the <i>BrFLS1-</i>KO plants, which suggests a negative role of flavonols in phenylpropanoid and flavonoid biosynthesis in Chinese cabbage. Phenotypic surveys revealed that the <i>BrFLS1-KO</i> Chinese cabbages showed normal head formation and reproductive phenotypes, but subtle morphological changes in their heads were observed. In addition, their seedlings were susceptible to osmotic stress compared to the controls, suggesting that flavonols play a positive role for osmotic stress tolerance in <i>B.rapa</i> seedling. In this study, we showed that CRISPR/Cas9-mediated <i>BrFLS1</i>-KO successfully generated a valuable breeding resource of Chinese cabbage with distinctive metabolic traits and that CRISPR/Cas9 can be efficiently applied in functional Chinese cabbage breeding.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 12","pages":"uhad239"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scutellaria baicalensis Georgi, also known as huang-qin in traditional Chinese medicine, is a widely used herbal remedy due to its anticancer, antivirus, and hepatoprotective properties. The S. baicalensis genome was sequenced many years ago; by contrast, the proteome as the executer of most biological processes of S. baicalensis in the aerial parts, as well as the secondary structure of the roots (xylem, phloem, and periderm), is far less comprehensively characterized. Here we attempt to depict the molecular landscape of the non-model plant S. baicalensis through a multi-omics approach, with the goal of constructing a highly informative and valuable reference dataset. Furthermore, we provide an in-depth characterization dissection to explain the two distinct flavonoid biosynthesis pathways that exist in the aerial parts and root, at the protein and phosphorylated protein levels. Our study provides detailed spatial proteomic and phosphoproteomic information in the context of secondary structures, with implications for the molecular profiling of secondary metabolite biosynthesis in non-model medicinal plants.
{"title":"Multi-omics landscape to decrypt the distinct flavonoid biosynthesis of <i>Scutellaria baicalensis</i> across multiple tissues.","authors":"Dandan Guo, Zhenyu Zhu, Zhe Wang, Fei Feng, Qi Cao, Zhewei Xia, Xinlei Jia, Diya Lv, Ting Han, Xiaofei Chen","doi":"10.1093/hr/uhad258","DOIUrl":"10.1093/hr/uhad258","url":null,"abstract":"<p><p><i>Scutellaria baicalensis</i> Georgi, also known as huang-qin in traditional Chinese medicine, is a widely used herbal remedy due to its anticancer, antivirus, and hepatoprotective properties. The <i>S. baicalensis</i> genome was sequenced many years ago; by contrast, the proteome as the executer of most biological processes of <i>S. baicalensis</i> in the aerial parts, as well as the secondary structure of the roots (xylem, phloem, and periderm), is far less comprehensively characterized. Here we attempt to depict the molecular landscape of the non-model plant <i>S. baicalensis</i> through a multi-omics approach, with the goal of constructing a highly informative and valuable reference dataset. Furthermore, we provide an in-depth characterization dissection to explain the two distinct flavonoid biosynthesis pathways that exist in the aerial parts and root, at the protein and phosphorylated protein levels. Our study provides detailed spatial proteomic and phosphoproteomic information in the context of secondary structures, with implications for the molecular profiling of secondary metabolite biosynthesis in non-model medicinal plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 1","pages":"uhad258"},"PeriodicalIF":7.6,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nymphaea is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily Nymphaea prolifera. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of N. prolifera is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in N. prolifera exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of N. prolifera flowers, 12 oxygen methyltransferases (NpOMTs) were functionally identified. By in vitro enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of NpOMTs provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a Nymphaea-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant N. prolifera has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.
{"title":"Diverse <i>O</i>-methyltransferases catalyze the biosynthesis of floral benzenoids that repel aphids from the flowers of waterlily <i>Nymphaea prolifera</i>.","authors":"Guanhua Liu, Jianyu Fu, Lingyun Wang, Mingya Fang, Wanbo Zhang, Mei Yang, Xuemin Yang, Yingchun Xu, Lin Shi, Xiaoying Ma, Qian Wang, Hui Chen, Cuiwei Yu, Dongbei Yu, Feng Chen, Yifan Jiang","doi":"10.1093/hr/uhad237","DOIUrl":"10.1093/hr/uhad237","url":null,"abstract":"<p><p><i>Nymphaea</i> is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily <i>Nymphaea prolifera</i>. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of <i>N. prolifera</i> is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in <i>N. prolifera</i> exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of <i>N. prolifera</i> flowers, 12 oxygen methyltransferases (<i>NpOMTs</i>) were functionally identified. By <i>in vitro</i> enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of <i>NpOMTs</i> provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a <i>Nymphaea</i>-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant <i>N. prolifera</i> has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 12","pages":"uhad237"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}