Poly (vinylidene fluoride- hexafluoroproylene) PVDF-HFP has been employed as a host polymer because of its strong chemical resistance, mechanical and dielectric properties and low cost. However, further changes employing other polymers, nanomaterials, additives and fillers to improve the properties of the host polymers are of significant interest. TiO2 has gained a lot of attention because of its high k dielectric and photo catalytic capabilities. Graphene oxide (GO) has received a lot of attention because of its larger mechanical strength, dielectric behavior and other qualities. Using the doctor blade coating process, varied amounts of TiO2 and GO were successfully integrated into PVDF-HFP to form composite films. The XRD result reveals that TiO2/GO has been successfully incorporated into the PVDF-HFP polymer matrix, while FTIR, SEM experiments have demonstrated the effectiveness of TiO2/GO fillers on PVDF-HFP film. AC impedance spectroscopy reveals the dielectric behavior and resistivity of polymer nanocomposite film. The film has been tested for its loading bearing capacity during electroadhesion with different applied voltages. The maximum load bearing capacity based on electroadhesion has been estimated.