In this study, we present the design and development evaluation of BalanSENS toward the realization of the Integrated Balance Rehabilitation (I-BaR) framework. BalanSENS is designed to encourage active participation by integrating multi-sensory information with the co-improvement of sensory and motor functions. Moreover, it can offer individual rehabilitation design with the integration of three phases. The first phase provides foot-ankle muscle activation and movement sensation development. In the second phase, sensory weighting skills and upper extremities independence can be improved by using multi-sensory input. In the last/stepping phase, walking parameters are aimed to be improved with modulated distance. The parallel manipulator is designed through simulations to determine actuation properties and analyze the load-bearing capacity and feasibility of the materials. Drawing from simulation outcomes, an operational 3 DoF platform is constructed to demonstrate their design suitability for the I-BaR framework. Furthermore, design evaluations demonstrated promising results in quantifying force and real-time data monitoring during the passive ankle preparation phase.