首页 > 最新文献

流量控制、测量及可视化(英文)最新文献

英文 中文
Numerical Study on Low-Reynolds Compressible Flows around Mars Helicopter Rotor Blade Airfoil 火星直升机旋翼叶片翼型低雷诺数可压缩流动数值研究
Pub Date : 2023-01-01 DOI: 10.4236/jfcmv.2023.112003
Takuma Yamaguchi, M. Anyoji
{"title":"Numerical Study on Low-Reynolds Compressible Flows around Mars Helicopter Rotor Blade Airfoil","authors":"Takuma Yamaguchi, M. Anyoji","doi":"10.4236/jfcmv.2023.112003","DOIUrl":"https://doi.org/10.4236/jfcmv.2023.112003","url":null,"abstract":"","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78419645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transferability of calibration results obtained with conventional gases for application with hydrogen 用常规气体获得的校准结果的可转移性,以应用于氢气
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.159
B. Mickan, H.-B. Böckler, D. Schumann, J. van der Grinten
{"title":"Transferability of calibration results obtained with conventional gases for application with hydrogen","authors":"B. Mickan, H.-B. Böckler, D. Schumann, J. van der Grinten","doi":"10.21014/tc9-2022.159","DOIUrl":"https://doi.org/10.21014/tc9-2022.159","url":null,"abstract":"","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86995866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Void Fraction Measurement Method of Gas-water Flow Based on Microwave Method 一种基于微波法的气-水流动孔隙率测量方法
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.048
Huimin Ma, Ying Xu, Chao Yuan, Tao Li, Cenwei Sun, Yumeng Zhang, Nianrong Wang
In the natural gas industry, measuring void fraction with high accuracy is challenging, because the flow pattern of gas-flow is complicated and changeable. This research presents a microwave sensor to measure void fraction of gas-water flow based on the microwave transmission line method. The sensor contains horizontal and vertical electrodes resulting in a spatial orthogonal transmission line combination structure, so that the gas-water flow regime can be detected and its influence on the measurement can be accounted for. The electromagnetic fields inside the sensor for stratified and annular distribution structure are simulated and analyzed using COMSOL software. Furthermore, the variation characteristics of the horizontal and vertical electrode phase outputs of the stratified distribution structure are investigated by static experiments. Finally, flow experiments covering stratified, wavy, slug, annular gas-water flow regimes, indicates that the void fraction are positive correlated to the sensor outputs and can be predict by the sensor.
在天然气工业中,由于气相流态复杂多变,高精度测量含气率是一个挑战。本文研究了一种基于微波传输线法测量气水流中空隙率的微波传感器。该传感器包含水平电极和垂直电极,形成空间正交传输线组合结构,从而可以检测气水流动状态并考虑其对测量的影响。利用COMSOL软件对分层分布结构和环形分布结构的传感器内部电磁场进行了仿真分析。此外,通过静态实验研究了分层分布结构的水平和垂直电极相位输出的变化特性。最后,对分层、波状、段塞流、环空气水流动模式进行的流动实验表明,孔隙率与传感器输出呈正相关,并且可以通过传感器进行预测。
{"title":"A Void Fraction Measurement Method of Gas-water Flow Based on Microwave Method","authors":"Huimin Ma, Ying Xu, Chao Yuan, Tao Li, Cenwei Sun, Yumeng Zhang, Nianrong Wang","doi":"10.21014/tc9-2022.048","DOIUrl":"https://doi.org/10.21014/tc9-2022.048","url":null,"abstract":"In the natural gas industry, measuring void fraction with high accuracy is challenging, because the flow pattern of gas-flow is complicated and changeable. This research presents a microwave sensor to measure void fraction of gas-water flow based on the microwave transmission line method. The sensor contains horizontal and vertical electrodes resulting in a spatial orthogonal transmission line combination structure, so that the gas-water flow regime can be detected and its influence on the measurement can be accounted for. The electromagnetic fields inside the sensor for stratified and annular distribution structure are simulated and analyzed using COMSOL software. Furthermore, the variation characteristics of the horizontal and vertical electrode phase outputs of the stratified distribution structure are investigated by static experiments. Finally, flow experiments covering stratified, wavy, slug, annular gas-water flow regimes, indicates that the void fraction are positive correlated to the sensor outputs and can be predict by the sensor.","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82433946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The comparison of the gas flow secondary standard facilities at high pressure 高压下二级标准设施气体流量的比较
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.077
Meng Li, B. Mickan, Chunhui Li, Jia Ren, Yan Wu, Ming Xu
{"title":"The comparison of the gas flow secondary standard facilities at high pressure","authors":"Meng Li, B. Mickan, Chunhui Li, Jia Ren, Yan Wu, Ming Xu","doi":"10.21014/tc9-2022.077","DOIUrl":"https://doi.org/10.21014/tc9-2022.077","url":null,"abstract":"","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81788124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of Gas-Liquid Flows in Vertical Pipes Using Turbine Flow Meter and Conductance Sensor 用涡轮流量计和电导传感器测量垂直管道中的气液流量
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.124
Z. Tang, N. Jin, Yiyu Zhou, W. Ren
{"title":"Measurement of Gas-Liquid Flows in Vertical Pipes Using Turbine Flow Meter and Conductance Sensor","authors":"Z. Tang, N. Jin, Yiyu Zhou, W. Ren","doi":"10.21014/tc9-2022.124","DOIUrl":"https://doi.org/10.21014/tc9-2022.124","url":null,"abstract":"","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83897267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement uncertainty tool for HRS dispensers HRS点胶机测量不确定度工具
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.158
M. MacDonald, N. Glen, M. de Huu, R. Maury, S. Rønneberg, A. Wiener
{"title":"Measurement uncertainty tool for HRS dispensers","authors":"M. MacDonald, N. Glen, M. de Huu, R. Maury, S. Rønneberg, A. Wiener","doi":"10.21014/tc9-2022.158","DOIUrl":"https://doi.org/10.21014/tc9-2022.158","url":null,"abstract":"","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86347416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigations of Boundary Layer Thickness Using Ultrasonic Transit Time Method 超声透射时间法边界层厚度的实验研究
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.060
Yuan Liu, Wenrui Gao, Lei Wang, Heming Hu
The widely used investigation method of fluid boundary layer is to record or simulate the current profile distributions near boundary, and then the loss of velocity can be estimate by integration. A directly measuring method of boundary layer displacement thickness by using ultrasonic transit time instrument is proposed. The problem of boundary layer measurement can be simplified to a easier measurement process of current velocity calibration, and the verification experiments are carried out by taking smooth plate as an example. An experimental platform of towing tank facility is established, the towing velocity is taken as the standard value of the outflow speed. The device for flat plate boundary layer measurement is regarded as an ultrasonic current meter. The inner side of the pair of plates equipped with ultrasonic probes can be considered as smooth surface, when the concave at the end of probes, installed by path axial angle, is filled with the material, which acoustic impedance is approximately equal to water. The measured value of ultrasonic current meter is equivalent to the difference between the outflow velocity and the loss caused by boundary layer. The accuracy of measurement result is ensured through high-precision geometric measurement, time delay calibration and sufficient zero-offset correction. In order to improve the time measurement resolution of the current meter, the range of flow velocity is set higher than 100mm/s. By changing the towing velocity and the characteristic position of ultrasonic probe installation, the Reynolds number range is 5e4 to 5e5. By analyzing the principle of ultrasonic current meter and towing tank facility, the uncertainty of displacement thickness measurement results can be properly evaluated. The measurement results of these experiments are close to the integration of flow field record by LDA.
流体边界层研究常用的方法是记录或模拟流体边界层附近的流剖面分布,然后通过积分法估算流速损失。提出了一种利用超声透射时间仪直接测量边界层位移厚度的方法。将边界层测量问题简化为更简单的电流速度校准测量过程,并以光滑板为例进行了验证实验。建立了拖曳槽设施实验平台,以拖曳速度作为出流速度标准值。将平板边界层测量装置视为超声波电流计。当沿路径轴向角安装的超声探头两端凹处填充材料时,其声阻抗近似等于水,则装有超声探头的一对板的内侧可以认为是光滑的表面。超声波电流计的测量值相当于流出速度与边界层造成的损失之差。通过高精度的几何测量、延时校准和充分的零偏移校正,保证了测量结果的准确性。为了提高流速计的时间测量分辨率,流速范围设置高于100mm/s。通过改变拖曳速度和超声探头安装的特征位置,雷诺数范围为5e4 ~ 5e5。通过对超声波测流仪和拖曳槽装置原理的分析,可以合理评价位移厚度测量结果的不确定度。这些实验的测量结果与LDA对流场记录的积分结果接近。
{"title":"Experimental Investigations of Boundary Layer Thickness Using Ultrasonic Transit Time Method","authors":"Yuan Liu, Wenrui Gao, Lei Wang, Heming Hu","doi":"10.21014/tc9-2022.060","DOIUrl":"https://doi.org/10.21014/tc9-2022.060","url":null,"abstract":"The widely used investigation method of fluid boundary layer is to record or simulate the current profile distributions near boundary, and then the loss of velocity can be estimate by integration. A directly measuring method of boundary layer displacement thickness by using ultrasonic transit time instrument is proposed. The problem of boundary layer measurement can be simplified to a easier measurement process of current velocity calibration, and the verification experiments are carried out by taking smooth plate as an example. An experimental platform of towing tank facility is established, the towing velocity is taken as the standard value of the outflow speed. The device for flat plate boundary layer measurement is regarded as an ultrasonic current meter. The inner side of the pair of plates equipped with ultrasonic probes can be considered as smooth surface, when the concave at the end of probes, installed by path axial angle, is filled with the material, which acoustic impedance is approximately equal to water. The measured value of ultrasonic current meter is equivalent to the difference between the outflow velocity and the loss caused by boundary layer. The accuracy of measurement result is ensured through high-precision geometric measurement, time delay calibration and sufficient zero-offset correction. In order to improve the time measurement resolution of the current meter, the range of flow velocity is set higher than 100mm/s. By changing the towing velocity and the characteristic position of ultrasonic probe installation, the Reynolds number range is 5e4 to 5e5. By analyzing the principle of ultrasonic current meter and towing tank facility, the uncertainty of displacement thickness measurement results can be properly evaluated. The measurement results of these experiments are close to the integration of flow field record by LDA.","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85486710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing micro-flow devices for medical applications 测试医疗应用的微流装置
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.021
J. Geršl, A. Niemann, H. Bissig, E. Batista, H. Kjeldsen, O. Büker, K. Stolt, E. Graham, S. H. Lee, J. Afonso, M. Benková, S. Knotek, M. Zagnoni, R. Vroman, J. Schroeter
{"title":"Testing micro-flow devices for medical applications","authors":"J. Geršl, A. Niemann, H. Bissig, E. Batista, H. Kjeldsen, O. Büker, K. Stolt, E. Graham, S. H. Lee, J. Afonso, M. Benková, S. Knotek, M. Zagnoni, R. Vroman, J. Schroeter","doi":"10.21014/tc9-2022.021","DOIUrl":"https://doi.org/10.21014/tc9-2022.021","url":null,"abstract":"","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87922673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending the functionality of the METAS primary standard in gas flow 扩展了METAS气体流量主要标准的功能
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.073
M. de Huu, M. Tschannen, H. Bissig
{"title":"Extending the functionality of the METAS primary standard in gas flow","authors":"M. de Huu, M. Tschannen, H. Bissig","doi":"10.21014/tc9-2022.073","DOIUrl":"https://doi.org/10.21014/tc9-2022.073","url":null,"abstract":"","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72664168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validity Guarantee of Measurement Data in Application of Big-diameter Heat-meter in China’s Heating System 大口径热量表在中国供热系统应用中测量数据的有效性保证
Pub Date : 2023-01-01 DOI: 10.21014/tc9-2022.148
Jiguang Zhu, Huizhe Cao
{"title":"Validity Guarantee of Measurement Data in Application of Big-diameter Heat-meter in China’s Heating System","authors":"Jiguang Zhu, Huizhe Cao","doi":"10.21014/tc9-2022.148","DOIUrl":"https://doi.org/10.21014/tc9-2022.148","url":null,"abstract":"","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74716574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
流量控制、测量及可视化(英文)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1