首页 > 最新文献

Journal of Atmospheric Chemistry最新文献

英文 中文
Comparison of chemical characteristics of PM2.5 during two winters in Xiangtan City in south central China 湘潭市两个冬季PM2.5化学特征比较
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-10-23 DOI: 10.1007/s10874-020-09410-9
Xiao-Yao Ma, Zheng-Hui Xiao, Li-Zhi He, Yun-Jiang Cao, Ji-Song Liu

To assess the efficacy of the “Implementation Details of Air Pollution Prevention and Control Action Plan”, the chemical composition of PM2.5 and other pollutants was determined during the winters of 2013–2014 and 2016–2017 at two urban sites in Xiangtan City, Hunan. The concentrations of PM2.5, SO2, and NO2 decreased from 146.0 to 94.5?μg/m3, 75.9 to 33.5?μg/m3, and 80.6 to 55.8?μg/m3, respectively, from winter 2013–2014 to winter 2016–2017. The concentrations of almost all the major chemical components of PM2.5 decreased as well, particularly secondary inorganic aerosols (SIAs). These results indicate that the implementation of the air quality control plan was very effective in improving air quality. Analysis of the data also suggests that SIA formation is likely responsible for high winter PM2.5 pollution and that high relative humidity levels and low wind speed can promote the formation of SIA. A 72-h back trajectory analysis shows that both regional transport and the accumulation of local pollutants under stagnant meteorological conditions promote the occurrence of episodes of high wintertime pollution levels.

为评估《大气污染防治行动计划实施细则》的实施效果,于2013-2014年和2016-2017年冬季在湖南省湘潭市两个城市站点测定了PM2.5等污染物的化学成分。PM2.5、SO2和NO2浓度从146.0下降到94.5?μg/m3, 75.9 ~ 33.5?80.6 ~ 55.8?2013-2014年冬季和2016-2017年冬季分别为μg/m3。PM2.5的几乎所有主要化学成分的浓度也有所下降,尤其是次级无机气溶胶(SIAs)。这些结果表明,实施空气质量控制计划对改善空气质量是非常有效的。对数据的分析还表明,SIA的形成可能是冬季PM2.5高污染的原因,高相对湿度和低风速可以促进SIA的形成。72 h反轨迹分析表明,在停滞气象条件下,区域运输和局地污染物的积累都促进了冬季高污染事件的发生。
{"title":"Comparison of chemical characteristics of PM2.5 during two winters in Xiangtan City in south central China","authors":"Xiao-Yao Ma,&nbsp;Zheng-Hui Xiao,&nbsp;Li-Zhi He,&nbsp;Yun-Jiang Cao,&nbsp;Ji-Song Liu","doi":"10.1007/s10874-020-09410-9","DOIUrl":"https://doi.org/10.1007/s10874-020-09410-9","url":null,"abstract":"<p>To assess the efficacy of the “Implementation Details of Air Pollution Prevention and Control Action Plan”, the chemical composition of PM<sub>2.5</sub> and other pollutants was determined during the winters of 2013–2014 and 2016–2017 at two urban sites in Xiangtan City, Hunan. The concentrations of PM<sub>2.5</sub>, SO<sub>2</sub>, and NO<sub>2</sub> decreased from 146.0 to 94.5?μg/m<sup>3</sup>, 75.9 to 33.5?μg/m<sup>3</sup>, and 80.6 to 55.8?μg/m<sup>3</sup>, respectively, from winter 2013–2014 to winter 2016–2017. The concentrations of almost all the major chemical components of PM<sub>2.5</sub> decreased as well, particularly secondary inorganic aerosols (SIAs). These results indicate that the implementation of the air quality control plan was very effective in improving air quality. Analysis of the data also suggests that SIA formation is likely responsible for high winter PM<sub>2.5</sub> pollution and that high relative humidity levels and low wind speed can promote the formation of SIA. A 72-h back trajectory analysis shows that both regional transport and the accumulation of local pollutants under stagnant meteorological conditions promote the occurrence of episodes of high wintertime pollution levels.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09410-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4909453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Vertical distributions of the microscopic morphological characteristics and elemental composition of aerosols over India 印度上空气溶胶微观形态特征和元素组成的垂直分布
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-08-14 DOI: 10.1007/s10874-020-09406-5
Mukunda M. Gogoi, Roseline C. Thakur, Sahina Gazi, Vijayakumar S. Nair, Rahul Mohan, S. Suresh Babu

Particle morphology and elemental compositions are among the crucial parameters of aerosols required for accurate understanding of the climatic effect of aerosols in the earth-atmosphere system; yet their vertical distributions and region specific properties are poorly characterised due to sparse in-situ measurements. This is the first study to classify and quantify the vertical distributions of the morphological characteristics and elemental composition of aerosols based on single particle as well as bulk chemical analysis over seven geographically diverse regions of northern and central parts of India during spring (April–May, 2013), carried out as a part of Regional Aerosol Warming Experiment (RAWEX). Significant regional distinctiveness in shapes (non-sphericity), sizes and elemental compositions of the airborne particles were conspicuous, having dominance of highly irregular granular aggregates over the north Indian sites. The non-spherical coarse mode particles dominated the lower free tropospheric regions (> 2?km) of the Indo-Gangetic Plains (IGP). These particles could be responsible for enhanced spring time aerosol absorption in the elevated region of the atmosphere. Elemental compositions of the single particle analysis indicate that the free tropospheric layer over the IGP and central India is enriched with Na and Ca compounds mixed with Fe or Al (soil particles), indicating long range transport of crustal aerosols. This finding is very well supported by the bulk particle analysis indicating abundance of Ca2+ in the free troposphere with low contribution of ssNa+. Particles with irregular rough surfaces having dominance of SiO2 were observed over all the study sites. The percentage share of spherical (either smooth or rough) particles to the total morphological characteristics of the particles was found to be highly subdued (< 10%). The present study thus critically assesses the relevant knowledge pertaining to the morphological features of aerosols over the IGP during spring for the accurate estimation of aerosol radiative properties. More such efforts are required in future to study the connections and dependencies between morphological and radiative properties of aerosols in different seasons.

粒子形态和元素组成是准确认识气溶胶在地球-大气系统中的气候效应所必需的关键参数之一;然而,由于稀疏的原位测量,它们的垂直分布和区域特性的特征很差。作为区域气溶胶变暖实验(RAWEX)的一部分,该研究首次对春季(2013年4月至5月)印度北部和中部七个地理不同地区的气溶胶形态特征和元素组成的垂直分布进行了分类和量化,该研究基于单颗粒和大量化学分析。空气中颗粒的形状(非球形)、大小和元素组成具有显著的区域差异,在印度北部地区具有高度不规则的颗粒聚集体的优势。非球形粗模态粒子在对流层低层自由区占主导地位(>印度-恒河平原(IGP)的2.5公里。这些颗粒可能是春季大气高架区域气溶胶吸收增强的原因。单颗粒元素组成分析表明,IGP和印度中部上空的对流层自由层富含Na和Ca化合物,混合着Fe或Al(土壤颗粒),表明地壳气溶胶具有长距离输送作用。这一发现得到了体积粒子分析的很好支持,表明自由对流层中Ca2+的丰度与低贡献的ssNa+。在所有研究地点都观察到具有不规则粗糙表面的颗粒,其中SiO2占主导地位。球形(光滑或粗糙)颗粒占颗粒总形态特征的百分比被发现是高度柔和的(<10%)。因此,本研究批判性地评估了春季IGP上空气溶胶形态特征的相关知识,以便准确估计气溶胶的辐射特性。未来需要更多的努力来研究不同季节气溶胶形态和辐射特性之间的联系和依赖关系。
{"title":"Vertical distributions of the microscopic morphological characteristics and elemental composition of aerosols over India","authors":"Mukunda M. Gogoi,&nbsp;Roseline C. Thakur,&nbsp;Sahina Gazi,&nbsp;Vijayakumar S. Nair,&nbsp;Rahul Mohan,&nbsp;S. Suresh Babu","doi":"10.1007/s10874-020-09406-5","DOIUrl":"https://doi.org/10.1007/s10874-020-09406-5","url":null,"abstract":"<p>Particle morphology and elemental compositions are among the crucial parameters of aerosols required for accurate understanding of the climatic effect of aerosols in the earth-atmosphere system; yet their vertical distributions and region specific properties are poorly characterised due to sparse in-situ measurements. This is the first study to classify and quantify the vertical distributions of the morphological characteristics and elemental composition of aerosols based on single particle as well as bulk chemical analysis over seven geographically diverse regions of northern and central parts of India during spring (April–May, 2013), carried out as a part of Regional Aerosol Warming Experiment (RAWEX). Significant regional distinctiveness in shapes (non-sphericity), sizes and elemental compositions of the airborne particles were conspicuous, having dominance of highly irregular granular aggregates over the north Indian sites. The non-spherical coarse mode particles dominated the lower free tropospheric regions (&gt; 2?km) of the Indo-Gangetic Plains (IGP). These particles could be responsible for enhanced spring time aerosol absorption in the elevated region of the atmosphere. Elemental compositions of the single particle analysis indicate that the free tropospheric layer over the IGP and central India is enriched with Na and Ca compounds mixed with Fe or Al (soil particles), indicating long range transport of crustal aerosols. This finding is very well supported by the bulk particle analysis indicating abundance of Ca<sup>2+</sup> in the free troposphere with low contribution of ssNa<sup>+</sup>. Particles with irregular rough surfaces having dominance of SiO<sub>2</sub> were observed over all the study sites. The percentage share of spherical (either smooth or rough) particles to the total morphological characteristics of the particles was found to be highly subdued (&lt; 10%). The present study thus critically assesses the relevant knowledge pertaining to the morphological features of aerosols over the IGP during spring for the accurate estimation of aerosol radiative properties. More such efforts are required in future to study the connections and dependencies between morphological and radiative properties of aerosols in different seasons.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09406-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4856382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Long term trends of wet deposition and atmospheric concentrations of nitrogen and sulfur compounds at EMEP site in Armenia 亚美尼亚EMEP站点湿沉降和氮、硫化合物大气浓度的长期趋势
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-07-22 DOI: 10.1007/s10874-020-09408-3
Yekaterina Perikhanyan, Gayane Shahnazaryan, Arpine Gabrielyan

This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.

本文介绍了2008-2018年亚美尼亚大气中气态硝酸、二氧化氮、二氧化硫、氨和硝酸盐、铵、硫酸盐离子以及湿沉积中硝酸盐、铵和硫酸盐离子的变化趋势。在指定为EMEP(欧洲监测和评价方案)的亚美尼亚(Amberd)本底监测站,利用从滤包采样器和玻璃烧结过滤器获得的数据监测大气氮和硫浓度。采用离子色谱法和紫外分光光度计进行实验室分析。MAKESENS方案用于探测和估计大气浓度年平均值时间序列的趋势。计算并讨论了Amberd空气质量监测站近十年来大气中氮、硫化合物浓度的长期变化趋势。计算各参数的趋势显著性水平。可以确定的是,除了气溶胶中减少的硫外,所有探索的参数都没有显著的趋势。探讨了亚美尼亚境内氮和硫化合物可能的排放和沉积变化,以确定可能的跨界空气污染及其主要来源。沉积数据通过EMEP MSC-W模型计算估计。氮和硫化合物的跨界通量研究显示了主要的受体区域和贡献者。对大气污染物的季节性分析表明,湿沉降的测量参数具有强烈的季节性特征——夏季的浓度高于冬季。与冬季相比,夏季大气中硝态氮和铵态氮离子浓度较低,而氨离子浓度在冬季较低。大气中硝酸、硫酸盐离子、二氧化硫和二氧化氮没有明显的季节性。
{"title":"Long term trends of wet deposition and atmospheric concentrations of nitrogen and sulfur compounds at EMEP site in Armenia","authors":"Yekaterina Perikhanyan,&nbsp;Gayane Shahnazaryan,&nbsp;Arpine Gabrielyan","doi":"10.1007/s10874-020-09408-3","DOIUrl":"https://doi.org/10.1007/s10874-020-09408-3","url":null,"abstract":"<p>This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09408-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4858925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sources of HULIS-C and its relationships with trace metals, ionic species in PM2.5 in suburban Shanghai during haze and non-haze days 上海近郊雾霾日和非雾霾日HULIS-C的来源及其与PM2.5中微量金属、离子的关系
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-06-19 DOI: 10.1007/s10874-020-09404-7
Myat Sandar Win, Junyang Zeng, Chuanhe Yao, Mengfei Zhao, Guangli Xiu, Tingting Xie, Lanfang Rao, Luying Zhang, Hui Lu, Xinchun Liu, Qingyue Wang, Senlin Lu

Humic-like substances (HULIS), the most ubiquitous class of water-soluble organic compounds in the atmosphere could enhance the generation of reactive oxygen species (ROS), and play a significant role in impacting aerosol chemistry and health effects. In this study, twenty-three PM2.5 samples were collected in the atmosphere of suburban Shanghai from November 29 to December 17, 2015, and March 17 to April 30, 2016, during haze and non-haze days. The mean concentrations of HULIS in spring both in haze and non-haze days (2.34?±?0.70 μg/m3 and 1.94?±?0.88 μg/m3) were relatively higher than in that of winter (1.93?±?0.95 μg/m3 and 1.31?±?0.28 μg/m3). The ammonium, sulfate, and nitrate are the dominant ionic species in both winter and spring during haze days in suburban Shanghai. Correlation results revealed that HULIS formation was highly associated with the biomass burning (K) and secondary aerosols formation (SIA: NH4+, SO42?, NO3?) and also well-correlated with F? and ca.2+ ions, crustal elements (Al and Fe) and anthropogenic pollution metals (As, Se, Rb, Sr, and Pb), suggesting that HULIS-C formation might be from biomass burning and secondary aerosol processes and also mixed formation (marine, crustal and industrial emissions) sources. From the coinciding results of the clustering analysis and weighted-CWT model, the principal potential source regions were the short transports from the Yangtze River Delta (YRD) regions, local regions, marine areas (the Bohai Sea, the Yellow Sea, the East China Sea) and also the long-range transports from northwestern in those seasons.

腐植酸样物质(HULIS)是大气中最普遍存在的一类水溶性有机化合物,可促进活性氧(ROS)的生成,在影响气溶胶化学和健康效应方面发挥重要作用。本研究于2015年11月29日至12月17日,2016年3月17日至4月30日,在雾霾日和非雾霾日期间,采集了23份上海郊区大气PM2.5样本。春季霾日和非霾日HULIS的平均浓度(2.34±0.70 μg/m3和1.94±0.88 μg/m3)均高于冬季(1.93±0.95 μg/m3和1.31±0.28 μg/m3)。上海近郊冬季和春季雾霾天气中,铵、硫酸盐和硝酸盐是主要的离子种类。相关结果表明,HULIS的形成与生物质燃烧(K)和二次气溶胶(SIA: NH4+, SO42?, NO3?),也与F?和ca2 +离子、地壳元素(Al和Fe)和人为污染金属(As、Se、Rb、Sr和Pb),表明HULIS-C的形成可能来自生物质燃烧和二次气溶胶过程,也可能来自混合来源(海洋、地壳和工业排放)。从聚类分析和加权cwt模型的一致结果来看,这些季节的主要潜在源区是来自长三角地区、局部地区、海域(渤海、黄海、东海)的短途输送,以及来自西北的长距离输送。
{"title":"Sources of HULIS-C and its relationships with trace metals, ionic species in PM2.5 in suburban Shanghai during haze and non-haze days","authors":"Myat Sandar Win,&nbsp;Junyang Zeng,&nbsp;Chuanhe Yao,&nbsp;Mengfei Zhao,&nbsp;Guangli Xiu,&nbsp;Tingting Xie,&nbsp;Lanfang Rao,&nbsp;Luying Zhang,&nbsp;Hui Lu,&nbsp;Xinchun Liu,&nbsp;Qingyue Wang,&nbsp;Senlin Lu","doi":"10.1007/s10874-020-09404-7","DOIUrl":"https://doi.org/10.1007/s10874-020-09404-7","url":null,"abstract":"<p>Humic-like substances (HULIS), the most ubiquitous class of water-soluble organic compounds in the atmosphere could enhance the generation of reactive oxygen species (ROS), and play a significant role in impacting aerosol chemistry and health effects. In this study, twenty-three PM<sub>2.5</sub> samples were collected in the atmosphere of suburban Shanghai from November 29 to December 17, 2015, and March 17 to April 30, 2016, during haze and non-haze days. The mean concentrations of HULIS in spring both in haze and non-haze days (2.34?±?0.70 μg/m<sup>3</sup> and 1.94?±?0.88 μg/m<sup>3</sup>) were relatively higher than in that of winter (1.93?±?0.95 μg/m<sup>3</sup> and 1.31?±?0.28 μg/m<sup>3</sup>). The ammonium, sulfate, and nitrate are the dominant ionic species in both winter and spring during haze days in suburban Shanghai. Correlation results revealed that HULIS formation was highly associated with the biomass burning (K) and secondary aerosols formation (SIA: NH<sub>4</sub><sup>+</sup>, SO<sub>4</sub><sup>2?</sup>, NO<sub>3</sub><sup>?</sup>) and also well-correlated with F<sup>?</sup> and ca.<sup>2+</sup> ions, crustal elements (Al and Fe) and anthropogenic pollution metals (As, Se, Rb, Sr, and Pb), suggesting that HULIS-C formation might be from biomass burning and secondary aerosol processes and also mixed formation (marine, crustal and industrial emissions) sources. From the coinciding results of the clustering analysis and weighted-CWT model, the principal potential source regions were the short transports from the Yangtze River Delta (YRD) regions, local regions, marine areas (the Bohai Sea, the Yellow Sea, the East China Sea) and also the long-range transports from northwestern in those seasons.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09404-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4754647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Chemical characteristics of particulate matters and their emission sources over Varanasi during winter season 冬季瓦拉纳西地区颗粒物化学特征及其排放源
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-30 DOI: 10.1007/s10874-020-09405-6
Vineet Pratap, Akhilesh Kumar, Shani Tiwari, Pradeep Kumar, Avneesh Kumar Tripathi, Abhay Kumar Singh

The chemical composition of particulate matter impacts both human health and climate. In this study, the chemical characteristics of particulate matter was measured for four months (November 2016–February 2017) at Varanasi, which is located in the middle of the Indo-Gangetic Basin (IGB). The daily observed mean values of PM10 and PM2.5 are 134?±?48 and 213?±?80?μg/m3, respectively, which exceeds both national and international standards. The average value of PM2.5/PM10 ratio is 0.64?±?0.16 which indicates a relatively higher fraction of fine particles that are attributed to anthropogenic emission sources (biomass/post-harvest burning) as corroborated by MODIS fire counts and back trajectory analysis. Ion chromatographic measurements showed that SO42?, Cl?, K+, NO3?, Na+, Ca2+, Mg2+ are the major ionic species present in the aerosol. Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM–EDX) analysis shows the prevalence of carbon-rich particles at Varanasi which is likely due to biomass burning and other anthropogenic sources.

颗粒物的化学成分影响着人类健康和气候。在这项研究中,在位于印度恒河盆地(IGB)中部的瓦拉纳西(Varanasi)测量了四个月(2016年11月至2017年2月)的颗粒物化学特征。PM10和PM2.5的日观测平均值为134±?48和213±80?μg/m3,均超过国家和国际标准。PM2.5/PM10的平均值为0.64±0.16,这表明MODIS火灾计数和反轨迹分析证实了相对较高的细颗粒物归因于人为排放源(生物质/收获后燃烧)。离子色谱测定表明,SO42?, Cl ?k +, no3 ?, Na+, Ca2+, Mg2+是气溶胶中主要的离子种类。扫描电子显微镜与能量色散x射线(SEM-EDX)分析显示,瓦拉纳西富碳颗粒的普遍存在可能是由于生物质燃烧和其他人为来源。
{"title":"Chemical characteristics of particulate matters and their emission sources over Varanasi during winter season","authors":"Vineet Pratap,&nbsp;Akhilesh Kumar,&nbsp;Shani Tiwari,&nbsp;Pradeep Kumar,&nbsp;Avneesh Kumar Tripathi,&nbsp;Abhay Kumar Singh","doi":"10.1007/s10874-020-09405-6","DOIUrl":"https://doi.org/10.1007/s10874-020-09405-6","url":null,"abstract":"<p>The chemical composition of particulate matter impacts both human health and climate. In this study, the chemical characteristics of particulate matter was measured for four months (November 2016–February 2017) at Varanasi, which is located in the middle of the Indo-Gangetic Basin (IGB). The daily observed mean values of PM<sub>10</sub> and PM<sub>2.5</sub> are 134?±?48 and 213?±?80?μg/m<sup>3</sup>, respectively, which exceeds both national and international standards. The average value of PM<sub>2.5</sub>/PM<sub>10</sub> ratio is 0.64?±?0.16 which indicates a relatively higher fraction of fine particles that are attributed to anthropogenic emission sources (biomass/post-harvest burning) as corroborated by MODIS fire counts and back trajectory analysis. Ion chromatographic measurements showed that SO<sub>4</sub><sup>2?</sup>, Cl<sup>?</sup>, K<sup>+</sup>, NO<sub>3</sub><sup>?</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup> are the major ionic species present in the aerosol. Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM–EDX) analysis shows the prevalence of carbon-rich particles at Varanasi which is likely due to biomass burning and other anthropogenic sources.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09405-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5160422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Variation of carbonaceous species and trace elements in PM10 at a mountain site in the central Himalayan region of India 印度喜马拉雅地区中部山区PM10中碳质物种和微量元素的变化
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-29 DOI: 10.1007/s10874-020-09402-9
S. K. Sharma, Nikki Choudhary, Priyanka Srivastava, Manish Naja, N. Vijayan, Garima Kotnala, T. K. Mandal
{"title":"Variation of carbonaceous species and trace elements in PM10 at a mountain site in the central Himalayan region of India","authors":"S. K. Sharma,&nbsp;Nikki Choudhary,&nbsp;Priyanka Srivastava,&nbsp;Manish Naja,&nbsp;N. Vijayan,&nbsp;Garima Kotnala,&nbsp;T. K. Mandal","doi":"10.1007/s10874-020-09402-9","DOIUrl":"https://doi.org/10.1007/s10874-020-09402-9","url":null,"abstract":"","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09402-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5632884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Ship-borne observations of sea fog and rain chemistry over the North and South Pacific Ocean 北太平洋和南太平洋海上雾和雨化学的船载观测
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-23 DOI: 10.1007/s10874-020-09403-8
Hyun Jae Kim, Taehyoung Lee, Taehyun Park, Gyutae Park, Jeffrey L. Collett Jr, Keyhong Park, Joon Young Ahn, Jihee Ban, Seokwon Kang, Kyunghoon Kim, Seung-Myung Park, Eun Hea Jho, Yongjoo Choi

Clouds, fogs, and rain can serve as useful integrators of both atmospheric aerosols and soluble trace gases. To better understand the chemical characteristics of sea fog and rain in the North and South Pacific Ocean, fog and rain were measured aboard the R/V ARAON in 2012 and 2014, respectively, as part of the Ship-borne Pole-to-Pole Observations (SHIPPO) project. The mean sea fog pH (3.59) was lower than the mean rain pH (4.54), reflecting greater inputs of non-sea-salt (nss)-SO42?. For the collected rain, nss-Ca2+ and nss-Mg2+ from mineral dust particles were the major contributors to acidity neutralization. NO3? concentrations, which are derived from scavenging of gaseous nitric acid and aerosol nitrate, were higher than NH4+ concentrations, indicating that terrestrial and/or local anthropogenic NO3? sources outweighed contributions from anthropogenic or biological oceanic NH3/NH4+ sources. The ratio of Cl?/Na+ in the sea fog was slightly lower than that in the sea water due to HCl volatilization from scavenged sea-salt particles. The ratio of NH4+/ nss-Ca2+ was lower in the rain than in the sea fog, revealing the influence of mineral dust particles at altitudes above the sea fog layer. The average sea fog water TOC concentration, 13.2 ppmC, was much higher than the measured TOC concentrations in marine fogs and clouds in other remote environments, likely due to continental influence; the TN and TOC concentrations in the fog water were much higher than those in the rain. The sea fog and rain chemical properties measured during research cruises like these enhance our understanding of wet deposition and cloud condensation nuclei sources and processes in the Pacific Ocean.

云、雾和雨可以作为大气气溶胶和可溶性微量气体的有用集成物。为了更好地了解北太平洋和南太平洋的海雾和雨的化学特征,作为船载极对极观测(SHIPPO)项目的一部分,在2012年和2014年分别在R/V ARAON上测量了雾和雨。平均海雾pH值(3.59)低于平均雨pH值(4.54),反映了非海盐(nss)-SO42?的大量输入。对于收集的雨水,来自矿物粉尘颗粒的nss-Ca2+和nss-Mg2+是酸性中和的主要来源。3号吗?通过清除气态硝酸和气溶胶硝酸盐得到的浓度高于NH4+浓度,表明陆地和/或当地人为NO3?来源超过了人为或生物海洋NH3/NH4+来源的贡献。Cl的比值?由于被清除的海盐颗粒挥发出HCl,海雾中的/Na+略低于海水中的/Na+。雨中NH4+/ nss-Ca2+的比值低于海雾中,表明矿物粉尘颗粒在海雾层以上高度的影响。海雾水体TOC的平均浓度为13.2 ppmC,远高于其他偏远环境中海洋雾和云中测量到的TOC浓度,这可能是由于大陆的影响;雾水中TN和TOC浓度明显高于雨中。在像这样的研究巡航中测量的海雾和雨的化学性质增强了我们对太平洋湿沉积和云凝结核的来源和过程的理解。
{"title":"Ship-borne observations of sea fog and rain chemistry over the North and South Pacific Ocean","authors":"Hyun Jae Kim,&nbsp;Taehyoung Lee,&nbsp;Taehyun Park,&nbsp;Gyutae Park,&nbsp;Jeffrey L. Collett Jr,&nbsp;Keyhong Park,&nbsp;Joon Young Ahn,&nbsp;Jihee Ban,&nbsp;Seokwon Kang,&nbsp;Kyunghoon Kim,&nbsp;Seung-Myung Park,&nbsp;Eun Hea Jho,&nbsp;Yongjoo Choi","doi":"10.1007/s10874-020-09403-8","DOIUrl":"https://doi.org/10.1007/s10874-020-09403-8","url":null,"abstract":"<p>Clouds, fogs, and rain can serve as useful integrators of both atmospheric aerosols and soluble trace gases. To better understand the chemical characteristics of sea fog and rain in the North and South Pacific Ocean, fog and rain were measured aboard the R/V ARAON in 2012 and 2014, respectively, as part of the Ship-borne Pole-to-Pole Observations (SHIPPO) project. The mean sea fog pH (3.59) was lower than the mean rain pH (4.54), reflecting greater inputs of non-sea-salt (nss)-SO<sub>4</sub><sup>2?</sup>. For the collected rain, nss-Ca<sup>2+</sup> and nss-Mg<sup>2+</sup> from mineral dust particles were the major contributors to acidity neutralization. NO<sub>3</sub><sup>?</sup> concentrations, which are derived from scavenging of gaseous nitric acid and aerosol nitrate, were higher than NH<sub>4</sub><sup>+</sup> concentrations, indicating that terrestrial and/or local anthropogenic NO<sub>3</sub><sup>?</sup> sources outweighed contributions from anthropogenic or biological oceanic NH<sub>3</sub>/NH<sub>4</sub><sup>+</sup> sources. The ratio of Cl<sup>?</sup>/Na<sup>+</sup> in the sea fog was slightly lower than that in the sea water due to HCl volatilization from scavenged sea-salt particles. The ratio of NH<sub>4</sub><sup>+</sup>/ nss-Ca<sup>2+</sup> was lower in the rain than in the sea fog, revealing the influence of mineral dust particles at altitudes above the sea fog layer. The average sea fog water TOC concentration, 13.2 ppmC, was much higher than the measured TOC concentrations in marine fogs and clouds in other remote environments, likely due to continental influence; the TN and TOC concentrations in the fog water were much higher than those in the rain. The sea fog and rain chemical properties measured during research cruises like these enhance our understanding of wet deposition and cloud condensation nuclei sources and processes in the Pacific Ocean.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09403-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4904021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant 冬季风速对大型燃烧厂附近大气颗粒物PM10浓度的影响
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-17 DOI: 10.1007/s10874-020-09401-w
Robert Cichowicz, Grzegorz Wielgosiński, Wojciech Fetter

The concentrations of suspended particulate matter PM10 in two-month winter period, i.e. December–January in years 2009–2015, were analyzed in relation to the values of wind speed in that time. It was possible to analyze results of air pollution measurements performed in the measuring station from the perspective of their higher levels in winter seasons (so-called smog episodes). Results from 3 stations of the Regional Inspectorate for Environmental Protection in Poznań (WIO? Poznań) served for better presentation of smog episodes in the region (black smog) and aimed at verification of correctness of the measurements of pollution immission in the monitoring station in Piotrkowice which is situated in vicinity of large combustion plant. The analysis confirmed that with low speeds of wind higher values of particulate matter PM10 were observed. The results of the analysis also show the displacement of pollutants according to the current wind direction or their local persistence for a longer time over one area.

分析了2009-2015年冬季12 - 1月两个月的悬浮颗粒物PM10浓度与风速值的关系。可以从冬季(所谓的雾霾发作)空气污染水平较高的角度来分析监测站进行的空气污染测量结果。波兹纳瓦地区环境保护监察局(WIO?(波兹纳瓦)的作用是更好地呈现该地区的烟雾事件(黑色烟雾),目的是验证位于大型燃烧厂附近的Piotrkowice监测站的污染排放测量的正确性。分析证实,风速较低时,观察到的颗粒物PM10值较高。分析结果还显示了污染物根据当前风向的位移或其在一个区域内较长时间的局部持久性。
{"title":"Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant","authors":"Robert Cichowicz,&nbsp;Grzegorz Wielgosiński,&nbsp;Wojciech Fetter","doi":"10.1007/s10874-020-09401-w","DOIUrl":"https://doi.org/10.1007/s10874-020-09401-w","url":null,"abstract":"<p>The concentrations of suspended particulate matter PM10 in two-month winter period, i.e. December–January in years 2009–2015, were analyzed in relation to the values of wind speed in that time. It was possible to analyze results of air pollution measurements performed in the measuring station from the perspective of their higher levels in winter seasons (so-called smog episodes). Results from 3 stations of the Regional Inspectorate for Environmental Protection in Poznań (WIO? Poznań) served for better presentation of smog episodes in the region (black smog) and aimed at verification of correctness of the measurements of pollution immission in the monitoring station in Piotrkowice which is situated in vicinity of large combustion plant. The analysis confirmed that with low speeds of wind higher values of particulate matter PM10 were observed. The results of the analysis also show the displacement of pollutants according to the current wind direction or their local persistence for a longer time over one area.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09401-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4697003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Physico-chemical characterization and sink mechanism of atmospheric aerosols over South-west India 印度西南部大气气溶胶的物理化学特征和汇机制
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-03-19 DOI: 10.1007/s10874-020-09400-x
Krishnakant B. Budhavant, Ranjeeta D. Gawhane, Pasumarthi Surya Prakash Rao, Hari Ram Chandrika Ranjendra Nair, Promod D. Safai

The properties of the atmospheric aerosols depend on the source region and on the modifications that occur during their transport in the air. We have studied physical and chemical properties of aerosols along with their sink mechanism over two locations in southwest India, an urban site (Pune) and well-established climate observatory at Sinhagad (SINH), which represents rural and high altitude site. The ground-based measurements of aerosols, together with their radiative properties in this study have provided means to understand the observed variability and the impact on the aerosol radiative properties effectively over this region. The annual mean elemental carbon concentration (3.4 μg m??3) at Pune was observed about three times higher compared to SINH (1.3 μg m??3), indicating strong emissions of carbon-rich aerosols at the urban location. Aerosol optical properties were derived using the OPAC model which were used to compute the Aerosol radiative forcing (ARF) over both stations calculated using SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model shows pronounced seasonal variations due to changes in aerosol optical depth and single scattering albedo at both locations. The year-round ARF was 4–5 times higher over Pune (31.4?±?3.5 Wm??2) compared to SINH (7.2?±?1.1 Wm??2). The atmospheric heating rate due to aerosols shows a similar pattern as ARF for these locations. The heating was higher in the wintertime, ~?0.9–1.6 K day??1 at Pune, and ~?0.3–0.6 K day??1 at SINH. The estimated scavenging ratio was found high for NO3? and Ca.2+. The wet deposition fluxes of Cl?, SO42?, Na+, Mg2+ were observed higher for SINH as compared to Pune, due to the high amount of rain received at SINH.

大气气溶胶的性质取决于其来源区域和在空气中传输过程中发生的变化。我们在印度西南部的两个地点研究了气溶胶的物理和化学性质以及它们的沉降机制,一个是城市地点(浦那),另一个是在Sinhagad建立的气候观测站(SINH),它代表了农村和高海拔地区。本研究中对气溶胶的地面测量及其辐射特性提供了有效了解该地区观测到的变率及其对气溶胶辐射特性的影响的手段。浦那的年平均元素碳浓度(3.4 μg m? 3)比SINH (1.3 μg m? 3)高约3倍,表明富碳气溶胶在城市位置的强排放。利用SBDART (Santa Barbara DISORT大气辐射传输)模式计算的两个站点的气溶胶辐射强迫(ARF)显示,由于两个站点的气溶胶光学深度和单次散射反照率的变化,气溶胶光学特性得到了OPAC模式的导出。全年ARF比SINH(7.2±1.1 Wm? 2)高出4-5倍(31.4±3.5 Wm? 2)。气溶胶引起的大气升温速率在这些地区显示出与ARF相似的模式。冬季升温幅度较大,约为0.9 ~ 1.6 K / d。1在浦那,和~ 0.3-0.6 K天??我在SINH。对NO3?的估计清除率很高。和Ca.2 +。Cl?的湿沉积通量, SO42 ?与浦那相比,SINH的Na+、Mg2+较高,这是由于SINH的降雨量较大。
{"title":"Physico-chemical characterization and sink mechanism of atmospheric aerosols over South-west India","authors":"Krishnakant B. Budhavant,&nbsp;Ranjeeta D. Gawhane,&nbsp;Pasumarthi Surya Prakash Rao,&nbsp;Hari Ram Chandrika Ranjendra Nair,&nbsp;Promod D. Safai","doi":"10.1007/s10874-020-09400-x","DOIUrl":"https://doi.org/10.1007/s10874-020-09400-x","url":null,"abstract":"<p>The properties of the atmospheric aerosols depend on the source region and on the modifications that occur during their transport in the air. We have studied physical and chemical properties of aerosols along with their sink mechanism over two locations in southwest India, an urban site (Pune) and well-established climate observatory at Sinhagad (SINH), which represents rural and high altitude site. The ground-based measurements of aerosols, together with their radiative properties in this study have provided means to understand the observed variability and the impact on the aerosol radiative properties effectively over this region. The annual mean elemental carbon concentration (3.4 μg m<sup>??3</sup>) at Pune was observed about three times higher compared to SINH (1.3 μg m<sup>??3</sup>), indicating strong emissions of carbon-rich aerosols at the urban location. Aerosol optical properties were derived using the OPAC model which were used to compute the Aerosol radiative forcing (ARF) over both stations calculated using SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model shows pronounced seasonal variations due to changes in aerosol optical depth and single scattering albedo at both locations. The year-round ARF was 4–5 times higher over Pune (31.4?±?3.5 Wm<sup>??2</sup>) compared to SINH (7.2?±?1.1 Wm<sup>??2</sup>). The atmospheric heating rate due to aerosols shows a similar pattern as ARF for these locations. The heating was higher in the wintertime, ~?0.9–1.6 K day<sup>??1</sup> at Pune, and ~?0.3–0.6 K day<sup>??1</sup> at SINH. The estimated scavenging ratio was found high for NO<sub>3</sub><sup>?</sup> and Ca.<sup>2+</sup>. The wet deposition fluxes of Cl<sup>?</sup>, SO<sub>4</sub><sup>2?</sup>, Na<sup>+</sup>, Mg<sup>2+</sup> were observed higher for SINH as compared to Pune, due to the high amount of rain received at SINH.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09400-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5057309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Precipitation chemistry and stable isotopic characteristics at Wengguo in the northern slopes of the Himalayas 喜马拉雅山北坡翁果地区降水化学及稳定同位素特征
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-02-18 DOI: 10.1007/s10874-020-09399-1
Subash Adhikari, Fan Zhang, Chen Zeng, Lekhendra Tripathee, Namita Paudel Adhikari, Jie Xu, Guanxing Wang

The major ions in precipitation can reflect the conditions of the atmosphere, while stable isotopic characteristics provide information on the moisture source. In order to understand the local hydro-chemical features and regional geochemical cycle, it is essential to assess the chemical composition of precipitation and the associated sources. Therefore, a total of 57 precipitation samples (2016 to 2017) for major ions and 178 samples (2013 to 2017) for stable isotopes were collected from the Wengguo station and analyzed to explore the major ionic deposition and stable isotopic characteristics in the northern slopes of the Himalayas. The average pH and electrical conductivity were 6.82?±?0.45 and 15.36?±?11.67 μS cm?1, respectively. Ca2+ followed by K+ and Mg2+ played a crucial role in neutralizing the precipitation acidity. The major ionic sources in the region were terrigenous (Ca2+, HCO3?, and Mg2+) and sea salt (Na+, Cl?, and Mg2+), as well as anthropogenic emissions (SO42? and NO3?) and biomass burning (K+). The total deposition flux of the major ions was higher in 2016 than in 2017 and was influenced by the higher precipitation. The average values of δ18O and δD in precipitation were???15.22?±?5.17 ‰ and???116.01?±?41.31 ‰, respectively. The precipitation stable isotopes were not significantly correlated to the local air temperature but the precipitation amount. Moreover, the variation in stable isotopes, local meteoric water line, and d-excess indicated the existence of continental and monsoon moisture transport systems. The transport of chemicals over the high elevation region from polluted cities in South Asia via moisture originating in the Bay of Bengal and the Arabian Sea was determined based on the source identification, clusters of air mass backward trajectory analysis, and the National Center for Environmental Prediction Final dataset. Thus, the ionic concentrations and stable isotopic characteristics of the precipitation from this study provided a valuable dataset to assess the atmospheric environment in the northern slopes of the Himalayas at Southern Tibetan Plateau.

降水中的主要离子可以反映大气状况,而稳定同位素特征提供了水汽来源的信息。为了更好地了解当地的水化学特征和区域地球化学循环,有必要对降水的化学成分及其相关来源进行评估。为此,在翁果站共采集了57份(2016 - 2017年)主要离子降水样品和178份(2013 - 2017年)稳定同位素降水样品进行分析,探讨了喜马拉雅北坡主要离子沉积和稳定同位素特征。平均pH值和电导率分别为6.82±0.45和15.36±11.67 μS cm?1,分别。Ca2+其次是K+和Mg2+,在中和降水酸性中起关键作用。主要离子源为陆源(Ca2+, HCO3?和Mg2+)和海盐(Na+, Cl?和Mg2+),以及人为排放(SO42?和NO3?)和生物质燃烧(K+)。2016年主要离子的总沉降通量高于2017年,且受降水增加的影响。降水δ18O和δD平均值分别为15.22±5.17‰和116.01±41.31‰。降水稳定同位素与当地气温关系不显著,与降水量关系显著。此外,稳定同位素、局地大气水线和d-过剩的变化表明存在大陆和季风水汽输送系统。根据来源识别、气团群反向轨迹分析和国家环境预测中心最终数据集,确定了南亚污染城市通过源自孟加拉湾和阿拉伯海的水汽在高海拔地区的化学物质运输。因此,本研究降水的离子浓度和稳定同位素特征为评价青藏高原南部喜马拉雅北坡大气环境提供了有价值的数据。
{"title":"Precipitation chemistry and stable isotopic characteristics at Wengguo in the northern slopes of the Himalayas","authors":"Subash Adhikari,&nbsp;Fan Zhang,&nbsp;Chen Zeng,&nbsp;Lekhendra Tripathee,&nbsp;Namita Paudel Adhikari,&nbsp;Jie Xu,&nbsp;Guanxing Wang","doi":"10.1007/s10874-020-09399-1","DOIUrl":"https://doi.org/10.1007/s10874-020-09399-1","url":null,"abstract":"<p>The major ions in precipitation can reflect the conditions of the atmosphere, while stable isotopic characteristics provide information on the moisture source. In order to understand the local hydro-chemical features and regional geochemical cycle, it is essential to assess the chemical composition of precipitation and the associated sources. Therefore, a total of 57 precipitation samples (2016 to 2017) for major ions and 178 samples (2013 to 2017) for stable isotopes were collected from the Wengguo station and analyzed to explore the major ionic deposition and stable isotopic characteristics in the northern slopes of the Himalayas. The average pH and electrical conductivity were 6.82?±?0.45 and 15.36?±?11.67 μS cm<sup>?1</sup>, respectively. Ca<sup>2+</sup> followed by K<sup>+</sup> and Mg<sup>2+</sup> played a crucial role in neutralizing the precipitation acidity. The major ionic sources in the region were terrigenous (Ca<sup>2+</sup>, HCO<sub>3</sub><sup>?</sup>, and Mg<sup>2+</sup>) and sea salt (Na<sup>+</sup>, Cl<sup>?</sup>, and Mg<sup>2+</sup>), as well as anthropogenic emissions (SO<sub>4</sub><sup>2?</sup> and NO<sub>3</sub><sup>?</sup>) and biomass burning (K<sup>+</sup>). The total deposition flux of the major ions was higher in 2016 than in 2017 and was influenced by the higher precipitation. The average values of δ<sup>18</sup>O and δD in precipitation were???15.22?±?5.17 ‰ and???116.01?±?41.31 ‰, respectively. The precipitation stable isotopes were not significantly correlated to the local air temperature but the precipitation amount. Moreover, the variation in stable isotopes, local meteoric water line, and d-excess indicated the existence of continental and monsoon moisture transport systems. The transport of chemicals over the high elevation region from polluted cities in South Asia via moisture originating in the Bay of Bengal and the Arabian Sea was determined based on the source identification, clusters of air mass backward trajectory analysis, and the National Center for Environmental Prediction Final dataset. Thus, the ionic concentrations and stable isotopic characteristics of the precipitation from this study provided a valuable dataset to assess the atmospheric environment in the northern slopes of the Himalayas at Southern Tibetan Plateau.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09399-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4717420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
期刊
Journal of Atmospheric Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1