When examining the effects of a continuous variable x on an outcome y, a researcher might choose to dichotomize on x, dividing the population into two sets-low x and high x-and testing whether these two subpopulations differ with respect to y. Dichotomization has long been known to incur a cost in statistical power, but there remain circumstances in which it is appealing: an experimenter might use it to control for confounding covariates through subset selection, by carefully choosing a subpopulation of Low and a corresponding subpopulation of High that are balanced with respect to a list of control variables, and then comparing the subpopulations' y values. This "divide, select, and test" approach is used in many papers throughout the psycholinguistics literature, and elsewhere. Here we show that, despite the apparent innocuousness, these methodological choices can lead to erroneous results, in two ways. First, if the balanced subsets of Low and High are selected in certain ways, it is possible to conclude a relationship between x and y not present in the full population. Specifically, we show that previously published conclusions drawn from this methodology-about the effect of a particular lexical property on spoken-word recognition-do not in fact appear to hold. Second, if the balanced subsets of Low and High are selected randomly, this methodology frequently fails to show a relationship between x and y that is present in the full population. Our work uncovers a new facet of an ongoing research effort: to identify and reveal the implicit freedoms of experimental design that can lead to false conclusions.
Multiple myeloma (MM) is a hematological neoplasm characterized by the clonal proliferation of malignant plasma cells in the bone marrow. MM results in diffuse or focal bone infiltration and extramedullary lesions. Over the past two decades, advances have been made with regard to the diagnosis, staging, treatment, and imaging of MM. Computed tomography (CT) and magnetic resonance imaging (MRI) are currently recommended as the most effective imaging modalities at diagnostic. Yet, recent data from the literature suggest that positron emission tomography combined with computed tomography (PET/CT) using 18F-deoxyglucose (FDG) is a promising technique for initial staging and therapeutic monitoring in this pathology. This paper reviews the recent advances as well as the potential place of a more specific radiopharmaceutical in MM.
Background: Stem cells are capable of unlimited self-renewal and are able to remain undifferentiated for extended periods of time prior to their differentiation into specific cell lineages. Because of the issues (ethical and religious) involved in the use of embryonic stem cells and the limited plasticity of adult stem cells, an alternative cell source could be foetal stem cells derived from extra-embryonic tissue, which are highly proliferative, grow in vitro and possess interesting immunogenic characteristics. As a result, the amniotic membrane of several species has been studied as an important new source of stem cells.
Methods: Here, we cultured and characterized mesenchymal progenitor cells derived from the rabbit amniotic membrane, and investigated their differentiation potential. In total, amniotic membranes were collected from eight rabbit foetuses and were isolated by the explant technique. The obtained cells were cultured in DMEM-HIGH glucose and incubated at 37 °C in a humidified atmosphere with 5% CO2.
Results: The cells adhered to the culture plates and showed a high proliferative capacity with fibroblast-like morphologies. The cells showed a positive response for markers for the cytoskeleton, mesenchymal stem cells and proliferation, pluripotency and haematopoietic precursor stem cells. However, the cells were negative for CD45, a marker of haematopoietic cells. Furthermore, the cells had the capacity to be induced to differentiate into osteogenic, adipogenic and chondrogenic lineages. In addition, when the cells were injected into nude mice, we did not observe the formation of tumours.
Conclusions: In summary, our results demonstrate that multipotent mesenchymal stem cells can be obtained from the rabbit amniotic membrane for possible use in future cell therapy applications.