首页 > 最新文献

International Journal of Mechanical and Materials Engineering最新文献

英文 中文
The effect of alumina powder in dielectric on electrical discharge machining parameters of aluminum composite A413-Al2O3 by the Taguchi method, the signal-to-noise analysis and the total normalized quality loss 采用田口法、信噪比分析和总归一化质量损失研究了电介质中氧化铝粉末对A413-Al2O3复合铝材料电火花加工参数的影响
IF 3.1 Q1 Engineering Pub Date : 2020-04-03 DOI: 10.1186/s40712-020-00117-z
Mojtaba Shahbazi Dastjerdi, Ali Mokhtarian, Payam Saraeian

The machining capability of metal composites is different compared to other materials because of their specific physical and mechanical properties. The aluminum composite A413 reinforced with Alumina powder is one of the materials which causes rapid erosion of the tool if traditional machining methods are employed. In this research, the electrical discharge machining experiments were conducted using the Taguchi method. After analysis of variance (ANOVA) using simultaneous analysis of total normalized quality loss (TNQL), and signal-to-noise ratio (S/N) of outputs, the effect of each parameter such as current intensity, voltage, pulse on-time and pulse off-time have been investigated. These parameters are influential on material removal rates, surface roughness, and tool wear ratio of electric discharge machining in two cases of with alumina powder and without alumina powder in dielectric. The outcomes of this research indicate that the use of Alumina powder 3?g/L in kerosene dielectric averagely reduces the material removal rate by 7.8%, increases the surface roughness by 8.8%, and decreases the tool wear ratio by 1.3%. Also, the results of analysis of total normalized quality loss and signal-to-noise ratio of the experiment have been shown as the first level of voltage (A1), the first level of current intensity (B1), the first level of pulse on time (C1), and the third level of pulse off time (D3).

由于金属复合材料具有特殊的物理和机械性能,其加工能力不同于其他材料。采用传统的加工方法,铝粉增强铝复合材料A413是造成刀具快速腐蚀的材料之一。本研究采用田口法进行了电火花加工实验。通过同时分析输出的总归一化质量损失(TNQL)和信噪比(S/N)进行方差分析(ANOVA),研究了电流强度、电压、脉冲导通时间和关断时间等参数的影响。电介质中有氧化铝粉和不含氧化铝粉两种情况下,这些参数对电火花加工的材料去除率、表面粗糙度和刀具磨损率都有影响。本研究结果表明,氧化铝粉的应用g/L的煤油介质平均使材料去除率降低7.8%,表面粗糙度提高8.8%,刀具磨损率降低1.3%。实验的总归一化质量损失和信噪比分析结果显示为第一级电压(A1)、第一级电流强度(B1)、第一级脉冲接通时间(C1)和第三级脉冲断开时间(D3)。
{"title":"The effect of alumina powder in dielectric on electrical discharge machining parameters of aluminum composite A413-Al2O3 by the Taguchi method, the signal-to-noise analysis and the total normalized quality loss","authors":"Mojtaba Shahbazi Dastjerdi,&nbsp;Ali Mokhtarian,&nbsp;Payam Saraeian","doi":"10.1186/s40712-020-00117-z","DOIUrl":"https://doi.org/10.1186/s40712-020-00117-z","url":null,"abstract":"<p>The machining capability of metal composites is different compared to other materials because of their specific physical and mechanical properties. The aluminum composite A413 reinforced with Alumina powder is one of the materials which causes rapid erosion of the tool if traditional machining methods are employed. In this research, the electrical discharge machining experiments were conducted using the Taguchi method. After analysis of variance (ANOVA) using simultaneous analysis of total normalized quality loss (TNQL), and signal-to-noise ratio (S/N) of outputs, the effect of each parameter such as current intensity, voltage, pulse on-time and pulse off-time have been investigated. These parameters are influential on material removal rates, surface roughness, and tool wear ratio of electric discharge machining in two cases of with alumina powder and without alumina powder in dielectric. The outcomes of this research indicate that the use of Alumina powder 3?g/L in kerosene dielectric averagely reduces the material removal rate by 7.8%, increases the surface roughness by 8.8%, and decreases the tool wear ratio by 1.3%. Also, the results of analysis of total normalized quality loss and signal-to-noise ratio of the experiment have been shown as the first level of voltage (<i>A</i><sub>1</sub>), the first level of current intensity (<i>B</i><sub>1</sub>), the first level of pulse on time (<i>C</i><sub>1</sub>), and the third level of pulse off time (<i>D</i><sub>3</sub>).</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2020-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-020-00117-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4107650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Experimentation and numerical modeling on the response of woven glass/epoxy composite plate under blast impact loading 玻璃/环氧复合材料编织板在爆炸冲击载荷下响应的实验与数值模拟
IF 3.1 Q1 Engineering Pub Date : 2020-02-10 DOI: 10.1186/s40712-020-0116-3
Kasmidi Gunaryo, Heri Heriana, M. Rafiqi Sitompul, Andi Kuswoyo, Bambang K. Hadi

Composite material is being used in vehicles for protective structures against blast loading. Limited data is available which compare experimental works and numerical analysis in the open field environment. More data is needed in this area in order to be able to predict and use composite materials safely.

In this work, the response of woven glass/epoxy composite plates under blast loading was investigated, both experimentally and numerically. The plate was manufactured using glass/epoxy woven Cytec 120?°C curing system. The explosive material was Tri-Nitro-Toluen (TNT) with different masses, which are 60, 80, and 100?g. The stand-off distance was also varied, ranging from 300 up to 1000 mm. In the experimental work, a sewing needle pin was put under the plate to record the maximum deformation of the plate during TNT explosion. In the numerical analysis, LS-DYNA was used extensively. The composite plate was modeled as shell elements using MAT54, and the failure criteria was Chang-Chang failure criteria. The explosive TNT material was modeled in two different ways. First, it was modeled using CONWEP and the second was modeled using Smooth Particle Hydrodynamics (SPH). The numerical analysis results were then compared with the experimental data for the case of maximum deformation.

Experimentally, the sewing needle method was able to measure the plate maximum deformation during the explosion. The numerical analysis showed that the SPH model gave better agreement with experimental results compared with CONWEP method. The SPH results were in the range of 8–18% compared to experimental data, while the CONWEP results were in the range of 14–43%.

Albeit its simplicity, sewing needle method was able to measure the maximum deformation for blast loading experimentation. The SPH model was better compared with CONWEP method in analyzing the response of composite plate subjected to blast loading.

复合材料被用于车辆的防爆结构。野外环境下的实验与数值分析对比数据有限。为了能够安全地预测和使用复合材料,这一领域需要更多的数据。本文对玻璃/环氧复合材料编织板在爆炸荷载作用下的响应进行了实验和数值研究。板材采用玻璃/环氧树脂编织的Cytec 120?°C固化系统。爆炸材料为三硝基甲苯(TNT),质量分别为60g、80g和100g。距离也有变化,从300到1000毫米不等。在实验工作中,在板子下放置一个缝纫针,记录板子在TNT爆炸时的最大变形。在数值分析中,LS-DYNA被广泛使用。采用MAT54对复合板进行壳单元建模,破坏准则为Chang-Chang破坏准则。爆炸的TNT材料以两种不同的方式建模。首先采用CONWEP建模,其次采用光滑粒子流体力学(SPH)建模。在最大变形情况下,将数值分析结果与实验数据进行了比较。实验结果表明,缝针法能够测量爆炸过程中钢板的最大变形。数值分析表明,与CONWEP方法相比,SPH模型与实验结果吻合较好。与实验数据相比,SPH结果在8-18%之间,CONWEP结果在14-43%之间。缝针法虽然简单,但能够测量爆炸载荷试验的最大变形。与CONWEP方法相比,SPH模型能更好地分析复合材料板在爆炸荷载作用下的响应。
{"title":"Experimentation and numerical modeling on the response of woven glass/epoxy composite plate under blast impact loading","authors":"Kasmidi Gunaryo,&nbsp;Heri Heriana,&nbsp;M. Rafiqi Sitompul,&nbsp;Andi Kuswoyo,&nbsp;Bambang K. Hadi","doi":"10.1186/s40712-020-0116-3","DOIUrl":"https://doi.org/10.1186/s40712-020-0116-3","url":null,"abstract":"<p>Composite material is being used in vehicles for protective structures against blast loading. Limited data is available which compare experimental works and numerical analysis in the open field environment. More data is needed in this area in order to be able to predict and use composite materials safely.</p><p>In this work, the response of woven glass/epoxy composite plates under blast loading was investigated, both experimentally and numerically. The plate was manufactured using glass/epoxy woven Cytec 120?°C curing system. The explosive material was Tri-Nitro-Toluen (TNT) with different masses, which are 60, 80, and 100?g. The stand-off distance was also varied, ranging from 300 up to 1000 mm. In the experimental work, a sewing needle pin was put under the plate to record the maximum deformation of the plate during TNT explosion. In the numerical analysis, LS-DYNA was used extensively. The composite plate was modeled as shell elements using MAT54, and the failure criteria was Chang-Chang failure criteria. The explosive TNT material was modeled in two different ways. First, it was modeled using CONWEP and the second was modeled using Smooth Particle Hydrodynamics (SPH). The numerical analysis results were then compared with the experimental data for the case of maximum deformation.</p><p>Experimentally, the sewing needle method was able to measure the plate maximum deformation during the explosion. The numerical analysis showed that the SPH model gave better agreement with experimental results compared with CONWEP method. The SPH results were in the range of 8–18% compared to experimental data, while the CONWEP results were in the range of 14–43%.</p><p>Albeit its simplicity, sewing needle method was able to measure the maximum deformation for blast loading experimentation. The SPH model was better compared with CONWEP method in analyzing the response of composite plate subjected to blast loading.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-020-0116-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4415247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Axisymmetric deformation in transversely isotropic magneto-thermoelastic solid with Green–Naghdi III due to inclined load 横向各向同性Green-Naghdi III型磁热弹性固体在倾斜载荷作用下的轴对称变形
IF 3.1 Q1 Engineering Pub Date : 2020-01-31 DOI: 10.1186/s40712-019-0111-8
Iqbal Kaur, Parveen Lata

The axisymmetric problem in two-dimensional transversely isotropic magneto-thermoelastic (TIMT) solid due to inclined load with Green–Naghdi (GN)-III theory and two temperature (2T) has been studied. The Laplace and Hankel transform has been used to get the expressions of temperature distribution, displacement, and stress components with the horizontal distance in the physical domain. The effect of Green–Naghdi theories of type I, II, and III theories of thermoelasticity has been studied graphically on the resulting quantities. A special case for the magneto-thermoelastic isotropic medium has also been studied.

利用Green-Naghdi (GN)-III理论和双温度(2T)研究了二维横向各向同性磁热弹性(TIMT)固体在倾斜载荷作用下的轴对称问题。利用拉普拉斯和汉克尔变换,得到了温度分布、位移和应力分量随水平距离在物理域中的表达式。用图形研究了I型、II型和III型热弹性理论的Green-Naghdi理论对所得量的影响。本文还研究了磁-热弹性各向同性介质的一种特殊情况。
{"title":"Axisymmetric deformation in transversely isotropic magneto-thermoelastic solid with Green–Naghdi III due to inclined load","authors":"Iqbal Kaur,&nbsp;Parveen Lata","doi":"10.1186/s40712-019-0111-8","DOIUrl":"https://doi.org/10.1186/s40712-019-0111-8","url":null,"abstract":"<p>The axisymmetric problem in two-dimensional transversely isotropic magneto-thermoelastic (TIMT) solid due to inclined load with Green–Naghdi (GN)-III theory and two temperature (2T) has been studied. The Laplace and Hankel transform has been used to get the expressions of temperature distribution, displacement, and stress components with the horizontal distance in the physical domain. The effect of Green–Naghdi theories of type I, II, and III theories of thermoelasticity has been studied graphically on the resulting quantities. A special case for the magneto-thermoelastic isotropic medium has also been studied.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0111-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5173299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Effect of concentration, aging, and annealing on sol gel ZnO and Al-doped ZnO thin films 浓度、时效和退火对溶胶凝胶ZnO和al掺杂ZnO薄膜的影响
IF 3.1 Q1 Engineering Pub Date : 2020-01-29 DOI: 10.1186/s40712-019-0113-6
D. T. Speaks

Presented are experimental results on the effect of concentration, aging, and annealing time on the optical and structural properties of sol gel zinc oxide (ZnO) and Al-doped ZnO thin films. ZnO and ZnO:Al thin films were fabricated on glass substrates using spin coating followed by annealing. XRD confirmed that the films are polycrystalline wurtzite. For low concentration films (0.2 and 0.4 M), grain size increased with aging time up to 72 hours. For high concentration samples (0.6 and 0.8 M), grain size increased only up to 48 hours. Additional aging resulted in a decrease in the grain size. The largest grain sizes were found for 0.4 M at 72 hours and 0.6 M at 48 hours. The band gap tended to decrease with increasing aging time for all concentrations. The smallest band gap for each aging time (24, 48, and 72 hours) was observed for 0.6 M films. These results suggest that higher concentration sol gel near 0.6 M may yield better properties with shorter aging times than 0.2 and 0.4 M films. Annealing data suggests that 350 oC is the minimum annealing at 1 hour to achieve high-quality films and higher concentration ZnO films have stronger diffraction peaks. ZnO:Al also exhibits stronger diffraction peaks and a larger blue shift of the band edge with increasing sol gel concentration.

给出了浓度、时效和退火时间对溶胶凝胶氧化锌(ZnO)和掺铝氧化锌薄膜光学和结构性能影响的实验结果。采用自旋镀膜和退火法制备了ZnO和ZnO:Al薄膜。XRD证实薄膜为多晶纤锌矿。对于低浓度(0.2和0.4 M)薄膜,随着时效时间的延长,晶粒尺寸逐渐增大。对于高浓度样品(0.6和0.8 M),晶粒尺寸仅增加到48小时。进一步时效导致晶粒尺寸减小。72 h和48 h的最大晶粒尺寸分别为0.4 M和0.6 M。各浓度的带隙随时效时间的增加而减小。在不同时效时间下(24、48和72小时),0.6 M薄膜的带隙最小。这些结果表明,浓度较高的溶胶凝胶在0.6 M附近比0.2和0.4 M膜具有更好的性能和更短的老化时间。退火数据表明,要获得高质量的薄膜,最低退火温度为350℃,退火时间为1小时,较高浓度的ZnO薄膜具有较强的衍射峰。随着溶胶凝胶浓度的增加,ZnO:Al也表现出更强的衍射峰和更大的带边蓝移。
{"title":"Effect of concentration, aging, and annealing on sol gel ZnO and Al-doped ZnO thin films","authors":"D. T. Speaks","doi":"10.1186/s40712-019-0113-6","DOIUrl":"https://doi.org/10.1186/s40712-019-0113-6","url":null,"abstract":"<p>Presented are experimental results on the effect of concentration, aging, and annealing time on the optical and structural properties of sol gel zinc oxide (ZnO) and Al-doped ZnO thin films. ZnO and ZnO:Al thin films were fabricated on glass substrates using spin coating followed by annealing. XRD confirmed that the films are polycrystalline wurtzite. For low concentration films (0.2 and 0.4 M), grain size increased with aging time up to 72 hours. For high concentration samples (0.6 and 0.8 M), grain size increased only up to 48 hours. Additional aging resulted in a decrease in the grain size. The largest grain sizes were found for 0.4 M at 72 hours and 0.6 M at 48 hours. The band gap tended to decrease with increasing aging time for all concentrations. The smallest band gap for each aging time (24, 48, and 72 hours) was observed for 0.6 M films. These results suggest that higher concentration sol gel near 0.6 M may yield better properties with shorter aging times than 0.2 and 0.4 M films. Annealing data suggests that 350 <sup>o</sup>C is the minimum annealing at 1 hour to achieve high-quality films and higher concentration ZnO films have stronger diffraction peaks. ZnO:Al also exhibits stronger diffraction peaks and a larger blue shift of the band edge with increasing sol gel concentration.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0113-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5114679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A novel to perform a thermoelastic analysis using digital image correlation and the boundary element method 提出了一种利用数字图像相关和边界元法进行热弹性分析的新方法
IF 3.1 Q1 Engineering Pub Date : 2020-01-22 DOI: 10.1186/s40712-019-0115-4
Matheus B. A. M. Oberg, Daniel F. de Oliveira, Jhon N. V. Goulart, Carla T. M. Anflor

This work aims for a novel thermoelastic analysis methodology based on experimental steady-state temperature data and numerical displacement evaluation. The temperature data was acquired using thermal imaging and used as the input for a boundary element method (BEM) routine to evaluate its consequent thermoelastic displacement. The thermoelastic contribution to the resultant displacement arises in the BEM formulation as a domain integral, which compromises the main benefits of the BEM. To avoid the necessity of domain discretization, the radial integration method (RIM) was applied to convert the thermoelastic domain integral into an equivalent boundary integral. Due to its mathematical development, the resultant formulation from RIM requires the temperature difference to be input as a function. The efficacy of the proposed methodology was verified based on experimental displacement fields obtained via digital image correlation (DIC) analysis. For this purpose, a CNC (computer numerical control) marker was developed to print the speckle pattern instead of preparing the specimen by using manual spray paint or using commercially available pre-painted adhesives. The good agreement observed in the comparison between the numerical and experimental displacements indicates the viability of the proposed methodology.

本工作旨在建立一种基于实验稳态温度数据和数值位移评估的新型热弹性分析方法。利用热成像技术获取温度数据,并将其作为边界元法(BEM)程序的输入,以评估其随之而来的热弹性位移。热弹性对最终位移的贡献在边界元计算公式中作为域积分出现,这损害了边界元计算的主要优点。为了避免区域离散化的必要性,采用径向积分法(RIM)将热弹性区域积分转换为等效边界积分。由于其数学发展,RIM的所得公式需要将温差作为函数输入。基于数字图像相关(DIC)分析得到的实验位移场,验证了该方法的有效性。为此,开发了CNC(计算机数控)标记器来打印斑点图案,而不是通过使用手动喷漆或使用市售的预涂粘合剂来制备样品。数值位移与实验位移的比较表明,所提出的方法是可行的。
{"title":"A novel to perform a thermoelastic analysis using digital image correlation and the boundary element method","authors":"Matheus B. A. M. Oberg,&nbsp;Daniel F. de Oliveira,&nbsp;Jhon N. V. Goulart,&nbsp;Carla T. M. Anflor","doi":"10.1186/s40712-019-0115-4","DOIUrl":"https://doi.org/10.1186/s40712-019-0115-4","url":null,"abstract":"<p>This work aims for a novel thermoelastic analysis methodology based on experimental steady-state temperature data and numerical displacement evaluation. The temperature data was acquired using thermal imaging and used as the input for a boundary element method (BEM) routine to evaluate its consequent thermoelastic displacement. The thermoelastic contribution to the resultant displacement arises in the BEM formulation as a domain integral, which compromises the main benefits of the BEM. To avoid the necessity of domain discretization, the radial integration method (RIM) was applied to convert the thermoelastic domain integral into an equivalent boundary integral. Due to its mathematical development, the resultant formulation from RIM requires the temperature difference to be input as a function. The efficacy of the proposed methodology was verified based on experimental displacement fields obtained via digital image correlation (DIC) analysis. For this purpose, a CNC (computer numerical control) marker was developed to print the speckle pattern instead of preparing the specimen by using manual spray paint or using commercially available pre-painted adhesives. The good agreement observed in the comparison between the numerical and experimental displacements indicates the viability of the proposed methodology.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0115-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5158483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
An analytical investigation of elastic-plastic deformation of FGM hollow rotors under a high centrifugal effect 高离心作用下FGM空心转子弹塑性变形分析研究
IF 3.1 Q1 Engineering Pub Date : 2019-12-16 DOI: 10.1186/s40712-019-0112-7
Shams Torabnia, Sepideh Aghajani, Mohammadreza Hemati

Functionally graded material shafts are the main part of many modern rotary machines such as turbines and electric motors. The purpose of this study is to present an analytical solution of the elastic-plastic deformation of functionally graded material hollow rotor under a high centrifugal effect and finally determine the maximum allowed angular velocity of a hollow functionally graded material rotating shaft. Introducing non-dimensional parameters, the equilibrium equation has been analytically solved. The results for variable material properties are compared with the homogeneous rotor and the case in which Young’s modulus is the only variable while density and yield stress are considered to be constant. It is shown that material variation has a considerable effect on the stress and strain components and radial displacement. Considering variable density and yield stress causes yielding onset from inner, outer, or simultaneously from both inner and outer rotor shaft radius in contrast to earlier researches that modulus of elasticity was the only variable. The effects of the density on the failure of a functionally graded material elastic fully plastic in a hollow rotating shaft are investigated for the first time in this study with regard to Tresca’s yield criterial. Numerical simulations are used to verify the derived formulations which are in satisfying agreement.

功能分级的材料轴是许多现代旋转机械的主要部分,如涡轮机和电动机。本研究的目的是给出功能梯度材料空心转子在高离心作用下弹塑性变形的解析解,并最终确定空心功能梯度材料旋转轴的最大允许角速度。引入无因次参数,对平衡方程进行了解析求解。可变材料性能的结果与均匀转子和杨氏模量是唯一变量而密度和屈服应力被认为是恒定的情况进行了比较。结果表明,材料的变化对应力应变分量和径向位移有相当大的影响。考虑变密度和屈服应力导致屈服从内、外或同时从内、外转子轴半径开始,而不是将弹性模量作为唯一变量。本文首次根据Tresca屈服准则,研究了弹塑性功能梯度材料在空心转轴中密度对其破坏的影响。数值模拟验证了所得公式的一致性。
{"title":"An analytical investigation of elastic-plastic deformation of FGM hollow rotors under a high centrifugal effect","authors":"Shams Torabnia,&nbsp;Sepideh Aghajani,&nbsp;Mohammadreza Hemati","doi":"10.1186/s40712-019-0112-7","DOIUrl":"https://doi.org/10.1186/s40712-019-0112-7","url":null,"abstract":"<p>Functionally graded material shafts are the main part of many modern rotary machines such as turbines and electric motors. The purpose of this study is to present an analytical solution of the elastic-plastic deformation of functionally graded material hollow rotor under a high centrifugal effect and finally determine the maximum allowed angular velocity of a hollow functionally graded material rotating shaft. Introducing non-dimensional parameters, the equilibrium equation has been analytically solved. The results for variable material properties are compared with the homogeneous rotor and the case in which Young’s modulus is the only variable while density and yield stress are considered to be constant. It is shown that material variation has a considerable effect on the stress and strain components and radial displacement. Considering variable density and yield stress causes yielding onset from inner, outer, or simultaneously from both inner and outer rotor shaft radius in contrast to earlier researches that modulus of elasticity was the only variable. The effects of the density on the failure of a functionally graded material elastic fully plastic in a hollow rotating shaft are investigated for the first time in this study with regard to Tresca’s yield criterial. Numerical simulations are used to verify the derived formulations which are in satisfying agreement.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0112-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4640625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Nonlinear pre and post-buckled analysis of curved beams using differential quadrature element method 用微分正交单元法分析弯曲梁的非线性前后屈曲
IF 3.1 Q1 Engineering Pub Date : 2019-12-12 DOI: 10.1186/s40712-019-0114-5
M. Zare, A. Asnafi

This paper studied the in-plane elastic stability including pre and post-buckling analysis of curved beams considering the effects of shear deformations, rotary inertia, and the geometric nonlinearity due to large deformations. Firstly, the governing nonlinear equations of motion were derived. The problem was solved performing both the static and dynamic analysis using the numerical method of differential quadrature element method (DQEM) which is a new and efficient numerical method for rapidly solving linear and nonlinear differential equations. Firstly, the method was applied to the equilibrium equations, leading to a nonlinear algebraic system of equations that would be solved utilizing an arc length strategy. Secondly, the results of the static part were employed to linearize the dynamic differential equations of motion and their corresponding boundary and continuity conditions. Without any loss of generality, a clamped-clamped curved beam under a concentrated load was considered to obtain the buckling loads, natural frequencies, and mode shapes of the beam throughout the method. To validate the proposed method, the beam was modeled using a finite element simulation. A great agreement between the results was seen that showed the accuracy of the proposed method in predicting the pre and post-buckling behavior of the beam. The investigation also included an examination of the curvature parameter influencing the dynamic behavior of the problem. It was shown that the values of buckling loads were completely influenced by the curvature of the beam; also, due to the sharp change of longitudinal stiffness after bucking, the symmetric mode shapes changed more than it was expected.

本文研究了考虑剪切变形、旋转惯性和大变形引起的几何非线性影响的弯曲梁的面内弹性稳定性,包括屈曲前后分析。首先,推导了控制非线性运动方程。采用微分正交元法(DQEM)进行了静力分析和动力分析,这是一种新的快速求解线性和非线性微分方程的有效数值方法。首先,将该方法应用于平衡方程,得到一个利用弧长策略求解的非线性代数方程组。其次,利用静力部分的结果,线性化动力学运动微分方程及其相应的边界条件和连续性条件;在不损失一般性的情况下,考虑了集中荷载作用下的夹紧-夹紧弯曲梁,在整个方法中获得了梁的屈曲载荷、固有频率和模态振型。为了验证所提出的方法,采用有限元模拟对梁进行了建模。计算结果非常吻合,表明所提出的方法在预测梁的屈曲前后行为方面是准确的。调查还包括对影响问题动力行为的曲率参数的检查。结果表明,屈曲载荷的取值完全受梁曲率的影响;此外,由于屈曲后纵向刚度的急剧变化,对称模态振型的变化大于预期。
{"title":"Nonlinear pre and post-buckled analysis of curved beams using differential quadrature element method","authors":"M. Zare,&nbsp;A. Asnafi","doi":"10.1186/s40712-019-0114-5","DOIUrl":"https://doi.org/10.1186/s40712-019-0114-5","url":null,"abstract":"<p>This paper studied the in-plane elastic stability including pre and post-buckling analysis of curved beams considering the effects of shear deformations, rotary inertia, and the geometric nonlinearity due to large deformations. Firstly, the governing nonlinear equations of motion were derived. The problem was solved performing both the static and dynamic analysis using the numerical method of differential quadrature element method (DQEM) which is a new and efficient numerical method for rapidly solving linear and nonlinear differential equations. Firstly, the method was applied to the equilibrium equations, leading to a nonlinear algebraic system of equations that would be solved utilizing an arc length strategy. Secondly, the results of the static part were employed to linearize the dynamic differential equations of motion and their corresponding boundary and continuity conditions. Without any loss of generality, a clamped-clamped curved beam under a concentrated load was considered to obtain the buckling loads, natural frequencies, and mode shapes of the beam throughout the method. To validate the proposed method, the beam was modeled using a finite element simulation. A great agreement between the results was seen that showed the accuracy of the proposed method in predicting the pre and post-buckling behavior of the beam. The investigation also included an examination of the curvature parameter influencing the dynamic behavior of the problem. It was shown that the values of buckling loads were completely influenced by the curvature of the beam; also, due to the sharp change of longitudinal stiffness after bucking, the symmetric mode shapes changed more than it was expected.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0114-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4490129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Investigation of a new methodology for the prediction of drawing force in deep drawing process with respect to dimensionless analysis 基于无因次分析的拉深力预测新方法研究
IF 3.1 Q1 Engineering Pub Date : 2019-11-28 DOI: 10.1186/s40712-019-0110-9
Saeed Hajiahmadi, Majid Elyasi, Mohsen Shakeri

In this research, geometric parameters were given in dimensionless form by the Buckingham pi dimensional analysis method, and a series of dimensionless groups were found for deep drawing of the round cup. To find the best group of dimensionless geometric parameters, three scales are evaluated by commercial FE software. After analyzing all effective geometric parameters, a fittest relational model of dimensionless parameters is found. St12 sheet metals were used for experimental validation, which were formed at room temperature. In addition, results and response parameters were compared in the simulation process, experimental tests, and proposed dimensionless models. By looking at the results, it very well may be inferred that geometric qualities of a large scale can be predicted with a small scale by utilizing the proposed dimensionless model. Comparison of the outcomes for dimensionless models and experimental tests shows that the proposed dimensionless models have fine precision in determining geometrical parameters and drawing force estimation. Moreover, generalizing proposed dimensionless model was applied to ensure the estimating precision of geometric values in larger scales by smaller scales.

本研究采用Buckingham pi量纲分析法将几何参数以无因次形式给出,并找到一系列用于圆杯深拉深的无因次群。为了找到最佳的无量纲几何参数组,利用商业有限元软件对三个尺度进行了评价。通过对所有有效几何参数的分析,找到了最合适的无量纲参数关系模型。实验验证采用室温成形的St12板材。并对仿真过程、实验测试结果和响应参数进行了比较,提出了无量纲模型。通过观察结果,可以很好地推断,利用所提出的无量纲模型可以用小尺度预测大尺度的几何质量。无量纲模型的计算结果与试验结果的比较表明,所提出的无量纲模型在确定几何参数和绘制力估计方面具有较好的精度。在此基础上,将所提出的无量纲模型进行了推广,保证了几何值在大尺度下对小尺度的估计精度。
{"title":"Investigation of a new methodology for the prediction of drawing force in deep drawing process with respect to dimensionless analysis","authors":"Saeed Hajiahmadi,&nbsp;Majid Elyasi,&nbsp;Mohsen Shakeri","doi":"10.1186/s40712-019-0110-9","DOIUrl":"https://doi.org/10.1186/s40712-019-0110-9","url":null,"abstract":"<p>In this research, geometric parameters were given in dimensionless form by the Buckingham pi dimensional analysis method, and a series of dimensionless groups were found for deep drawing of the round cup. To find the best group of dimensionless geometric parameters, three scales are evaluated by commercial FE software. After analyzing all effective geometric parameters, a fittest relational model of dimensionless parameters is found. St12 sheet metals were used for experimental validation, which were formed at room temperature. In addition, results and response parameters were compared in the simulation process, experimental tests, and proposed dimensionless models. By looking at the results, it very well may be inferred that geometric qualities of a large scale can be predicted with a small scale by utilizing the proposed dimensionless model. Comparison of the outcomes for dimensionless models and experimental tests shows that the proposed dimensionless models have fine precision in determining geometrical parameters and drawing force estimation. Moreover, generalizing proposed dimensionless model was applied to ensure the estimating precision of geometric values in larger scales by smaller scales.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0110-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5575416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A review of challenges and solutions in the preparation and use of magnetorheological fluids 磁流变液制备和使用中的挑战和解决方案综述
IF 3.1 Q1 Engineering Pub Date : 2019-11-28 DOI: 10.1186/s40712-019-0109-2
James Sathya Kumar, P. Sam Paul, Girish Raghunathan, Divin George Alex

This review of MRF (magnetorheological fluids or MR fluids) brings out the challenges in methods of preparation, difficulties encountered in storage and use, and possible solutions to overcome the challenges.

Magnetorheological fluid in the rheological fluid domain has found use due to its ability to change its shear strength based on the applied magnetic field. Magnetorheological fluids are composed of magnetizable micron-sized iron particles and a non-magnetizable base or carrier fluid along with additives to counter sedimentation and agglomeration.

Magnetorheological fluids can respond to external stimuli by undergoing changes in physical properties thus enabling several improved modifications in the existing technology enhancing their application versatility and utility. Thus, magnetorheological fluid, a rheological material whose viscosity undergoes apparent changes on application of magnetic field, is considered as a smart material. Such materials can be used for active and semi-active control of engineering systems.

Many studies on the designs of systems incorporating MR fluids, mainly for vibration control and also for other applications including brakes, clutches, dynamometers, aircraft landing gears, and helicopter lag dampers, have emerged over last couple of decades. However, the preparation as well as the maintenance of magnetorheological fluids involves several challenges. Sedimentation is a major challenge, even when stored for moderate periods of time. A comprehensive review is made on the problems confronted in the preparation of magnetorheological fluids as well as sustenance of the properties, for use, over a long period of time. Other problems encountered include agglomeration and in-use thickening (IUT) as well as rusting and crusting. Of interest is the mitigation of these problems so as to prepare fluids with satisfactory properties, and such solutions are reviewed here. The control of magnetorheological fluids and the applications of interest are also reviewed.

The review covers additives for overcoming challenges in the preparation and use of magnetorheological fluids that include incrustation, sedimentation, agglomeration, and also oxidation of the particles. The methodology to prepare the fluid along with the process for adding selected additives was reviewed. The results showed an improvement in the reduction of sedimentation and other problems decreasing comparatively. A set of additives for addressing the specific challenges has been summarized. Experiments were carried out to establish the sedimentation rates for compositions with varying fractions of additives.

The review also analyzes briefly the gaps in studies on MR fluids and covers present developments and future application areas such as haptic devices.

本文综述了磁流变液(MRF)在制备方法、储存和使用中遇到的困难以及克服这些困难的可能解决方案。磁流变流体由于能够根据外加磁场改变其剪切强度而在流变流体领域中得到应用。磁流变液由可磁化的微米级铁颗粒和不可磁化的基液或载液以及抗沉降和团聚的添加剂组成。磁流变液可以通过物理性质的变化来响应外部刺激,从而对现有技术进行了一些改进,增强了其应用的通用性和实用性。因此,磁流变流体被认为是一种智能材料,它是一种粘度在磁场作用下发生明显变化的流变材料。这种材料可用于工程系统的主动和半主动控制。在过去的几十年里,已经出现了许多关于MR流体系统设计的研究,主要用于振动控制以及其他应用,包括制动器,离合器,测功机,飞机起落架和直升机滞后阻尼器。然而,磁流变液的制备和维护涉及几个挑战。沉积是一个主要的挑战,即使是在适当的时间储存。综述了磁流变液制备中存在的问题,以及磁流变液长期使用性能的维持。遇到的其他问题包括团聚和使用中增稠(IUT)以及生锈和结壳。我们感兴趣的是如何减轻这些问题,从而制备出性能令人满意的流体,本文将对这些解决方案进行综述。对磁流变液的控制及其应用进行了综述。综述了用于克服磁流变液制备和使用中的挑战的添加剂,包括结块、沉积、团聚和颗粒氧化。综述了该流体的制备方法以及所选添加剂的添加过程。结果表明,在减少沉淀和其他问题方面有所改善,相对减少。总结了一组用于解决具体挑战的添加剂。通过实验确定了不同添加剂含量的组合物的沉降速率。综述还简要分析了磁流变液研究的空白,并涵盖了目前的发展和未来的应用领域,如触觉设备。
{"title":"A review of challenges and solutions in the preparation and use of magnetorheological fluids","authors":"James Sathya Kumar,&nbsp;P. Sam Paul,&nbsp;Girish Raghunathan,&nbsp;Divin George Alex","doi":"10.1186/s40712-019-0109-2","DOIUrl":"https://doi.org/10.1186/s40712-019-0109-2","url":null,"abstract":"<p>This review of MRF (magnetorheological fluids or MR fluids) brings out the challenges in methods of preparation, difficulties encountered in storage and use, and possible solutions to overcome the challenges.</p><p>Magnetorheological fluid in the rheological fluid domain has found use due to its ability to change its shear strength based on the applied magnetic field. Magnetorheological fluids are composed of magnetizable micron-sized iron particles and a non-magnetizable base or carrier fluid along with additives to counter sedimentation and agglomeration.</p><p>Magnetorheological fluids can respond to external stimuli by undergoing changes in physical properties thus enabling several improved modifications in the existing technology enhancing their application versatility and utility. Thus, magnetorheological fluid, a rheological material whose viscosity undergoes apparent changes on application of magnetic field, is considered as a smart material. Such materials can be used for active and semi-active control of engineering systems.</p><p>Many studies on the designs of systems incorporating MR fluids, mainly for vibration control and also for other applications including brakes, clutches, dynamometers, aircraft landing gears, and helicopter lag dampers, have emerged over last couple of decades. However, the preparation as well as the maintenance of magnetorheological fluids involves several challenges. Sedimentation is a major challenge, even when stored for moderate periods of time. A comprehensive review is made on the problems confronted in the preparation of magnetorheological fluids as well as sustenance of the properties, for use, over a long period of time. Other problems encountered include agglomeration and in-use thickening (IUT) as well as rusting and crusting. Of interest is the mitigation of these problems so as to prepare fluids with satisfactory properties, and such solutions are reviewed here. The control of magnetorheological fluids and the applications of interest are also reviewed.</p><p>The review covers additives for overcoming challenges in the preparation and use of magnetorheological fluids that include incrustation, sedimentation, agglomeration, and also oxidation of the particles. The methodology to prepare the fluid along with the process for adding selected additives was reviewed. The results showed an improvement in the reduction of sedimentation and other problems decreasing comparatively. A set of additives for addressing the specific challenges has been summarized. Experiments were carried out to establish the sedimentation rates for compositions with varying fractions of additives.</p><p>The review also analyzes briefly the gaps in studies on MR fluids and covers present developments and future application areas such as haptic devices.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0109-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5575417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 110
Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion 瑞利波在横向各向同性磁热弹性介质中的传播与三相滞后传热扩散
IF 3.1 Q1 Engineering Pub Date : 2019-10-16 DOI: 10.1186/s40712-019-0108-3
Iqbal Kaur, Parveen Lata

The present research deals with the propagation of Rayleigh wave in transversely isotropic magneto-thermoelastic homogeneous medium in the presence of mass diffusion and three-phase-lag heat transfer. The wave characteristics such as phase velocity, attenuation coefficients, specific loss, and penetration depths are computed numerically and depicted graphically. The normal stress, tangential stress components, temperature change, and mass concentration are computed and drawn graphically. The effects of three-phase-lag heat transfer, GN type-III, and LS theory of heat transfer are depicted on the various quantities. Some particular cases are also deduced from the present investigation.

本文研究了瑞利波在横向各向同性磁热弹性均匀介质中存在质量扩散和三相滞后传热的传播问题。波的特性,如相速度、衰减系数、比损耗和穿透深度都是用数值计算和图形描述的。计算并绘制了正应力、切向应力分量、温度变化和质量浓度。描述了三相滞后传热、GN型iii和LS传热理论对不同量的影响。从目前的调查中还推断出一些特殊的情况。
{"title":"Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion","authors":"Iqbal Kaur,&nbsp;Parveen Lata","doi":"10.1186/s40712-019-0108-3","DOIUrl":"https://doi.org/10.1186/s40712-019-0108-3","url":null,"abstract":"<p>The present research deals with the propagation of Rayleigh wave in transversely isotropic magneto-thermoelastic homogeneous medium in the presence of mass diffusion and three-phase-lag heat transfer. The wave characteristics such as phase velocity, attenuation coefficients, specific loss, and penetration depths are computed numerically and depicted graphically. The normal stress, tangential stress components, temperature change, and mass concentration are computed and drawn graphically. The effects of three-phase-lag heat transfer, GN type-III, and LS theory of heat transfer are depicted on the various quantities. Some particular cases are also deduced from the present investigation.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0108-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4660220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
期刊
International Journal of Mechanical and Materials Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1