首页 > 最新文献

Journal of Atmospheric Chemistry最新文献

英文 中文
Emission estimates of trace gases (VOCs and NOx) and their reactivity during biomass burning period (2003–2017) over Northeast India 印度东北部生物质燃烧期间(2003-2017)痕量气体(VOCs和NOx)排放估算及其反应性
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2021-01-05 DOI: 10.1007/s10874-020-09413-6
Kunal Bali, Amit Kumar, Sapna Chourasiya

The study analysed spatio-temporal distribution of fire radiative power (FRP) and estimates of trace gases [volatile organic compounds (VOCs) and nitrogen oxides (NOx)] along with their reactivity during biomass burning period of March (2003–2017) over the northeast region (NER), India. Reanalysis data of FRP along with emission rates of trace gases have been retrieved from Global Fire Assimilation System. Results showed that average FRP was estimated to be 0.37 Wm?2 with the highest value in Mizoram (0.16 Wm?2) among 7-states of the study region. Temporally, relatively higher FRP occurred during the year of 2006 and 2010 while lowest in 2017. FRP-based VOCs and NOx emission estimates were 431 and 69.5?mg/m2/day, respectively which are consistent with observed FRP. Among different groups of VOCs, oxygenated species were the largest group (~56%) estimated followed by alkenes, alkanes, aromatics, and biogenic. Photochemical reactivities of VOCs were estimated using propylene-equivalent and maximum incremental reactivity methods which showed oxygenated species had the highest contributions in chemical reactivity. Based on the MIR scale, the top ten leading contributor species for ozone (O3) formation were in descending order of formaldehyde, acetaldehyde, ethene, propene, toluene, butane, isoprene, methanol, pentene, and hexane which accounted for approximately 97% of total ozone formation. We also examined the ozone formation regime using VOCs/NOx ratios which indicated that O3 formation was likely to be VOC-sensitive over NER. Our results could be used for the understanding of FRP-based trace gas emissions during biomass burning and to establish effective preventive measures for reduction in O3 pollution.

该研究分析了印度东北地区(NER) 3月(2003-2017年)生物质燃烧期间的火灾辐射功率(FRP)的时空分布和痕量气体[挥发性有机化合物(VOCs)和氮氧化物(NOx)]的估计及其反应性。从全球火灾同化系统中检索了玻璃钢的再分析数据以及微量气体的排放率。结果显示,平均FRP估计为0.37 Wm?在研究区域的7个邦中,米佐拉姆邦的值最高,为0.16 Wm?2。从时间上看,2006年和2010年的FRP相对较高,而2017年最低。基于frp的VOCs和NOx排放估算值分别为431和69.5?mg/m2/day,与观察到的FRP一致。各VOCs类群中,含氧种类最多(约56%),其次为烯烃类、烷烃类、芳烃类和生物源类。利用丙烯当量法和最大增量法对VOCs的光化学反应活性进行了估算,结果表明含氧组分对化学反应活性的贡献最大。根据MIR量表,臭氧(O3)形成的前十大主要贡献物质依次为甲醛、乙醛、乙烯、丙烯、甲苯、丁烷、异戊二烯、甲醇、戊烯和己烷,约占总臭氧形成的97%。我们还使用VOCs/NOx比值研究了臭氧形成机制,这表明臭氧形成可能对NER的voc敏感。本研究结果可用于了解生物质燃烧过程中基于frp的痕量气体排放,并为减少O3污染制定有效的预防措施。
{"title":"Emission estimates of trace gases (VOCs and NOx) and their reactivity during biomass burning period (2003–2017) over Northeast India","authors":"Kunal Bali,&nbsp;Amit Kumar,&nbsp;Sapna Chourasiya","doi":"10.1007/s10874-020-09413-6","DOIUrl":"https://doi.org/10.1007/s10874-020-09413-6","url":null,"abstract":"<p>The study analysed spatio-temporal distribution of fire radiative power (FRP) and estimates of trace gases [volatile organic compounds (VOCs) and nitrogen oxides (NO<i>x</i>)] along with their reactivity during biomass burning period of March (2003–2017) over the northeast region (NER), India. Reanalysis data of FRP along with emission rates of trace gases have been retrieved from Global Fire Assimilation System. Results showed that average FRP was estimated to be 0.37 Wm<sup>?2</sup> with the highest value in Mizoram (0.16 Wm<sup>?2</sup>) among 7-states of the study region. Temporally, relatively higher FRP occurred during the year of 2006 and 2010 while lowest in 2017. FRP-based VOCs and NO<i>x</i> emission estimates were 431 and 69.5?mg/m<sup>2</sup>/day, respectively which are consistent with observed FRP. Among different groups of VOCs, oxygenated species were the largest group (~56%) estimated followed by alkenes, alkanes, aromatics, and biogenic. Photochemical reactivities of VOCs were estimated using propylene-equivalent and maximum incremental reactivity methods which showed oxygenated species had the highest contributions in chemical reactivity. Based on the MIR scale, the top ten leading contributor species for ozone (O<sub>3</sub>) formation were in descending order of formaldehyde, acetaldehyde, ethene, propene, toluene, butane, isoprene, methanol, pentene, and hexane which accounted for approximately 97% of total ozone formation. We also examined the ozone formation regime using VOCs/NO<i>x</i> ratios which indicated that O3 formation was likely to be VOC-sensitive over NER. Our results could be used for the understanding of FRP-based trace gas emissions during biomass burning and to establish effective preventive measures for reduction in O<sub>3</sub> pollution.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 1","pages":"17 - 34"},"PeriodicalIF":2.0,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09413-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4210842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Characterization of Rome’s rainwater in the early of 2018 aiming to find correlations between chemical-physical parameters and sources of pollution: a statistical study 2018年初罗马雨水的特征,旨在找到化学物理参数与污染源之间的相关性:一项统计研究
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-11-26 DOI: 10.1007/s10874-020-09409-2
Luca Ugo Fontanella, Mauro Tomassetti, Giovanni Visco, Maria Pia Sammartino

Analysis of rainwater in historical cities plays a key role to save ancient monuments from atmospheric agents. In this study we sampled the Rome’s rainwater from February to July of 2018 and we analysed them to determine their chemical and physical parameters: pH, redox potential, conductivity, temperature, and the concentration of the main inorganic ions (Na+, K+, Ca++, Mg++, F?, Cl?, NO3?, SO4??). The volume of the daily fallen rainwater, the speed and direction of the wind in the sampling site were also collected. In order to find a correlation between all the above data we used the Principal Component Analysis (PCA). Results evidenced that there aren’t authentic “acid rains” as the minimum pH value that we found is 5.2. In some cases high concentrations of nitrates and sulphates were found with maximum values of 12.4?ppm and 18.7?ppm respectively. We also found no correlation between the rainwater’s composition and the seasonal period; on the contrary, the speed and direction of the wind, especially when coming from the sea or industrial country near Rome, play a noticeable role on the rainwater composition.

历史城市的雨水分析是保护古迹免受大气污染的关键。在这项研究中,我们对2018年2月至7月的罗马雨水进行了采样,并对其进行了分析,以确定其化学和物理参数:pH值、氧化还原电位、电导率、温度以及主要无机离子(Na+、K+、Ca++、Mg++、F?, Cl ?, 3号?, SO4 ? ?)。采集了采样点日降雨量、风速和风向。为了找到上述所有数据之间的相关性,我们使用主成分分析(PCA)。结果证明没有真正的“酸雨”,因为我们发现的最小pH值为5.2。在某些情况下,发现硝酸盐和硫酸盐浓度很高,最大值为12.4?PPM和18.7?ppm。雨水成分与季节之间也没有相关性;相反,风的速度和方向,特别是来自海上或罗马附近的工业国家的风,对雨水的组成起着显著的作用。
{"title":"Characterization of Rome’s rainwater in the early of 2018 aiming to find correlations between chemical-physical parameters and sources of pollution: a statistical study","authors":"Luca Ugo Fontanella,&nbsp;Mauro Tomassetti,&nbsp;Giovanni Visco,&nbsp;Maria Pia Sammartino","doi":"10.1007/s10874-020-09409-2","DOIUrl":"https://doi.org/10.1007/s10874-020-09409-2","url":null,"abstract":"<p>Analysis of rainwater in historical cities plays a key role to save ancient monuments from atmospheric agents. In this study we sampled the Rome’s rainwater from February to July of 2018 and we analysed them to determine their chemical and physical parameters: pH, redox potential, conductivity, temperature, and the concentration of the main inorganic ions (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>++</sup>, Mg<sup>++</sup>, F<sup>?</sup>, Cl<sup>?</sup>, NO<sub>3</sub><sup>?</sup>, SO<sub>4</sub><sup>??</sup>). The volume of the daily fallen rainwater, the speed and direction of the wind in the sampling site were also collected. In order to find a correlation between all the above data we used the Principal Component Analysis (PCA). Results evidenced that there aren’t authentic “acid rains” as the minimum pH value that we found is 5.2. In some cases high concentrations of nitrates and sulphates were found with maximum values of 12.4?ppm and 18.7?ppm respectively. We also found no correlation between the rainwater’s composition and the seasonal period; on the contrary, the speed and direction of the wind, especially when coming from the sea or industrial country near Rome, play a noticeable role on the rainwater composition.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 1","pages":"1 - 16"},"PeriodicalIF":2.0,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09409-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5022047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Model for estimating activity coefficients in binary and ternary ionic surfactant solutions 二元和三元离子表面活性剂溶液活度系数估算模型
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-11-07 DOI: 10.1007/s10874-020-09407-4
Silvia M. Calderón, Jussi Malila, Nønne L. Prisle

We introduce the CMC based Ionic Surfactant Activity model (CISA) to calculate activity coefficients in ternary aqueous solutions of an ionic surfactant and an inorganic salt. The surfactant can be either anionic or cationic and in the present development, the surfactant and inorganic salts share a common counterion. CISA incorporates micellization into the Pitzer–Debye–Hückel (PDH) framework for activities of mixed electrolyte solutions. To reduce computing requirements, a parametrization of the critical micelle concentration (CMC) is used to estimate the degree of micellization instead of explicit equilibrium calculations. For both binary and ternary systems, CISA only requires binary experimentally-based parameters to describe water–ion interactions and temperature–composition dependency of the CMC. The CISA model is intended in particular for atmospheric applications, where higher-order solution interaction parameters are typically not constrained by experiments and the description must be reliable across a wide range of compositions. We evaluate the model against experimental activity data for binary aqueous solutions of ionic surfactants sodium octanoate and sodium decanoate, as common components of atmospheric aerosols, and sodium dodecylsulfate, the most commonly used model compound for atmospheric surfactants. Capabilities of the CISA model to describe ternary systems are tested for the water–sodium decanoate–sodium chloride system, a common surrogate for marine background cloud condensation nuclei and to our knowledge the only atmospherically relevant system for which ternary activity data is available. For these systems, CISA is able to provide continuous predictions of activity coefficients both below and above CMC and in all cases gives an improved description of the water activity above the CMC, compared to the alternative model of Burchfield and Wolley [J. Phys. Chem., 88(10), 2149–2155 (1984)]. The water activity is a key parameter governing the formation and equilibrium growth of cloud droplets. The CISA model can be extended from the current form to include the effect of other inorganic salts with the existing database of binary PDH parameters and using appropriate mixing rules to account for ion specificity in the micellization process.

介绍了基于CMC的离子表面活性剂活度模型(CISA),用于计算离子表面活性剂与无机盐三元水溶液的活度系数。表面活性剂可以是阴离子或阳离子,在目前的发展中,表面活性剂和无机盐有一个共同的反离子。CISA将胶束结合到混合电解质溶液活性的pitzer - debye - h ckel (PDH)框架中。为了减少计算需求,临界胶束浓度(CMC)的参数化被用来估计胶束化程度,而不是显式的平衡计算。对于二元和三元体系,CISA只需要二元实验参数来描述CMC的水-离子相互作用和温度-组成依赖性。CISA模型特别适用于大气应用,在大气应用中,高阶溶液相互作用参数通常不受实验的限制,并且描述必须在广泛的成分范围内可靠。我们对离子表面活性剂辛酸钠和癸酸钠(作为大气气溶胶的常见成分)和十二烷基硫酸钠(最常用的大气表面活性剂模型化合物)二元水溶液的实验活性数据进行了模型评估。CISA模型描述三元系统的能力在水-癸酸钠-氯化钠系统中进行了测试,该系统是海洋背景云凝结核的常用替代品,据我们所知,它是唯一可获得三元活动数据的大气相关系统。与Burchfield和Wolley的替代模型相比,对于这些系统,CISA能够提供CMC以下和CMC以上活度系数的连续预测,并且在所有情况下都能更好地描述CMC以上的水活度。理论物理。化学。[j].农业科学,88(10),2149-2155(1984)。水活度是控制云滴形成和平衡生长的关键参数。CISA模型可以从现有的形式扩展到包括其他无机盐的影响,并使用现有的二元PDH参数数据库,并使用适当的混合规则来考虑胶束过程中的离子特异性。
{"title":"Model for estimating activity coefficients in binary and ternary ionic surfactant solutions","authors":"Silvia M. Calderón,&nbsp;Jussi Malila,&nbsp;Nønne L. Prisle","doi":"10.1007/s10874-020-09407-4","DOIUrl":"https://doi.org/10.1007/s10874-020-09407-4","url":null,"abstract":"<p>We introduce the <i>CMC based Ionic Surfactant Activity model (CISA)</i> to calculate activity coefficients in ternary aqueous solutions of an ionic surfactant and an inorganic salt. The surfactant can be either anionic or cationic and in the present development, the surfactant and inorganic salts share a common counterion. CISA incorporates micellization into the Pitzer–Debye–Hückel (PDH) framework for activities of mixed electrolyte solutions. To reduce computing requirements, a parametrization of the critical micelle concentration (CMC) is used to estimate the degree of micellization instead of explicit equilibrium calculations. For both binary and ternary systems, CISA only requires binary experimentally-based parameters to describe water–ion interactions and temperature–composition dependency of the CMC. The CISA model is intended in particular for atmospheric applications, where higher-order solution interaction parameters are typically not constrained by experiments and the description must be reliable across a wide range of compositions. We evaluate the model against experimental activity data for binary aqueous solutions of ionic surfactants sodium octanoate and sodium decanoate, as common components of atmospheric aerosols, and sodium dodecylsulfate, the most commonly used model compound for atmospheric surfactants. Capabilities of the CISA model to describe ternary systems are tested for the water–sodium decanoate–sodium chloride system, a common surrogate for marine background cloud condensation nuclei and to our knowledge the only atmospherically relevant system for which ternary activity data is available. For these systems, CISA is able to provide continuous predictions of activity coefficients both below and above CMC and in all cases gives an improved description of the water activity above the CMC, compared to the alternative model of Burchfield and Wolley [<i>J. Phys. Chem.</i>, 88(10), 2149–2155 (1984)]. The water activity is a key parameter governing the formation and equilibrium growth of cloud droplets. The CISA model can be extended from the current form to include the effect of other inorganic salts with the existing database of binary PDH parameters and using appropriate mixing rules to account for ion specificity in the micellization process.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 4","pages":"141 - 168"},"PeriodicalIF":2.0,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09407-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4320134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Comparison of chemical characteristics of PM2.5 during two winters in Xiangtan City in south central China 湘潭市两个冬季PM2.5化学特征比较
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-10-23 DOI: 10.1007/s10874-020-09410-9
Xiao-Yao Ma, Zheng-Hui Xiao, Li-Zhi He, Yun-Jiang Cao, Ji-Song Liu

To assess the efficacy of the “Implementation Details of Air Pollution Prevention and Control Action Plan”, the chemical composition of PM2.5 and other pollutants was determined during the winters of 2013–2014 and 2016–2017 at two urban sites in Xiangtan City, Hunan. The concentrations of PM2.5, SO2, and NO2 decreased from 146.0 to 94.5?μg/m3, 75.9 to 33.5?μg/m3, and 80.6 to 55.8?μg/m3, respectively, from winter 2013–2014 to winter 2016–2017. The concentrations of almost all the major chemical components of PM2.5 decreased as well, particularly secondary inorganic aerosols (SIAs). These results indicate that the implementation of the air quality control plan was very effective in improving air quality. Analysis of the data also suggests that SIA formation is likely responsible for high winter PM2.5 pollution and that high relative humidity levels and low wind speed can promote the formation of SIA. A 72-h back trajectory analysis shows that both regional transport and the accumulation of local pollutants under stagnant meteorological conditions promote the occurrence of episodes of high wintertime pollution levels.

为评估《大气污染防治行动计划实施细则》的实施效果,于2013-2014年和2016-2017年冬季在湖南省湘潭市两个城市站点测定了PM2.5等污染物的化学成分。PM2.5、SO2和NO2浓度从146.0下降到94.5?μg/m3, 75.9 ~ 33.5?80.6 ~ 55.8?2013-2014年冬季和2016-2017年冬季分别为μg/m3。PM2.5的几乎所有主要化学成分的浓度也有所下降,尤其是次级无机气溶胶(SIAs)。这些结果表明,实施空气质量控制计划对改善空气质量是非常有效的。对数据的分析还表明,SIA的形成可能是冬季PM2.5高污染的原因,高相对湿度和低风速可以促进SIA的形成。72 h反轨迹分析表明,在停滞气象条件下,区域运输和局地污染物的积累都促进了冬季高污染事件的发生。
{"title":"Comparison of chemical characteristics of PM2.5 during two winters in Xiangtan City in south central China","authors":"Xiao-Yao Ma,&nbsp;Zheng-Hui Xiao,&nbsp;Li-Zhi He,&nbsp;Yun-Jiang Cao,&nbsp;Ji-Song Liu","doi":"10.1007/s10874-020-09410-9","DOIUrl":"https://doi.org/10.1007/s10874-020-09410-9","url":null,"abstract":"<p>To assess the efficacy of the “Implementation Details of Air Pollution Prevention and Control Action Plan”, the chemical composition of PM<sub>2.5</sub> and other pollutants was determined during the winters of 2013–2014 and 2016–2017 at two urban sites in Xiangtan City, Hunan. The concentrations of PM<sub>2.5</sub>, SO<sub>2</sub>, and NO<sub>2</sub> decreased from 146.0 to 94.5?μg/m<sup>3</sup>, 75.9 to 33.5?μg/m<sup>3</sup>, and 80.6 to 55.8?μg/m<sup>3</sup>, respectively, from winter 2013–2014 to winter 2016–2017. The concentrations of almost all the major chemical components of PM<sub>2.5</sub> decreased as well, particularly secondary inorganic aerosols (SIAs). These results indicate that the implementation of the air quality control plan was very effective in improving air quality. Analysis of the data also suggests that SIA formation is likely responsible for high winter PM<sub>2.5</sub> pollution and that high relative humidity levels and low wind speed can promote the formation of SIA. A 72-h back trajectory analysis shows that both regional transport and the accumulation of local pollutants under stagnant meteorological conditions promote the occurrence of episodes of high wintertime pollution levels.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 4","pages":"169 - 183"},"PeriodicalIF":2.0,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09410-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4909453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Vertical distributions of the microscopic morphological characteristics and elemental composition of aerosols over India 印度上空气溶胶微观形态特征和元素组成的垂直分布
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-08-14 DOI: 10.1007/s10874-020-09406-5
Mukunda M. Gogoi, Roseline C. Thakur, Sahina Gazi, Vijayakumar S. Nair, Rahul Mohan, S. Suresh Babu

Particle morphology and elemental compositions are among the crucial parameters of aerosols required for accurate understanding of the climatic effect of aerosols in the earth-atmosphere system; yet their vertical distributions and region specific properties are poorly characterised due to sparse in-situ measurements. This is the first study to classify and quantify the vertical distributions of the morphological characteristics and elemental composition of aerosols based on single particle as well as bulk chemical analysis over seven geographically diverse regions of northern and central parts of India during spring (April–May, 2013), carried out as a part of Regional Aerosol Warming Experiment (RAWEX). Significant regional distinctiveness in shapes (non-sphericity), sizes and elemental compositions of the airborne particles were conspicuous, having dominance of highly irregular granular aggregates over the north Indian sites. The non-spherical coarse mode particles dominated the lower free tropospheric regions (> 2?km) of the Indo-Gangetic Plains (IGP). These particles could be responsible for enhanced spring time aerosol absorption in the elevated region of the atmosphere. Elemental compositions of the single particle analysis indicate that the free tropospheric layer over the IGP and central India is enriched with Na and Ca compounds mixed with Fe or Al (soil particles), indicating long range transport of crustal aerosols. This finding is very well supported by the bulk particle analysis indicating abundance of Ca2+ in the free troposphere with low contribution of ssNa+. Particles with irregular rough surfaces having dominance of SiO2 were observed over all the study sites. The percentage share of spherical (either smooth or rough) particles to the total morphological characteristics of the particles was found to be highly subdued (< 10%). The present study thus critically assesses the relevant knowledge pertaining to the morphological features of aerosols over the IGP during spring for the accurate estimation of aerosol radiative properties. More such efforts are required in future to study the connections and dependencies between morphological and radiative properties of aerosols in different seasons.

粒子形态和元素组成是准确认识气溶胶在地球-大气系统中的气候效应所必需的关键参数之一;然而,由于稀疏的原位测量,它们的垂直分布和区域特性的特征很差。作为区域气溶胶变暖实验(RAWEX)的一部分,该研究首次对春季(2013年4月至5月)印度北部和中部七个地理不同地区的气溶胶形态特征和元素组成的垂直分布进行了分类和量化,该研究基于单颗粒和大量化学分析。空气中颗粒的形状(非球形)、大小和元素组成具有显著的区域差异,在印度北部地区具有高度不规则的颗粒聚集体的优势。非球形粗模态粒子在对流层低层自由区占主导地位(>印度-恒河平原(IGP)的2.5公里。这些颗粒可能是春季大气高架区域气溶胶吸收增强的原因。单颗粒元素组成分析表明,IGP和印度中部上空的对流层自由层富含Na和Ca化合物,混合着Fe或Al(土壤颗粒),表明地壳气溶胶具有长距离输送作用。这一发现得到了体积粒子分析的很好支持,表明自由对流层中Ca2+的丰度与低贡献的ssNa+。在所有研究地点都观察到具有不规则粗糙表面的颗粒,其中SiO2占主导地位。球形(光滑或粗糙)颗粒占颗粒总形态特征的百分比被发现是高度柔和的(<10%)。因此,本研究批判性地评估了春季IGP上空气溶胶形态特征的相关知识,以便准确估计气溶胶的辐射特性。未来需要更多的努力来研究不同季节气溶胶形态和辐射特性之间的联系和依赖关系。
{"title":"Vertical distributions of the microscopic morphological characteristics and elemental composition of aerosols over India","authors":"Mukunda M. Gogoi,&nbsp;Roseline C. Thakur,&nbsp;Sahina Gazi,&nbsp;Vijayakumar S. Nair,&nbsp;Rahul Mohan,&nbsp;S. Suresh Babu","doi":"10.1007/s10874-020-09406-5","DOIUrl":"https://doi.org/10.1007/s10874-020-09406-5","url":null,"abstract":"<p>Particle morphology and elemental compositions are among the crucial parameters of aerosols required for accurate understanding of the climatic effect of aerosols in the earth-atmosphere system; yet their vertical distributions and region specific properties are poorly characterised due to sparse in-situ measurements. This is the first study to classify and quantify the vertical distributions of the morphological characteristics and elemental composition of aerosols based on single particle as well as bulk chemical analysis over seven geographically diverse regions of northern and central parts of India during spring (April–May, 2013), carried out as a part of Regional Aerosol Warming Experiment (RAWEX). Significant regional distinctiveness in shapes (non-sphericity), sizes and elemental compositions of the airborne particles were conspicuous, having dominance of highly irregular granular aggregates over the north Indian sites. The non-spherical coarse mode particles dominated the lower free tropospheric regions (&gt; 2?km) of the Indo-Gangetic Plains (IGP). These particles could be responsible for enhanced spring time aerosol absorption in the elevated region of the atmosphere. Elemental compositions of the single particle analysis indicate that the free tropospheric layer over the IGP and central India is enriched with Na and Ca compounds mixed with Fe or Al (soil particles), indicating long range transport of crustal aerosols. This finding is very well supported by the bulk particle analysis indicating abundance of Ca<sup>2+</sup> in the free troposphere with low contribution of ssNa<sup>+</sup>. Particles with irregular rough surfaces having dominance of SiO<sub>2</sub> were observed over all the study sites. The percentage share of spherical (either smooth or rough) particles to the total morphological characteristics of the particles was found to be highly subdued (&lt; 10%). The present study thus critically assesses the relevant knowledge pertaining to the morphological features of aerosols over the IGP during spring for the accurate estimation of aerosol radiative properties. More such efforts are required in future to study the connections and dependencies between morphological and radiative properties of aerosols in different seasons.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 4","pages":"117 - 140"},"PeriodicalIF":2.0,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09406-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4856382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Long term trends of wet deposition and atmospheric concentrations of nitrogen and sulfur compounds at EMEP site in Armenia 亚美尼亚EMEP站点湿沉降和氮、硫化合物大气浓度的长期趋势
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-07-22 DOI: 10.1007/s10874-020-09408-3
Yekaterina Perikhanyan, Gayane Shahnazaryan, Arpine Gabrielyan

This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.

本文介绍了2008-2018年亚美尼亚大气中气态硝酸、二氧化氮、二氧化硫、氨和硝酸盐、铵、硫酸盐离子以及湿沉积中硝酸盐、铵和硫酸盐离子的变化趋势。在指定为EMEP(欧洲监测和评价方案)的亚美尼亚(Amberd)本底监测站,利用从滤包采样器和玻璃烧结过滤器获得的数据监测大气氮和硫浓度。采用离子色谱法和紫外分光光度计进行实验室分析。MAKESENS方案用于探测和估计大气浓度年平均值时间序列的趋势。计算并讨论了Amberd空气质量监测站近十年来大气中氮、硫化合物浓度的长期变化趋势。计算各参数的趋势显著性水平。可以确定的是,除了气溶胶中减少的硫外,所有探索的参数都没有显著的趋势。探讨了亚美尼亚境内氮和硫化合物可能的排放和沉积变化,以确定可能的跨界空气污染及其主要来源。沉积数据通过EMEP MSC-W模型计算估计。氮和硫化合物的跨界通量研究显示了主要的受体区域和贡献者。对大气污染物的季节性分析表明,湿沉降的测量参数具有强烈的季节性特征——夏季的浓度高于冬季。与冬季相比,夏季大气中硝态氮和铵态氮离子浓度较低,而氨离子浓度在冬季较低。大气中硝酸、硫酸盐离子、二氧化硫和二氧化氮没有明显的季节性。
{"title":"Long term trends of wet deposition and atmospheric concentrations of nitrogen and sulfur compounds at EMEP site in Armenia","authors":"Yekaterina Perikhanyan,&nbsp;Gayane Shahnazaryan,&nbsp;Arpine Gabrielyan","doi":"10.1007/s10874-020-09408-3","DOIUrl":"https://doi.org/10.1007/s10874-020-09408-3","url":null,"abstract":"<p>This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"101 - 116"},"PeriodicalIF":2.0,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09408-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4858925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sources of HULIS-C and its relationships with trace metals, ionic species in PM2.5 in suburban Shanghai during haze and non-haze days 上海近郊雾霾日和非雾霾日HULIS-C的来源及其与PM2.5中微量金属、离子的关系
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-06-19 DOI: 10.1007/s10874-020-09404-7
Myat Sandar Win, Junyang Zeng, Chuanhe Yao, Mengfei Zhao, Guangli Xiu, Tingting Xie, Lanfang Rao, Luying Zhang, Hui Lu, Xinchun Liu, Qingyue Wang, Senlin Lu

Humic-like substances (HULIS), the most ubiquitous class of water-soluble organic compounds in the atmosphere could enhance the generation of reactive oxygen species (ROS), and play a significant role in impacting aerosol chemistry and health effects. In this study, twenty-three PM2.5 samples were collected in the atmosphere of suburban Shanghai from November 29 to December 17, 2015, and March 17 to April 30, 2016, during haze and non-haze days. The mean concentrations of HULIS in spring both in haze and non-haze days (2.34?±?0.70 μg/m3 and 1.94?±?0.88 μg/m3) were relatively higher than in that of winter (1.93?±?0.95 μg/m3 and 1.31?±?0.28 μg/m3). The ammonium, sulfate, and nitrate are the dominant ionic species in both winter and spring during haze days in suburban Shanghai. Correlation results revealed that HULIS formation was highly associated with the biomass burning (K) and secondary aerosols formation (SIA: NH4+, SO42?, NO3?) and also well-correlated with F? and ca.2+ ions, crustal elements (Al and Fe) and anthropogenic pollution metals (As, Se, Rb, Sr, and Pb), suggesting that HULIS-C formation might be from biomass burning and secondary aerosol processes and also mixed formation (marine, crustal and industrial emissions) sources. From the coinciding results of the clustering analysis and weighted-CWT model, the principal potential source regions were the short transports from the Yangtze River Delta (YRD) regions, local regions, marine areas (the Bohai Sea, the Yellow Sea, the East China Sea) and also the long-range transports from northwestern in those seasons.

腐植酸样物质(HULIS)是大气中最普遍存在的一类水溶性有机化合物,可促进活性氧(ROS)的生成,在影响气溶胶化学和健康效应方面发挥重要作用。本研究于2015年11月29日至12月17日,2016年3月17日至4月30日,在雾霾日和非雾霾日期间,采集了23份上海郊区大气PM2.5样本。春季霾日和非霾日HULIS的平均浓度(2.34±0.70 μg/m3和1.94±0.88 μg/m3)均高于冬季(1.93±0.95 μg/m3和1.31±0.28 μg/m3)。上海近郊冬季和春季雾霾天气中,铵、硫酸盐和硝酸盐是主要的离子种类。相关结果表明,HULIS的形成与生物质燃烧(K)和二次气溶胶(SIA: NH4+, SO42?, NO3?),也与F?和ca2 +离子、地壳元素(Al和Fe)和人为污染金属(As、Se、Rb、Sr和Pb),表明HULIS-C的形成可能来自生物质燃烧和二次气溶胶过程,也可能来自混合来源(海洋、地壳和工业排放)。从聚类分析和加权cwt模型的一致结果来看,这些季节的主要潜在源区是来自长三角地区、局部地区、海域(渤海、黄海、东海)的短途输送,以及来自西北的长距离输送。
{"title":"Sources of HULIS-C and its relationships with trace metals, ionic species in PM2.5 in suburban Shanghai during haze and non-haze days","authors":"Myat Sandar Win,&nbsp;Junyang Zeng,&nbsp;Chuanhe Yao,&nbsp;Mengfei Zhao,&nbsp;Guangli Xiu,&nbsp;Tingting Xie,&nbsp;Lanfang Rao,&nbsp;Luying Zhang,&nbsp;Hui Lu,&nbsp;Xinchun Liu,&nbsp;Qingyue Wang,&nbsp;Senlin Lu","doi":"10.1007/s10874-020-09404-7","DOIUrl":"https://doi.org/10.1007/s10874-020-09404-7","url":null,"abstract":"<p>Humic-like substances (HULIS), the most ubiquitous class of water-soluble organic compounds in the atmosphere could enhance the generation of reactive oxygen species (ROS), and play a significant role in impacting aerosol chemistry and health effects. In this study, twenty-three PM<sub>2.5</sub> samples were collected in the atmosphere of suburban Shanghai from November 29 to December 17, 2015, and March 17 to April 30, 2016, during haze and non-haze days. The mean concentrations of HULIS in spring both in haze and non-haze days (2.34?±?0.70 μg/m<sup>3</sup> and 1.94?±?0.88 μg/m<sup>3</sup>) were relatively higher than in that of winter (1.93?±?0.95 μg/m<sup>3</sup> and 1.31?±?0.28 μg/m<sup>3</sup>). The ammonium, sulfate, and nitrate are the dominant ionic species in both winter and spring during haze days in suburban Shanghai. Correlation results revealed that HULIS formation was highly associated with the biomass burning (K) and secondary aerosols formation (SIA: NH<sub>4</sub><sup>+</sup>, SO<sub>4</sub><sup>2?</sup>, NO<sub>3</sub><sup>?</sup>) and also well-correlated with F<sup>?</sup> and ca.<sup>2+</sup> ions, crustal elements (Al and Fe) and anthropogenic pollution metals (As, Se, Rb, Sr, and Pb), suggesting that HULIS-C formation might be from biomass burning and secondary aerosol processes and also mixed formation (marine, crustal and industrial emissions) sources. From the coinciding results of the clustering analysis and weighted-CWT model, the principal potential source regions were the short transports from the Yangtze River Delta (YRD) regions, local regions, marine areas (the Bohai Sea, the Yellow Sea, the East China Sea) and also the long-range transports from northwestern in those seasons.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"63 - 81"},"PeriodicalIF":2.0,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09404-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4754647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Chemical characteristics of particulate matters and their emission sources over Varanasi during winter season 冬季瓦拉纳西地区颗粒物化学特征及其排放源
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-05-30 DOI: 10.1007/s10874-020-09405-6
Vineet Pratap, Akhilesh Kumar, Shani Tiwari, Pradeep Kumar, Avneesh Kumar Tripathi, Abhay Kumar Singh

The chemical composition of particulate matter impacts both human health and climate. In this study, the chemical characteristics of particulate matter was measured for four months (November 2016–February 2017) at Varanasi, which is located in the middle of the Indo-Gangetic Basin (IGB). The daily observed mean values of PM10 and PM2.5 are 134?±?48 and 213?±?80?μg/m3, respectively, which exceeds both national and international standards. The average value of PM2.5/PM10 ratio is 0.64?±?0.16 which indicates a relatively higher fraction of fine particles that are attributed to anthropogenic emission sources (biomass/post-harvest burning) as corroborated by MODIS fire counts and back trajectory analysis. Ion chromatographic measurements showed that SO42?, Cl?, K+, NO3?, Na+, Ca2+, Mg2+ are the major ionic species present in the aerosol. Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM–EDX) analysis shows the prevalence of carbon-rich particles at Varanasi which is likely due to biomass burning and other anthropogenic sources.

颗粒物的化学成分影响着人类健康和气候。在这项研究中,在位于印度恒河盆地(IGB)中部的瓦拉纳西(Varanasi)测量了四个月(2016年11月至2017年2月)的颗粒物化学特征。PM10和PM2.5的日观测平均值为134±?48和213±80?μg/m3,均超过国家和国际标准。PM2.5/PM10的平均值为0.64±0.16,这表明MODIS火灾计数和反轨迹分析证实了相对较高的细颗粒物归因于人为排放源(生物质/收获后燃烧)。离子色谱测定表明,SO42?, Cl ?k +, no3 ?, Na+, Ca2+, Mg2+是气溶胶中主要的离子种类。扫描电子显微镜与能量色散x射线(SEM-EDX)分析显示,瓦拉纳西富碳颗粒的普遍存在可能是由于生物质燃烧和其他人为来源。
{"title":"Chemical characteristics of particulate matters and their emission sources over Varanasi during winter season","authors":"Vineet Pratap,&nbsp;Akhilesh Kumar,&nbsp;Shani Tiwari,&nbsp;Pradeep Kumar,&nbsp;Avneesh Kumar Tripathi,&nbsp;Abhay Kumar Singh","doi":"10.1007/s10874-020-09405-6","DOIUrl":"https://doi.org/10.1007/s10874-020-09405-6","url":null,"abstract":"<p>The chemical composition of particulate matter impacts both human health and climate. In this study, the chemical characteristics of particulate matter was measured for four months (November 2016–February 2017) at Varanasi, which is located in the middle of the Indo-Gangetic Basin (IGB). The daily observed mean values of PM<sub>10</sub> and PM<sub>2.5</sub> are 134?±?48 and 213?±?80?μg/m<sup>3</sup>, respectively, which exceeds both national and international standards. The average value of PM<sub>2.5</sub>/PM<sub>10</sub> ratio is 0.64?±?0.16 which indicates a relatively higher fraction of fine particles that are attributed to anthropogenic emission sources (biomass/post-harvest burning) as corroborated by MODIS fire counts and back trajectory analysis. Ion chromatographic measurements showed that SO<sub>4</sub><sup>2?</sup>, Cl<sup>?</sup>, K<sup>+</sup>, NO<sub>3</sub><sup>?</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup> are the major ionic species present in the aerosol. Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM–EDX) analysis shows the prevalence of carbon-rich particles at Varanasi which is likely due to biomass burning and other anthropogenic sources.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"83 - 99"},"PeriodicalIF":2.0,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09405-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5160422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Variation of carbonaceous species and trace elements in PM10 at a mountain site in the central Himalayan region of India 印度喜马拉雅地区中部山区PM10中碳质物种和微量元素的变化
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-05-29 DOI: 10.1007/s10874-020-09402-9
S. K. Sharma, Nikki Choudhary, Priyanka Srivastava, Manish Naja, N. Vijayan, Garima Kotnala, T. K. Mandal
{"title":"Variation of carbonaceous species and trace elements in PM10 at a mountain site in the central Himalayan region of India","authors":"S. K. Sharma,&nbsp;Nikki Choudhary,&nbsp;Priyanka Srivastava,&nbsp;Manish Naja,&nbsp;N. Vijayan,&nbsp;Garima Kotnala,&nbsp;T. K. Mandal","doi":"10.1007/s10874-020-09402-9","DOIUrl":"https://doi.org/10.1007/s10874-020-09402-9","url":null,"abstract":"","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"49 - 62"},"PeriodicalIF":2.0,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09402-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5632884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Ship-borne observations of sea fog and rain chemistry over the North and South Pacific Ocean 北太平洋和南太平洋海上雾和雨化学的船载观测
IF 2 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2020-05-23 DOI: 10.1007/s10874-020-09403-8
Hyun Jae Kim, Taehyoung Lee, Taehyun Park, Gyutae Park, Jeffrey L. Collett Jr, Keyhong Park, Joon Young Ahn, Jihee Ban, Seokwon Kang, Kyunghoon Kim, Seung-Myung Park, Eun Hea Jho, Yongjoo Choi

Clouds, fogs, and rain can serve as useful integrators of both atmospheric aerosols and soluble trace gases. To better understand the chemical characteristics of sea fog and rain in the North and South Pacific Ocean, fog and rain were measured aboard the R/V ARAON in 2012 and 2014, respectively, as part of the Ship-borne Pole-to-Pole Observations (SHIPPO) project. The mean sea fog pH (3.59) was lower than the mean rain pH (4.54), reflecting greater inputs of non-sea-salt (nss)-SO42?. For the collected rain, nss-Ca2+ and nss-Mg2+ from mineral dust particles were the major contributors to acidity neutralization. NO3? concentrations, which are derived from scavenging of gaseous nitric acid and aerosol nitrate, were higher than NH4+ concentrations, indicating that terrestrial and/or local anthropogenic NO3? sources outweighed contributions from anthropogenic or biological oceanic NH3/NH4+ sources. The ratio of Cl?/Na+ in the sea fog was slightly lower than that in the sea water due to HCl volatilization from scavenged sea-salt particles. The ratio of NH4+/ nss-Ca2+ was lower in the rain than in the sea fog, revealing the influence of mineral dust particles at altitudes above the sea fog layer. The average sea fog water TOC concentration, 13.2 ppmC, was much higher than the measured TOC concentrations in marine fogs and clouds in other remote environments, likely due to continental influence; the TN and TOC concentrations in the fog water were much higher than those in the rain. The sea fog and rain chemical properties measured during research cruises like these enhance our understanding of wet deposition and cloud condensation nuclei sources and processes in the Pacific Ocean.

云、雾和雨可以作为大气气溶胶和可溶性微量气体的有用集成物。为了更好地了解北太平洋和南太平洋的海雾和雨的化学特征,作为船载极对极观测(SHIPPO)项目的一部分,在2012年和2014年分别在R/V ARAON上测量了雾和雨。平均海雾pH值(3.59)低于平均雨pH值(4.54),反映了非海盐(nss)-SO42?的大量输入。对于收集的雨水,来自矿物粉尘颗粒的nss-Ca2+和nss-Mg2+是酸性中和的主要来源。3号吗?通过清除气态硝酸和气溶胶硝酸盐得到的浓度高于NH4+浓度,表明陆地和/或当地人为NO3?来源超过了人为或生物海洋NH3/NH4+来源的贡献。Cl的比值?由于被清除的海盐颗粒挥发出HCl,海雾中的/Na+略低于海水中的/Na+。雨中NH4+/ nss-Ca2+的比值低于海雾中,表明矿物粉尘颗粒在海雾层以上高度的影响。海雾水体TOC的平均浓度为13.2 ppmC,远高于其他偏远环境中海洋雾和云中测量到的TOC浓度,这可能是由于大陆的影响;雾水中TN和TOC浓度明显高于雨中。在像这样的研究巡航中测量的海雾和雨的化学性质增强了我们对太平洋湿沉积和云凝结核的来源和过程的理解。
{"title":"Ship-borne observations of sea fog and rain chemistry over the North and South Pacific Ocean","authors":"Hyun Jae Kim,&nbsp;Taehyoung Lee,&nbsp;Taehyun Park,&nbsp;Gyutae Park,&nbsp;Jeffrey L. Collett Jr,&nbsp;Keyhong Park,&nbsp;Joon Young Ahn,&nbsp;Jihee Ban,&nbsp;Seokwon Kang,&nbsp;Kyunghoon Kim,&nbsp;Seung-Myung Park,&nbsp;Eun Hea Jho,&nbsp;Yongjoo Choi","doi":"10.1007/s10874-020-09403-8","DOIUrl":"https://doi.org/10.1007/s10874-020-09403-8","url":null,"abstract":"<p>Clouds, fogs, and rain can serve as useful integrators of both atmospheric aerosols and soluble trace gases. To better understand the chemical characteristics of sea fog and rain in the North and South Pacific Ocean, fog and rain were measured aboard the R/V ARAON in 2012 and 2014, respectively, as part of the Ship-borne Pole-to-Pole Observations (SHIPPO) project. The mean sea fog pH (3.59) was lower than the mean rain pH (4.54), reflecting greater inputs of non-sea-salt (nss)-SO<sub>4</sub><sup>2?</sup>. For the collected rain, nss-Ca<sup>2+</sup> and nss-Mg<sup>2+</sup> from mineral dust particles were the major contributors to acidity neutralization. NO<sub>3</sub><sup>?</sup> concentrations, which are derived from scavenging of gaseous nitric acid and aerosol nitrate, were higher than NH<sub>4</sub><sup>+</sup> concentrations, indicating that terrestrial and/or local anthropogenic NO<sub>3</sub><sup>?</sup> sources outweighed contributions from anthropogenic or biological oceanic NH<sub>3</sub>/NH<sub>4</sub><sup>+</sup> sources. The ratio of Cl<sup>?</sup>/Na<sup>+</sup> in the sea fog was slightly lower than that in the sea water due to HCl volatilization from scavenged sea-salt particles. The ratio of NH<sub>4</sub><sup>+</sup>/ nss-Ca<sup>2+</sup> was lower in the rain than in the sea fog, revealing the influence of mineral dust particles at altitudes above the sea fog layer. The average sea fog water TOC concentration, 13.2 ppmC, was much higher than the measured TOC concentrations in marine fogs and clouds in other remote environments, likely due to continental influence; the TN and TOC concentrations in the fog water were much higher than those in the rain. The sea fog and rain chemical properties measured during research cruises like these enhance our understanding of wet deposition and cloud condensation nuclei sources and processes in the Pacific Ocean.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"76 4","pages":"315 - 326"},"PeriodicalIF":2.0,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09403-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4904021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Journal of Atmospheric Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1