Ever scaling process technology increases variations in transistors. The process variations cause large fluctuations in the access times of SRAM cells. Caches made of those SRAM cells cannot be accessed within the target clock cycle time, which reduces yield of processors. To combat these access time failures in caches, many schemes have been proposed, which are, however, limited in their coverage and do not scale well at high failure rates. We propose a new L1 cache architecture (AVICA) employing asymmetric pipelining and pseudo multi-banking. Asymmetric pipelining eliminates all access time failures in L1 caches. Pseudo multi-banking minimizes the performance impact of asymmetric pipelining. For further performance improvement, architectural techniques are proposed. Our experimental results show that our proposed L1 cache architecture incurs less than 1% performance hit compared to the conventional cache architecture with no access time failure. Our proposed architecture is not sensitive to access time failure rates and has low overheads compared to the previously proposed competitive schemes.
{"title":"AVICA: An access-time variation insensitive L1 cache architecture","authors":"Seokin Hong, Soontae Kim","doi":"10.7873/DATE.2013.028","DOIUrl":"https://doi.org/10.7873/DATE.2013.028","url":null,"abstract":"Ever scaling process technology increases variations in transistors. The process variations cause large fluctuations in the access times of SRAM cells. Caches made of those SRAM cells cannot be accessed within the target clock cycle time, which reduces yield of processors. To combat these access time failures in caches, many schemes have been proposed, which are, however, limited in their coverage and do not scale well at high failure rates. We propose a new L1 cache architecture (AVICA) employing asymmetric pipelining and pseudo multi-banking. Asymmetric pipelining eliminates all access time failures in L1 caches. Pseudo multi-banking minimizes the performance impact of asymmetric pipelining. For further performance improvement, architectural techniques are proposed. Our experimental results show that our proposed L1 cache architecture incurs less than 1% performance hit compared to the conventional cache architecture with no access time failure. Our proposed architecture is not sensitive to access time failure rates and has low overheads compared to the previously proposed competitive schemes.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"35 1","pages":"65-70"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84706365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Networked control systems are a well-known sub-set of cyber-physical systems in which the plant is controlled by sending commands through a digital packet-based network. Current control networks provide advanced channel access mechanisms to guarantee low delay on a limited fraction of packets (low-delay class) while the other packets (un-protected class) experience a higher delay which increases with channel utilization. We investigate the extension of model predictive control to choose both the command value and its assignment to one of the two classes according to the predicted state of the plant and the knowledge of network condition. Experimental results show that more commands are assigned to the low-delay class when either the tracking error is high or the network condition is bad.
{"title":"Model predictive control over delay-based differentiated services control networks","authors":"R. Muradore, D. Quaglia, P. Fiorini","doi":"10.7873/DATE.2013.234","DOIUrl":"https://doi.org/10.7873/DATE.2013.234","url":null,"abstract":"Networked control systems are a well-known sub-set of cyber-physical systems in which the plant is controlled by sending commands through a digital packet-based network. Current control networks provide advanced channel access mechanisms to guarantee low delay on a limited fraction of packets (low-delay class) while the other packets (un-protected class) experience a higher delay which increases with channel utilization. We investigate the extension of model predictive control to choose both the command value and its assignment to one of the two classes according to the predicted state of the plant and the knowledge of network condition. Experimental results show that more commands are assigned to the low-delay class when either the tracking error is high or the network condition is bad.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"66 1","pages":"1117-1122"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83837964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a novel modeling technique for multicore embedded systems, called Hybrid Prototyping. The fundamental idea is to simulate a design with multiple cores by creating an emulation kernel in software on top of a single physical instance of the core. The emulation kernel switches between tasks mapped to different cores and manages the logical simulation times of the individual cores. As a result, we can achieve fast and cycle-accurate simulation of symmetric multicore designs, thereby overcoming the accuracy concerns of virtual prototyping and the scalability issues of physical prototyping. Our experiments with industrial multicore designs show that the simulation time with hybrid prototyping grows only linearly with the number of cores and the inter-core communication traffic, while providing 100% cycle accuracy.
{"title":"Hybrid Prototyping of multicore embedded systems","authors":"Ehsan Saboori, S. Abdi","doi":"10.7873/DATE.2013.330","DOIUrl":"https://doi.org/10.7873/DATE.2013.330","url":null,"abstract":"This paper presents a novel modeling technique for multicore embedded systems, called Hybrid Prototyping. The fundamental idea is to simulate a design with multiple cores by creating an emulation kernel in software on top of a single physical instance of the core. The emulation kernel switches between tasks mapped to different cores and manages the logical simulation times of the individual cores. As a result, we can achieve fast and cycle-accurate simulation of symmetric multicore designs, thereby overcoming the accuracy concerns of virtual prototyping and the scalability issues of physical prototyping. Our experiments with industrial multicore designs show that the simulation time with hybrid prototyping grows only linearly with the number of cores and the inter-core communication traffic, while providing 100% cycle accuracy.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"25 1","pages":"1627-1630"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82274663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Mueller-Gritschneder, Kun Lu, Erik Wallander, Marc Greim, Ulf Schlichtmann
In today's real-time system design, a virtual prototype can help to increase both the design speed and quality. Developing a virtual prototyping platform requires realistic modeling of the HW system, accurate simulation of the real-time SW, and integration with a reactive real-time environment. Such a VP simulation platform is often difficult to develop. In this paper, we propose a case-study of autonomous two-wheeled robot to show how to develop a virtual prototyping platform rapidly in SystemC/TLM to adequately aid in the design of this instable system with hard real-time constraints. Our approach is an integration of four major model components. Firstly, an accurate physical model of the robot is provided. Secondly, a virtual world is modeled in Java that offers a 3D environment for the robot to move in. Thirdly, the embedded control SW is developed. Finally, the overall HW system is modeled in SystemC at transaction level. This HW model wraps the physical model, interacts with the virtual world, and simulates the real-time SW by integrating an Instruction Set Simulator of the embedded CPU. By integrating these components into a platform, designers can efficiently optimize the embedded SW architecture, explore the design space and check real-time conditions for different system parameters such as buffer sizes, CPU frequency or cache configurations.
{"title":"A virtual prototyping platform for real-time systems with a case study for a two-wheeled robot","authors":"Daniel Mueller-Gritschneder, Kun Lu, Erik Wallander, Marc Greim, Ulf Schlichtmann","doi":"10.7873/DATE.2013.274","DOIUrl":"https://doi.org/10.7873/DATE.2013.274","url":null,"abstract":"In today's real-time system design, a virtual prototype can help to increase both the design speed and quality. Developing a virtual prototyping platform requires realistic modeling of the HW system, accurate simulation of the real-time SW, and integration with a reactive real-time environment. Such a VP simulation platform is often difficult to develop. In this paper, we propose a case-study of autonomous two-wheeled robot to show how to develop a virtual prototyping platform rapidly in SystemC/TLM to adequately aid in the design of this instable system with hard real-time constraints. Our approach is an integration of four major model components. Firstly, an accurate physical model of the robot is provided. Secondly, a virtual world is modeled in Java that offers a 3D environment for the robot to move in. Thirdly, the embedded control SW is developed. Finally, the overall HW system is modeled in SystemC at transaction level. This HW model wraps the physical model, interacts with the virtual world, and simulates the real-time SW by integrating an Instruction Set Simulator of the embedded CPU. By integrating these components into a platform, designers can efficiently optimize the embedded SW architecture, explore the design space and check real-time conditions for different system parameters such as buffer sizes, CPU frequency or cache configurations.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"13 1","pages":"1331-1334"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84079726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonidas Kosmidis, Charlie Curtsinger, E. Quiñones, J. Abella, E. Berger, F. Cazorla
Probabilistic timing analysis (PTA), a promising alternative to traditional worst-case execution time (WCET) analyses, enables pairing time bounds (named probabilistic WCET or pWCET) with an exceedance probability (e.g., 10−16), resulting in far tighter bounds than conventional analyses. However, the applicability of PTA has been limited because of its dependence on relatively exotic hardware: fully-associative caches using random replacement. This paper extends the applicability of PTA to conventional cache designs via a software-only approach. We show that, by using a combination of compiler techniques and runtime system support to randomise the memory layout of both code and data, conventional caches behave as fully-associative ones with random replacement.
{"title":"Probabilistic timing analysis on conventional cache designs","authors":"Leonidas Kosmidis, Charlie Curtsinger, E. Quiñones, J. Abella, E. Berger, F. Cazorla","doi":"10.7873/DATE.2013.132","DOIUrl":"https://doi.org/10.7873/DATE.2013.132","url":null,"abstract":"Probabilistic timing analysis (PTA), a promising alternative to traditional worst-case execution time (WCET) analyses, enables pairing time bounds (named probabilistic WCET or pWCET) with an exceedance probability (e.g., 10−16), resulting in far tighter bounds than conventional analyses. However, the applicability of PTA has been limited because of its dependence on relatively exotic hardware: fully-associative caches using random replacement. This paper extends the applicability of PTA to conventional cache designs via a software-only approach. We show that, by using a combination of compiler techniques and runtime system support to randomise the memory layout of both code and data, conventional caches behave as fully-associative ones with random replacement.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"41 1","pages":"603-606"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80155722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Memristors are emerging as a potential candidate for next-generation memory technologies, promising to deliver non-volatility at performance and density targets which were previously the domain of SRAM and DRAM. Silicon Physically Unclonable Functions (PUFs) have been introduced as a relatively new security primitive which exploit manufacturing variation resulting from the IC fabrication process to uniquely fingerprint a device instance or generate device-specific cryptographic key material. While silicon PUFs have been proposed which build on traditional memory structures, in particular SRAM, in this paper we present a memristor-based PUF which utilizes a weak-write mechanism to obtain cell behaviour which is influenced by process variation and hence usable as a PUF response. Using a model-based approach we evaluate memristor PUFs under random process variations and present results on the performance of this new PUF variant.
{"title":"Memristor PUFs: A new generation of memory-based Physically Unclonable Functions","authors":"Patrick Koeberl, Ünal Koçabas, A. Sadeghi","doi":"10.7873/DATE.2013.096","DOIUrl":"https://doi.org/10.7873/DATE.2013.096","url":null,"abstract":"Memristors are emerging as a potential candidate for next-generation memory technologies, promising to deliver non-volatility at performance and density targets which were previously the domain of SRAM and DRAM. Silicon Physically Unclonable Functions (PUFs) have been introduced as a relatively new security primitive which exploit manufacturing variation resulting from the IC fabrication process to uniquely fingerprint a device instance or generate device-specific cryptographic key material. While silicon PUFs have been proposed which build on traditional memory structures, in particular SRAM, in this paper we present a memristor-based PUF which utilizes a weak-write mechanism to obtain cell behaviour which is influenced by process variation and hence usable as a PUF response. Using a model-based approach we evaluate memristor PUFs under random process variations and present results on the performance of this new PUF variant.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"115 1","pages":"428-431"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80313728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The stochastic nature of renewable energy sources will no doubt place strain upon the electrical distribution networks as power generation is converted to environmentally friendly methods. The use of energy storage technologies could significantly improve the usability of these energy sources. A domestic installation, based on a 4 kWh energy storage unit, is under development and modeling shows that the proposed unit would improve the energy autonomy of a household.
{"title":"Innovative energy storage solutions for future electromobility in smart cities","authors":"K. Green, S. González, Ruud Wijtvliet","doi":"10.7873/DATE.2013.348","DOIUrl":"https://doi.org/10.7873/DATE.2013.348","url":null,"abstract":"The stochastic nature of renewable energy sources will no doubt place strain upon the electrical distribution networks as power generation is converted to environmentally friendly methods. The use of energy storage technologies could significantly improve the usability of these energy sources. A domestic installation, based on a 4 kWh energy storage unit, is under development and modeling shows that the proposed unit would improve the energy autonomy of a household.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"26 1","pages":"1730-1734"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80424352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shrinking transistor geometries, aggressive voltage scaling and higher operating frequencies have negatively impacted the lifetime reliability of embedded multi-core systems. In this paper, a convex optimization-based task-mapping technique is proposed to extend the lifetime of a multiprocessor systems-on-chip (MPSoCs). The proposed technique generates mappings for every application enabled on the platform with variable number of cores. Based on these results, a novel 3D-optimization technique is developed to distribute the cores of an MPSoC among multiple applications enabled simultaneously. Additionally, reliability of the underlying network-on-chip links is also addressed by incorporating aging of links in the objective function. Our formulations are developed for directed acyclic graphs (DAGs) and synchronous dataflow graphs (SDFGs), making our approach applicable for streaming as well as non-streaming applications. Experiments conducted with synthetic and real-life application graphs demonstrate that the proposed approach extends the lifetime of an MPSoC by more than 30% when applications are enabled individually as well as in tandem.
{"title":"Reliability-driven task mapping for lifetime extension of networks-on-chip based multiprocessor systems","authors":"Anup Das, Akash Kumar, B. Veeravalli","doi":"10.7873/DATE.2013.149","DOIUrl":"https://doi.org/10.7873/DATE.2013.149","url":null,"abstract":"Shrinking transistor geometries, aggressive voltage scaling and higher operating frequencies have negatively impacted the lifetime reliability of embedded multi-core systems. In this paper, a convex optimization-based task-mapping technique is proposed to extend the lifetime of a multiprocessor systems-on-chip (MPSoCs). The proposed technique generates mappings for every application enabled on the platform with variable number of cores. Based on these results, a novel 3D-optimization technique is developed to distribute the cores of an MPSoC among multiple applications enabled simultaneously. Additionally, reliability of the underlying network-on-chip links is also addressed by incorporating aging of links in the objective function. Our formulations are developed for directed acyclic graphs (DAGs) and synchronous dataflow graphs (SDFGs), making our approach applicable for streaming as well as non-streaming applications. Experiments conducted with synthetic and real-life application graphs demonstrate that the proposed approach extends the lifetime of an MPSoC by more than 30% when applications are enabled individually as well as in tandem.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"8 1","pages":"689-694"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83324808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper describes a low overhead software-based fault tolerance approach for shared memory multicore systems. The scheme is implemented at user-space level and requires almost no changes to the original application. Redundant multithreaded processes are used to detect soft errors and recover from them. Our scheme makes sure that the execution of the redundant processes is identical even in the presence of non-determinism due to shared memory accesses. It provides a very low overhead mechanism to achieve this. Moreover it implements a fast error detection and recovery mechanism. The overhead incurred by our approach ranges from 0% to 18% for selected benchmarks. This is lower than comparable systems published in literature.
{"title":"Efficient software-based fault tolerance approach on multicore platforms","authors":"Hamid Mushtaq, Z. Al-Ars, K. Bertels","doi":"10.7873/DATE.2013.194","DOIUrl":"https://doi.org/10.7873/DATE.2013.194","url":null,"abstract":"This paper describes a low overhead software-based fault tolerance approach for shared memory multicore systems. The scheme is implemented at user-space level and requires almost no changes to the original application. Redundant multithreaded processes are used to detect soft errors and recover from them. Our scheme makes sure that the execution of the redundant processes is identical even in the presence of non-determinism due to shared memory accesses. It provides a very low overhead mechanism to achieve this. Moreover it implements a fast error detection and recovery mechanism. The overhead incurred by our approach ranges from 0% to 18% for selected benchmarks. This is lower than comparable systems published in literature.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"30 1","pages":"921-926"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83336862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuan Wang, Jiang Xu, Wei Zhang, Xiaowen Wu, Yaoyao Ye, Zhehui Wang, M. Nikdast, Zhe Wang
By integrating multiple processing units and memories on a single chip, multiprocessor system-on-chip (MPSoC) can provide higher performance per energy and lower cost per function to applications with growing complexity. In order to maintain the power budget, power gating technique is widely used to reduce the leakage power. However, it will introduce significant power/ground (P/G) noises, and threat the reliability of MPSoCs. With significant area, power and performance overheads, traditional methods rely on reinforced circuits or fixed protection strategies to reduce P/G noises caused by power gating. In this paper, we propose a systematic approach to actively alleviating P/G noises using the parasitic capacitance of on-chip memories through sensor network on-chip (SENoC). We utilize the parasitic capacitance of on-chip memories as dynamic decoupling capacitance to suppress P/G noises and develop a detailed Hspice model for related study. SENoC is developed to not only monitor and report P/G noises but also coordinate processing units and memories to alleviate such transient threats at run time. Extensive evaluations show that compared with traditional methods, our approach saves 11.7% to 62.2% energy consumption and achieves 13.3% to 69.3% performance improvement for different applications and MPSoCs with different scales. We implement the circuit details of our approach and show its low area and energy consumption overheads.
{"title":"Active power-gating-induced power/ground noise alleviation using parasitic capacitance of on-chip memories","authors":"Xuan Wang, Jiang Xu, Wei Zhang, Xiaowen Wu, Yaoyao Ye, Zhehui Wang, M. Nikdast, Zhe Wang","doi":"10.7873/DATE.2013.253","DOIUrl":"https://doi.org/10.7873/DATE.2013.253","url":null,"abstract":"By integrating multiple processing units and memories on a single chip, multiprocessor system-on-chip (MPSoC) can provide higher performance per energy and lower cost per function to applications with growing complexity. In order to maintain the power budget, power gating technique is widely used to reduce the leakage power. However, it will introduce significant power/ground (P/G) noises, and threat the reliability of MPSoCs. With significant area, power and performance overheads, traditional methods rely on reinforced circuits or fixed protection strategies to reduce P/G noises caused by power gating. In this paper, we propose a systematic approach to actively alleviating P/G noises using the parasitic capacitance of on-chip memories through sensor network on-chip (SENoC). We utilize the parasitic capacitance of on-chip memories as dynamic decoupling capacitance to suppress P/G noises and develop a detailed Hspice model for related study. SENoC is developed to not only monitor and report P/G noises but also coordinate processing units and memories to alleviate such transient threats at run time. Extensive evaluations show that compared with traditional methods, our approach saves 11.7% to 62.2% energy consumption and achieves 13.3% to 69.3% performance improvement for different applications and MPSoCs with different scales. We implement the circuit details of our approach and show its low area and energy consumption overheads.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"12 1","pages":"1221-1224"},"PeriodicalIF":0.0,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76343011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}