At present, the existing piezoelectric stick-slip actuators have an inherent back-slip problem, which greatly limits the development and application of stick-slip actuators. In order to inhibit the regression phenomenon, a new bionic lemongrass stickslip actuator was prepared by using polymer PDMS to replicate natural biological surface. The surface microstructure of the grass was copied by PDMS, and the PDMS film was prepared. The rigid and flexible bionic friction pair was further prepared, and the flexible anisotropic PDMS stick slip actuator was developed. It was found that the anisotropic friction characteristics of the surface microstructure of the grass inhibited the anti-sliding motion, and the elastic potential energy of the PDMS film improved the output characteristics of the driver. By adjusting the input voltage to control the contact between the drive foot and the rotor, the rigid and flexible hybrid drive can be realized and the backsliding phenomenon can be suppressed. The actuator is compact, lightweight and can achieve high speed and high resolution output without preloading force, which has important application value in the field of fast and accurate positioning with load limitation.