Pub Date : 2021-01-05DOI: 10.1007/s10874-020-09413-6
Kunal Bali, Amit Kumar, Sapna Chourasiya
The study analysed spatio-temporal distribution of fire radiative power (FRP) and estimates of trace gases [volatile organic compounds (VOCs) and nitrogen oxides (NOx)] along with their reactivity during biomass burning period of March (2003–2017) over the northeast region (NER), India. Reanalysis data of FRP along with emission rates of trace gases have been retrieved from Global Fire Assimilation System. Results showed that average FRP was estimated to be 0.37 Wm?2 with the highest value in Mizoram (0.16 Wm?2) among 7-states of the study region. Temporally, relatively higher FRP occurred during the year of 2006 and 2010 while lowest in 2017. FRP-based VOCs and NOx emission estimates were 431 and 69.5?mg/m2/day, respectively which are consistent with observed FRP. Among different groups of VOCs, oxygenated species were the largest group (~56%) estimated followed by alkenes, alkanes, aromatics, and biogenic. Photochemical reactivities of VOCs were estimated using propylene-equivalent and maximum incremental reactivity methods which showed oxygenated species had the highest contributions in chemical reactivity. Based on the MIR scale, the top ten leading contributor species for ozone (O3) formation were in descending order of formaldehyde, acetaldehyde, ethene, propene, toluene, butane, isoprene, methanol, pentene, and hexane which accounted for approximately 97% of total ozone formation. We also examined the ozone formation regime using VOCs/NOx ratios which indicated that O3 formation was likely to be VOC-sensitive over NER. Our results could be used for the understanding of FRP-based trace gas emissions during biomass burning and to establish effective preventive measures for reduction in O3 pollution.
{"title":"Emission estimates of trace gases (VOCs and NOx) and their reactivity during biomass burning period (2003–2017) over Northeast India","authors":"Kunal Bali, Amit Kumar, Sapna Chourasiya","doi":"10.1007/s10874-020-09413-6","DOIUrl":"https://doi.org/10.1007/s10874-020-09413-6","url":null,"abstract":"<p>The study analysed spatio-temporal distribution of fire radiative power (FRP) and estimates of trace gases [volatile organic compounds (VOCs) and nitrogen oxides (NO<i>x</i>)] along with their reactivity during biomass burning period of March (2003–2017) over the northeast region (NER), India. Reanalysis data of FRP along with emission rates of trace gases have been retrieved from Global Fire Assimilation System. Results showed that average FRP was estimated to be 0.37 Wm<sup>?2</sup> with the highest value in Mizoram (0.16 Wm<sup>?2</sup>) among 7-states of the study region. Temporally, relatively higher FRP occurred during the year of 2006 and 2010 while lowest in 2017. FRP-based VOCs and NO<i>x</i> emission estimates were 431 and 69.5?mg/m<sup>2</sup>/day, respectively which are consistent with observed FRP. Among different groups of VOCs, oxygenated species were the largest group (~56%) estimated followed by alkenes, alkanes, aromatics, and biogenic. Photochemical reactivities of VOCs were estimated using propylene-equivalent and maximum incremental reactivity methods which showed oxygenated species had the highest contributions in chemical reactivity. Based on the MIR scale, the top ten leading contributor species for ozone (O<sub>3</sub>) formation were in descending order of formaldehyde, acetaldehyde, ethene, propene, toluene, butane, isoprene, methanol, pentene, and hexane which accounted for approximately 97% of total ozone formation. We also examined the ozone formation regime using VOCs/NO<i>x</i> ratios which indicated that O3 formation was likely to be VOC-sensitive over NER. Our results could be used for the understanding of FRP-based trace gas emissions during biomass burning and to establish effective preventive measures for reduction in O<sub>3</sub> pollution.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 1","pages":"17 - 34"},"PeriodicalIF":2.0,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09413-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4210842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-26DOI: 10.1007/s10874-020-09409-2
Luca Ugo Fontanella, Mauro Tomassetti, Giovanni Visco, Maria Pia Sammartino
Analysis of rainwater in historical cities plays a key role to save ancient monuments from atmospheric agents. In this study we sampled the Rome’s rainwater from February to July of 2018 and we analysed them to determine their chemical and physical parameters: pH, redox potential, conductivity, temperature, and the concentration of the main inorganic ions (Na+, K+, Ca++, Mg++, F?, Cl?, NO3?, SO4??). The volume of the daily fallen rainwater, the speed and direction of the wind in the sampling site were also collected. In order to find a correlation between all the above data we used the Principal Component Analysis (PCA). Results evidenced that there aren’t authentic “acid rains” as the minimum pH value that we found is 5.2. In some cases high concentrations of nitrates and sulphates were found with maximum values of 12.4?ppm and 18.7?ppm respectively. We also found no correlation between the rainwater’s composition and the seasonal period; on the contrary, the speed and direction of the wind, especially when coming from the sea or industrial country near Rome, play a noticeable role on the rainwater composition.
{"title":"Characterization of Rome’s rainwater in the early of 2018 aiming to find correlations between chemical-physical parameters and sources of pollution: a statistical study","authors":"Luca Ugo Fontanella, Mauro Tomassetti, Giovanni Visco, Maria Pia Sammartino","doi":"10.1007/s10874-020-09409-2","DOIUrl":"https://doi.org/10.1007/s10874-020-09409-2","url":null,"abstract":"<p>Analysis of rainwater in historical cities plays a key role to save ancient monuments from atmospheric agents. In this study we sampled the Rome’s rainwater from February to July of 2018 and we analysed them to determine their chemical and physical parameters: pH, redox potential, conductivity, temperature, and the concentration of the main inorganic ions (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>++</sup>, Mg<sup>++</sup>, F<sup>?</sup>, Cl<sup>?</sup>, NO<sub>3</sub><sup>?</sup>, SO<sub>4</sub><sup>??</sup>). The volume of the daily fallen rainwater, the speed and direction of the wind in the sampling site were also collected. In order to find a correlation between all the above data we used the Principal Component Analysis (PCA). Results evidenced that there aren’t authentic “acid rains” as the minimum pH value that we found is 5.2. In some cases high concentrations of nitrates and sulphates were found with maximum values of 12.4?ppm and 18.7?ppm respectively. We also found no correlation between the rainwater’s composition and the seasonal period; on the contrary, the speed and direction of the wind, especially when coming from the sea or industrial country near Rome, play a noticeable role on the rainwater composition.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 1","pages":"1 - 16"},"PeriodicalIF":2.0,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09409-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5022047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-07DOI: 10.1007/s10874-020-09407-4
Silvia M. Calderón, Jussi Malila, Nønne L. Prisle
We introduce the CMC based Ionic Surfactant Activity model (CISA) to calculate activity coefficients in ternary aqueous solutions of an ionic surfactant and an inorganic salt. The surfactant can be either anionic or cationic and in the present development, the surfactant and inorganic salts share a common counterion. CISA incorporates micellization into the Pitzer–Debye–Hückel (PDH) framework for activities of mixed electrolyte solutions. To reduce computing requirements, a parametrization of the critical micelle concentration (CMC) is used to estimate the degree of micellization instead of explicit equilibrium calculations. For both binary and ternary systems, CISA only requires binary experimentally-based parameters to describe water–ion interactions and temperature–composition dependency of the CMC. The CISA model is intended in particular for atmospheric applications, where higher-order solution interaction parameters are typically not constrained by experiments and the description must be reliable across a wide range of compositions. We evaluate the model against experimental activity data for binary aqueous solutions of ionic surfactants sodium octanoate and sodium decanoate, as common components of atmospheric aerosols, and sodium dodecylsulfate, the most commonly used model compound for atmospheric surfactants. Capabilities of the CISA model to describe ternary systems are tested for the water–sodium decanoate–sodium chloride system, a common surrogate for marine background cloud condensation nuclei and to our knowledge the only atmospherically relevant system for which ternary activity data is available. For these systems, CISA is able to provide continuous predictions of activity coefficients both below and above CMC and in all cases gives an improved description of the water activity above the CMC, compared to the alternative model of Burchfield and Wolley [J. Phys. Chem., 88(10), 2149–2155 (1984)]. The water activity is a key parameter governing the formation and equilibrium growth of cloud droplets. The CISA model can be extended from the current form to include the effect of other inorganic salts with the existing database of binary PDH parameters and using appropriate mixing rules to account for ion specificity in the micellization process.
介绍了基于CMC的离子表面活性剂活度模型(CISA),用于计算离子表面活性剂与无机盐三元水溶液的活度系数。表面活性剂可以是阴离子或阳离子,在目前的发展中,表面活性剂和无机盐有一个共同的反离子。CISA将胶束结合到混合电解质溶液活性的pitzer - debye - h ckel (PDH)框架中。为了减少计算需求,临界胶束浓度(CMC)的参数化被用来估计胶束化程度,而不是显式的平衡计算。对于二元和三元体系,CISA只需要二元实验参数来描述CMC的水-离子相互作用和温度-组成依赖性。CISA模型特别适用于大气应用,在大气应用中,高阶溶液相互作用参数通常不受实验的限制,并且描述必须在广泛的成分范围内可靠。我们对离子表面活性剂辛酸钠和癸酸钠(作为大气气溶胶的常见成分)和十二烷基硫酸钠(最常用的大气表面活性剂模型化合物)二元水溶液的实验活性数据进行了模型评估。CISA模型描述三元系统的能力在水-癸酸钠-氯化钠系统中进行了测试,该系统是海洋背景云凝结核的常用替代品,据我们所知,它是唯一可获得三元活动数据的大气相关系统。与Burchfield和Wolley的替代模型相比,对于这些系统,CISA能够提供CMC以下和CMC以上活度系数的连续预测,并且在所有情况下都能更好地描述CMC以上的水活度。理论物理。化学。[j].农业科学,88(10),2149-2155(1984)。水活度是控制云滴形成和平衡生长的关键参数。CISA模型可以从现有的形式扩展到包括其他无机盐的影响,并使用现有的二元PDH参数数据库,并使用适当的混合规则来考虑胶束过程中的离子特异性。
{"title":"Model for estimating activity coefficients in binary and ternary ionic surfactant solutions","authors":"Silvia M. Calderón, Jussi Malila, Nønne L. Prisle","doi":"10.1007/s10874-020-09407-4","DOIUrl":"https://doi.org/10.1007/s10874-020-09407-4","url":null,"abstract":"<p>We introduce the <i>CMC based Ionic Surfactant Activity model (CISA)</i> to calculate activity coefficients in ternary aqueous solutions of an ionic surfactant and an inorganic salt. The surfactant can be either anionic or cationic and in the present development, the surfactant and inorganic salts share a common counterion. CISA incorporates micellization into the Pitzer–Debye–Hückel (PDH) framework for activities of mixed electrolyte solutions. To reduce computing requirements, a parametrization of the critical micelle concentration (CMC) is used to estimate the degree of micellization instead of explicit equilibrium calculations. For both binary and ternary systems, CISA only requires binary experimentally-based parameters to describe water–ion interactions and temperature–composition dependency of the CMC. The CISA model is intended in particular for atmospheric applications, where higher-order solution interaction parameters are typically not constrained by experiments and the description must be reliable across a wide range of compositions. We evaluate the model against experimental activity data for binary aqueous solutions of ionic surfactants sodium octanoate and sodium decanoate, as common components of atmospheric aerosols, and sodium dodecylsulfate, the most commonly used model compound for atmospheric surfactants. Capabilities of the CISA model to describe ternary systems are tested for the water–sodium decanoate–sodium chloride system, a common surrogate for marine background cloud condensation nuclei and to our knowledge the only atmospherically relevant system for which ternary activity data is available. For these systems, CISA is able to provide continuous predictions of activity coefficients both below and above CMC and in all cases gives an improved description of the water activity above the CMC, compared to the alternative model of Burchfield and Wolley [<i>J. Phys. Chem.</i>, 88(10), 2149–2155 (1984)]. The water activity is a key parameter governing the formation and equilibrium growth of cloud droplets. The CISA model can be extended from the current form to include the effect of other inorganic salts with the existing database of binary PDH parameters and using appropriate mixing rules to account for ion specificity in the micellization process.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 4","pages":"141 - 168"},"PeriodicalIF":2.0,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09407-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4320134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-23DOI: 10.1007/s10874-020-09410-9
Xiao-Yao Ma, Zheng-Hui Xiao, Li-Zhi He, Yun-Jiang Cao, Ji-Song Liu
To assess the efficacy of the “Implementation Details of Air Pollution Prevention and Control Action Plan”, the chemical composition of PM2.5 and other pollutants was determined during the winters of 2013–2014 and 2016–2017 at two urban sites in Xiangtan City, Hunan. The concentrations of PM2.5, SO2, and NO2 decreased from 146.0 to 94.5?μg/m3, 75.9 to 33.5?μg/m3, and 80.6 to 55.8?μg/m3, respectively, from winter 2013–2014 to winter 2016–2017. The concentrations of almost all the major chemical components of PM2.5 decreased as well, particularly secondary inorganic aerosols (SIAs). These results indicate that the implementation of the air quality control plan was very effective in improving air quality. Analysis of the data also suggests that SIA formation is likely responsible for high winter PM2.5 pollution and that high relative humidity levels and low wind speed can promote the formation of SIA. A 72-h back trajectory analysis shows that both regional transport and the accumulation of local pollutants under stagnant meteorological conditions promote the occurrence of episodes of high wintertime pollution levels.
{"title":"Comparison of chemical characteristics of PM2.5 during two winters in Xiangtan City in south central China","authors":"Xiao-Yao Ma, Zheng-Hui Xiao, Li-Zhi He, Yun-Jiang Cao, Ji-Song Liu","doi":"10.1007/s10874-020-09410-9","DOIUrl":"https://doi.org/10.1007/s10874-020-09410-9","url":null,"abstract":"<p>To assess the efficacy of the “Implementation Details of Air Pollution Prevention and Control Action Plan”, the chemical composition of PM<sub>2.5</sub> and other pollutants was determined during the winters of 2013–2014 and 2016–2017 at two urban sites in Xiangtan City, Hunan. The concentrations of PM<sub>2.5</sub>, SO<sub>2</sub>, and NO<sub>2</sub> decreased from 146.0 to 94.5?μg/m<sup>3</sup>, 75.9 to 33.5?μg/m<sup>3</sup>, and 80.6 to 55.8?μg/m<sup>3</sup>, respectively, from winter 2013–2014 to winter 2016–2017. The concentrations of almost all the major chemical components of PM<sub>2.5</sub> decreased as well, particularly secondary inorganic aerosols (SIAs). These results indicate that the implementation of the air quality control plan was very effective in improving air quality. Analysis of the data also suggests that SIA formation is likely responsible for high winter PM<sub>2.5</sub> pollution and that high relative humidity levels and low wind speed can promote the formation of SIA. A 72-h back trajectory analysis shows that both regional transport and the accumulation of local pollutants under stagnant meteorological conditions promote the occurrence of episodes of high wintertime pollution levels.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 4","pages":"169 - 183"},"PeriodicalIF":2.0,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09410-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4909453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-14DOI: 10.1007/s10874-020-09406-5
Mukunda M. Gogoi, Roseline C. Thakur, Sahina Gazi, Vijayakumar S. Nair, Rahul Mohan, S. Suresh Babu
Particle morphology and elemental compositions are among the crucial parameters of aerosols required for accurate understanding of the climatic effect of aerosols in the earth-atmosphere system; yet their vertical distributions and region specific properties are poorly characterised due to sparse in-situ measurements. This is the first study to classify and quantify the vertical distributions of the morphological characteristics and elemental composition of aerosols based on single particle as well as bulk chemical analysis over seven geographically diverse regions of northern and central parts of India during spring (April–May, 2013), carried out as a part of Regional Aerosol Warming Experiment (RAWEX). Significant regional distinctiveness in shapes (non-sphericity), sizes and elemental compositions of the airborne particles were conspicuous, having dominance of highly irregular granular aggregates over the north Indian sites. The non-spherical coarse mode particles dominated the lower free tropospheric regions (> 2?km) of the Indo-Gangetic Plains (IGP). These particles could be responsible for enhanced spring time aerosol absorption in the elevated region of the atmosphere. Elemental compositions of the single particle analysis indicate that the free tropospheric layer over the IGP and central India is enriched with Na and Ca compounds mixed with Fe or Al (soil particles), indicating long range transport of crustal aerosols. This finding is very well supported by the bulk particle analysis indicating abundance of Ca2+ in the free troposphere with low contribution of ssNa+. Particles with irregular rough surfaces having dominance of SiO2 were observed over all the study sites. The percentage share of spherical (either smooth or rough) particles to the total morphological characteristics of the particles was found to be highly subdued (< 10%). The present study thus critically assesses the relevant knowledge pertaining to the morphological features of aerosols over the IGP during spring for the accurate estimation of aerosol radiative properties. More such efforts are required in future to study the connections and dependencies between morphological and radiative properties of aerosols in different seasons.
{"title":"Vertical distributions of the microscopic morphological characteristics and elemental composition of aerosols over India","authors":"Mukunda M. Gogoi, Roseline C. Thakur, Sahina Gazi, Vijayakumar S. Nair, Rahul Mohan, S. Suresh Babu","doi":"10.1007/s10874-020-09406-5","DOIUrl":"https://doi.org/10.1007/s10874-020-09406-5","url":null,"abstract":"<p>Particle morphology and elemental compositions are among the crucial parameters of aerosols required for accurate understanding of the climatic effect of aerosols in the earth-atmosphere system; yet their vertical distributions and region specific properties are poorly characterised due to sparse in-situ measurements. This is the first study to classify and quantify the vertical distributions of the morphological characteristics and elemental composition of aerosols based on single particle as well as bulk chemical analysis over seven geographically diverse regions of northern and central parts of India during spring (April–May, 2013), carried out as a part of Regional Aerosol Warming Experiment (RAWEX). Significant regional distinctiveness in shapes (non-sphericity), sizes and elemental compositions of the airborne particles were conspicuous, having dominance of highly irregular granular aggregates over the north Indian sites. The non-spherical coarse mode particles dominated the lower free tropospheric regions (> 2?km) of the Indo-Gangetic Plains (IGP). These particles could be responsible for enhanced spring time aerosol absorption in the elevated region of the atmosphere. Elemental compositions of the single particle analysis indicate that the free tropospheric layer over the IGP and central India is enriched with Na and Ca compounds mixed with Fe or Al (soil particles), indicating long range transport of crustal aerosols. This finding is very well supported by the bulk particle analysis indicating abundance of Ca<sup>2+</sup> in the free troposphere with low contribution of ssNa<sup>+</sup>. Particles with irregular rough surfaces having dominance of SiO<sub>2</sub> were observed over all the study sites. The percentage share of spherical (either smooth or rough) particles to the total morphological characteristics of the particles was found to be highly subdued (< 10%). The present study thus critically assesses the relevant knowledge pertaining to the morphological features of aerosols over the IGP during spring for the accurate estimation of aerosol radiative properties. More such efforts are required in future to study the connections and dependencies between morphological and radiative properties of aerosols in different seasons.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 4","pages":"117 - 140"},"PeriodicalIF":2.0,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09406-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4856382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.
{"title":"Long term trends of wet deposition and atmospheric concentrations of nitrogen and sulfur compounds at EMEP site in Armenia","authors":"Yekaterina Perikhanyan, Gayane Shahnazaryan, Arpine Gabrielyan","doi":"10.1007/s10874-020-09408-3","DOIUrl":"https://doi.org/10.1007/s10874-020-09408-3","url":null,"abstract":"<p>This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"101 - 116"},"PeriodicalIF":2.0,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09408-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4858925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Humic-like substances (HULIS), the most ubiquitous class of water-soluble organic compounds in the atmosphere could enhance the generation of reactive oxygen species (ROS), and play a significant role in impacting aerosol chemistry and health effects. In this study, twenty-three PM2.5 samples were collected in the atmosphere of suburban Shanghai from November 29 to December 17, 2015, and March 17 to April 30, 2016, during haze and non-haze days. The mean concentrations of HULIS in spring both in haze and non-haze days (2.34?±?0.70 μg/m3 and 1.94?±?0.88 μg/m3) were relatively higher than in that of winter (1.93?±?0.95 μg/m3 and 1.31?±?0.28 μg/m3). The ammonium, sulfate, and nitrate are the dominant ionic species in both winter and spring during haze days in suburban Shanghai. Correlation results revealed that HULIS formation was highly associated with the biomass burning (K) and secondary aerosols formation (SIA: NH4+, SO42?, NO3?) and also well-correlated with F? and ca.2+ ions, crustal elements (Al and Fe) and anthropogenic pollution metals (As, Se, Rb, Sr, and Pb), suggesting that HULIS-C formation might be from biomass burning and secondary aerosol processes and also mixed formation (marine, crustal and industrial emissions) sources. From the coinciding results of the clustering analysis and weighted-CWT model, the principal potential source regions were the short transports from the Yangtze River Delta (YRD) regions, local regions, marine areas (the Bohai Sea, the Yellow Sea, the East China Sea) and also the long-range transports from northwestern in those seasons.
{"title":"Sources of HULIS-C and its relationships with trace metals, ionic species in PM2.5 in suburban Shanghai during haze and non-haze days","authors":"Myat Sandar Win, Junyang Zeng, Chuanhe Yao, Mengfei Zhao, Guangli Xiu, Tingting Xie, Lanfang Rao, Luying Zhang, Hui Lu, Xinchun Liu, Qingyue Wang, Senlin Lu","doi":"10.1007/s10874-020-09404-7","DOIUrl":"https://doi.org/10.1007/s10874-020-09404-7","url":null,"abstract":"<p>Humic-like substances (HULIS), the most ubiquitous class of water-soluble organic compounds in the atmosphere could enhance the generation of reactive oxygen species (ROS), and play a significant role in impacting aerosol chemistry and health effects. In this study, twenty-three PM<sub>2.5</sub> samples were collected in the atmosphere of suburban Shanghai from November 29 to December 17, 2015, and March 17 to April 30, 2016, during haze and non-haze days. The mean concentrations of HULIS in spring both in haze and non-haze days (2.34?±?0.70 μg/m<sup>3</sup> and 1.94?±?0.88 μg/m<sup>3</sup>) were relatively higher than in that of winter (1.93?±?0.95 μg/m<sup>3</sup> and 1.31?±?0.28 μg/m<sup>3</sup>). The ammonium, sulfate, and nitrate are the dominant ionic species in both winter and spring during haze days in suburban Shanghai. Correlation results revealed that HULIS formation was highly associated with the biomass burning (K) and secondary aerosols formation (SIA: NH<sub>4</sub><sup>+</sup>, SO<sub>4</sub><sup>2?</sup>, NO<sub>3</sub><sup>?</sup>) and also well-correlated with F<sup>?</sup> and ca.<sup>2+</sup> ions, crustal elements (Al and Fe) and anthropogenic pollution metals (As, Se, Rb, Sr, and Pb), suggesting that HULIS-C formation might be from biomass burning and secondary aerosol processes and also mixed formation (marine, crustal and industrial emissions) sources. From the coinciding results of the clustering analysis and weighted-CWT model, the principal potential source regions were the short transports from the Yangtze River Delta (YRD) regions, local regions, marine areas (the Bohai Sea, the Yellow Sea, the East China Sea) and also the long-range transports from northwestern in those seasons.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"63 - 81"},"PeriodicalIF":2.0,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09404-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4754647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The chemical composition of particulate matter impacts both human health and climate. In this study, the chemical characteristics of particulate matter was measured for four months (November 2016–February 2017) at Varanasi, which is located in the middle of the Indo-Gangetic Basin (IGB). The daily observed mean values of PM10 and PM2.5 are 134?±?48 and 213?±?80?μg/m3, respectively, which exceeds both national and international standards. The average value of PM2.5/PM10 ratio is 0.64?±?0.16 which indicates a relatively higher fraction of fine particles that are attributed to anthropogenic emission sources (biomass/post-harvest burning) as corroborated by MODIS fire counts and back trajectory analysis. Ion chromatographic measurements showed that SO42?, Cl?, K+, NO3?, Na+, Ca2+, Mg2+ are the major ionic species present in the aerosol. Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM–EDX) analysis shows the prevalence of carbon-rich particles at Varanasi which is likely due to biomass burning and other anthropogenic sources.
{"title":"Chemical characteristics of particulate matters and their emission sources over Varanasi during winter season","authors":"Vineet Pratap, Akhilesh Kumar, Shani Tiwari, Pradeep Kumar, Avneesh Kumar Tripathi, Abhay Kumar Singh","doi":"10.1007/s10874-020-09405-6","DOIUrl":"https://doi.org/10.1007/s10874-020-09405-6","url":null,"abstract":"<p>The chemical composition of particulate matter impacts both human health and climate. In this study, the chemical characteristics of particulate matter was measured for four months (November 2016–February 2017) at Varanasi, which is located in the middle of the Indo-Gangetic Basin (IGB). The daily observed mean values of PM<sub>10</sub> and PM<sub>2.5</sub> are 134?±?48 and 213?±?80?μg/m<sup>3</sup>, respectively, which exceeds both national and international standards. The average value of PM<sub>2.5</sub>/PM<sub>10</sub> ratio is 0.64?±?0.16 which indicates a relatively higher fraction of fine particles that are attributed to anthropogenic emission sources (biomass/post-harvest burning) as corroborated by MODIS fire counts and back trajectory analysis. Ion chromatographic measurements showed that SO<sub>4</sub><sup>2?</sup>, Cl<sup>?</sup>, K<sup>+</sup>, NO<sub>3</sub><sup>?</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup> are the major ionic species present in the aerosol. Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM–EDX) analysis shows the prevalence of carbon-rich particles at Varanasi which is likely due to biomass burning and other anthropogenic sources.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"83 - 99"},"PeriodicalIF":2.0,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09405-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5160422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-29DOI: 10.1007/s10874-020-09402-9
S. K. Sharma, Nikki Choudhary, Priyanka Srivastava, Manish Naja, N. Vijayan, Garima Kotnala, T. K. Mandal
{"title":"Variation of carbonaceous species and trace elements in PM10 at a mountain site in the central Himalayan region of India","authors":"S. K. Sharma, Nikki Choudhary, Priyanka Srivastava, Manish Naja, N. Vijayan, Garima Kotnala, T. K. Mandal","doi":"10.1007/s10874-020-09402-9","DOIUrl":"https://doi.org/10.1007/s10874-020-09402-9","url":null,"abstract":"","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"49 - 62"},"PeriodicalIF":2.0,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09402-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5632884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-23DOI: 10.1007/s10874-020-09403-8
Hyun Jae Kim, Taehyoung Lee, Taehyun Park, Gyutae Park, Jeffrey L. Collett Jr, Keyhong Park, Joon Young Ahn, Jihee Ban, Seokwon Kang, Kyunghoon Kim, Seung-Myung Park, Eun Hea Jho, Yongjoo Choi
Clouds, fogs, and rain can serve as useful integrators of both atmospheric aerosols and soluble trace gases. To better understand the chemical characteristics of sea fog and rain in the North and South Pacific Ocean, fog and rain were measured aboard the R/V ARAON in 2012 and 2014, respectively, as part of the Ship-borne Pole-to-Pole Observations (SHIPPO) project. The mean sea fog pH (3.59) was lower than the mean rain pH (4.54), reflecting greater inputs of non-sea-salt (nss)-SO42?. For the collected rain, nss-Ca2+ and nss-Mg2+ from mineral dust particles were the major contributors to acidity neutralization. NO3? concentrations, which are derived from scavenging of gaseous nitric acid and aerosol nitrate, were higher than NH4+ concentrations, indicating that terrestrial and/or local anthropogenic NO3? sources outweighed contributions from anthropogenic or biological oceanic NH3/NH4+ sources. The ratio of Cl?/Na+ in the sea fog was slightly lower than that in the sea water due to HCl volatilization from scavenged sea-salt particles. The ratio of NH4+/ nss-Ca2+ was lower in the rain than in the sea fog, revealing the influence of mineral dust particles at altitudes above the sea fog layer. The average sea fog water TOC concentration, 13.2 ppmC, was much higher than the measured TOC concentrations in marine fogs and clouds in other remote environments, likely due to continental influence; the TN and TOC concentrations in the fog water were much higher than those in the rain. The sea fog and rain chemical properties measured during research cruises like these enhance our understanding of wet deposition and cloud condensation nuclei sources and processes in the Pacific Ocean.
{"title":"Ship-borne observations of sea fog and rain chemistry over the North and South Pacific Ocean","authors":"Hyun Jae Kim, Taehyoung Lee, Taehyun Park, Gyutae Park, Jeffrey L. Collett Jr, Keyhong Park, Joon Young Ahn, Jihee Ban, Seokwon Kang, Kyunghoon Kim, Seung-Myung Park, Eun Hea Jho, Yongjoo Choi","doi":"10.1007/s10874-020-09403-8","DOIUrl":"https://doi.org/10.1007/s10874-020-09403-8","url":null,"abstract":"<p>Clouds, fogs, and rain can serve as useful integrators of both atmospheric aerosols and soluble trace gases. To better understand the chemical characteristics of sea fog and rain in the North and South Pacific Ocean, fog and rain were measured aboard the R/V ARAON in 2012 and 2014, respectively, as part of the Ship-borne Pole-to-Pole Observations (SHIPPO) project. The mean sea fog pH (3.59) was lower than the mean rain pH (4.54), reflecting greater inputs of non-sea-salt (nss)-SO<sub>4</sub><sup>2?</sup>. For the collected rain, nss-Ca<sup>2+</sup> and nss-Mg<sup>2+</sup> from mineral dust particles were the major contributors to acidity neutralization. NO<sub>3</sub><sup>?</sup> concentrations, which are derived from scavenging of gaseous nitric acid and aerosol nitrate, were higher than NH<sub>4</sub><sup>+</sup> concentrations, indicating that terrestrial and/or local anthropogenic NO<sub>3</sub><sup>?</sup> sources outweighed contributions from anthropogenic or biological oceanic NH<sub>3</sub>/NH<sub>4</sub><sup>+</sup> sources. The ratio of Cl<sup>?</sup>/Na<sup>+</sup> in the sea fog was slightly lower than that in the sea water due to HCl volatilization from scavenged sea-salt particles. The ratio of NH<sub>4</sub><sup>+</sup>/ nss-Ca<sup>2+</sup> was lower in the rain than in the sea fog, revealing the influence of mineral dust particles at altitudes above the sea fog layer. The average sea fog water TOC concentration, 13.2 ppmC, was much higher than the measured TOC concentrations in marine fogs and clouds in other remote environments, likely due to continental influence; the TN and TOC concentrations in the fog water were much higher than those in the rain. The sea fog and rain chemical properties measured during research cruises like these enhance our understanding of wet deposition and cloud condensation nuclei sources and processes in the Pacific Ocean.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"76 4","pages":"315 - 326"},"PeriodicalIF":2.0,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09403-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4904021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}