{"title":"[Research progress in the role of microglia polarization in remyelination of central nervous system].","authors":"Xiao-Rui Wang, Hao Sun, Qi-Yan Cai, Zuo Xiao","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 5","pages":"386-90"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36216000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Effects of SIRT6 in cardiovascular, cancer and metabolic diseases].","authors":"Yan-Hao He, Wei-Rong Wang, Rong Lin","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 4","pages":"271-5"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36210154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Striatum is the central structure controlling movement. It plays a pivotal role in the regulation of voluntary movement, unconscious movement, muscle tone, posture adjustment and fine movement. Dysfunction of striatum causes a variety of movement disorders ranging from the hypokinetic disorders with increased muscle tone, such as Parkinson's disease, to the hyperkinetic disorders with decreased muscle tone, such as Huntington's disease. It is generally recognized that striatum receives the neural movement signals from the motor cortex, and then processes and modifies these signals and subsequently transfers the signals back to the motor cortex via thalamus for execution of the movement through pyramidal system. The movement control function of striatum depends on a complex neural circuit system. In this review, the studies on the movement control function of striatum as well as the striatal neural circuit system are summarized with an emphasis on the progress made during recent years for better understanding the mechanism underlying the movement control function as well as the disease association of striatum.
{"title":"[Movement Control of Striatum Neural Pathway].","authors":"Bing-Wei Wang, Xiao-Ning Yang, Chen-Yu Zhang, Chong-Jiu Chen, Shi-Gong Zhu, Rui-Mao Zheng","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Striatum is the central structure controlling movement. It plays a pivotal role in the regulation of voluntary movement, unconscious movement, muscle tone, posture adjustment and fine movement. Dysfunction of striatum causes a variety of movement disorders ranging from the hypokinetic disorders with increased muscle tone, such as Parkinson's disease, to the hyperkinetic disorders with decreased muscle tone, such as Huntington's disease. It is generally recognized that striatum receives the neural movement signals from the motor cortex, and then processes and modifies these signals and subsequently transfers the signals back to the motor cortex via thalamus for execution of the movement through pyramidal system. The movement control function of striatum depends on a complex neural circuit system. In this review, the studies on the movement control function of striatum as well as the striatal neural circuit system are summarized with an emphasis on the progress made during recent years for better understanding the mechanism underlying the movement control function as well as the disease association of striatum.</p>","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 4","pages":"241-8"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36210155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sirtuins, class III HDAC, has originally been defined as a family of nicotinamide adenine dinucleotide-dependent enzymes. There are seven mammalian sirtuins (SIRTI07), which mainly deaceylate lysine residue on various proteins as a deacetylase. Sirtuins regulate a diverse array of biological processes, including DNA damage and repair, gene transcription regulation, apoptosis, metabolism and aging. In this research perspective we review the role and molecular mechanism of Sirtuin in DNA damage and repair.
{"title":"[The Roles of Sirtuins in DNA Damage and Repair].","authors":"Tian Gao, Mei-Ting Li, Tian-Yun Hou, Yang Yang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Sirtuins, class III HDAC, has originally been defined as a family of nicotinamide adenine dinucleotide-dependent enzymes. There are seven mammalian sirtuins (SIRTI07), which mainly deaceylate lysine residue on various proteins as a deacetylase. Sirtuins regulate a diverse array of biological processes, including DNA damage and repair, gene transcription regulation, apoptosis, metabolism and aging. In this research perspective we review the role and molecular mechanism of Sirtuin in DNA damage and repair.</p>","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 4","pages":"249-54"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36210157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long-Zhu Liu, Xi He, Man Xu, Xiao-Jiang Yu, Wei-Jin Zang
Hypertension, which can cause a variety of cardiovascular and cerebrovascular complications, is a serious threat to human health. Currently, it is found that hypertension is related to immunoregulatory abnormality, which could lead to chronic inflammation. Then the chronic inflammation may impair vascular endothelial function and activate renin-angiotensin system, which cause vascular remodeling, angiosclerosis, dysfunctional vasoconstriction and vasodilatation, and exacerbate hypertension. The immunoregulatory abnormality of hypertension involves macrophage infiltration of the organization, the dendritic cell of antigen presentation and natural killer cells of activation in nonspecific immunity and activation of T cells in specific immune. The key of immunity mechanism of hypertension is the Toll like receptor to activate immune system and lead to inflammation. Autonomic nervous system is also closely related to the development and progression of hypertension. Autonomic imbalance in hypertension leads to immunoregulatory abnormality, cardiovascular injury, and dysfunctional vasoconstriction and vasodilatation, which ultimately results in exacerbation of hypertension. Therefore, research on neuro-immune regulation will help to provide novel strategies for therapy of hypertension. In this review, we will provide an overview of the research progress of the immunity mechanism of hypertension and the regulation of immune system by the autonomic nervous system.
{"title":"[Research Progress of Immunity Mechanism in Hypertension].","authors":"Long-Zhu Liu, Xi He, Man Xu, Xiao-Jiang Yu, Wei-Jin Zang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Hypertension, which can cause a variety of cardiovascular and cerebrovascular complications, is a serious threat to human health. Currently, it is found that hypertension is related to immunoregulatory abnormality, which could lead to chronic inflammation. Then the chronic inflammation may impair vascular endothelial function and activate renin-angiotensin system, which cause vascular remodeling, angiosclerosis, dysfunctional vasoconstriction and vasodilatation, and exacerbate hypertension. The immunoregulatory abnormality of hypertension involves macrophage infiltration of the organization, the dendritic cell of antigen presentation and natural killer cells of activation in nonspecific immunity and activation of T cells in specific immune. The key of immunity mechanism of hypertension is the Toll like receptor to activate immune system and lead to inflammation. Autonomic nervous system is also closely related to the development and progression of hypertension. Autonomic imbalance in hypertension leads to immunoregulatory abnormality, cardiovascular injury, and dysfunctional vasoconstriction and vasodilatation, which ultimately results in exacerbation of hypertension. Therefore, research on neuro-immune regulation will help to provide novel strategies for therapy of hypertension. In this review, we will provide an overview of the research progress of the immunity mechanism of hypertension and the regulation of immune system by the autonomic nervous system.</p>","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 4","pages":"255-9"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36210159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiu-He Zhao, Heng-Yan Zhou, Xue Yang, Zhao-Fu Chi, Sheng-Jun Wang
{"title":"[Long noncoding RNA in the progression of diseases].","authors":"Xiu-He Zhao, Heng-Yan Zhou, Xue Yang, Zhao-Fu Chi, Sheng-Jun Wang","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 4","pages":"309-12"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36211942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fibroblast growth factor 21 (FGF21), a member of fibroblast growth factor superfamily has received extensive attention for its positive effect on metabolism. Many tissues are target of FGF21 action. The effect of FGF21 on improving lipid and glucose metabolism has been proved. It also suggests that FGF21 plays a conspicuous role in a state of prolonged fasting and starvation. This article will review the role of FGF21 in regulating lipid and glucose metabolism and discuss the involved cellular and molecular mechanisms.
{"title":"[The Role of FGF21 in Regulating Lipid and Glucose Metabolism].","authors":"Wen-Qi Yang, Wen-Hua Ling","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Fibroblast growth factor 21 (FGF21), a member of fibroblast growth factor superfamily has received extensive attention for its positive effect on metabolism. Many tissues are target of FGF21 action. The effect of FGF21 on improving lipid and glucose metabolism has been proved. It also suggests that FGF21 plays a conspicuous role in a state of prolonged fasting and starvation. This article will review the role of FGF21 in regulating lipid and glucose metabolism and discuss the involved cellular and molecular mechanisms.</p>","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 4","pages":"260-4"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36210158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}