首页 > 最新文献

2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)最新文献

英文 中文
The Hyperspectral Prisma Mission in Operations 运行中的高光谱棱镜任务
Pub Date : 2020-01-01 DOI: 10.1109/IGARSS39084.2020.9323301
G. Caporusso, E. Lopinto, R. Lorusso, R. Loizzo, R. Guarini, M. Daraio, P. Sacco
{"title":"The Hyperspectral Prisma Mission in Operations","authors":"G. Caporusso, E. Lopinto, R. Lorusso, R. Loizzo, R. Guarini, M. Daraio, P. Sacco","doi":"10.1109/IGARSS39084.2020.9323301","DOIUrl":"https://doi.org/10.1109/IGARSS39084.2020.9323301","url":null,"abstract":"","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"171 1","pages":"3282-3285"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78765734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of System Linearity Caused by Gain Variation for Microsat-Based Microwave Radiometer 微卫星微波辐射计增益变化引起的系统线性度分析
Pub Date : 2020-01-01 DOI: 10.1109/IGARSS39084.2020.9323910
Jieying He, Shengwei Zhang
{"title":"Analysis of System Linearity Caused by Gain Variation for Microsat-Based Microwave Radiometer","authors":"Jieying He, Shengwei Zhang","doi":"10.1109/IGARSS39084.2020.9323910","DOIUrl":"https://doi.org/10.1109/IGARSS39084.2020.9323910","url":null,"abstract":"","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"59 1","pages":"6361-6364"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76151710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Target Detection Algorithm of Neural Network Based on Histogram Statistics 基于直方图统计的神经网络目标检测算法
Pub Date : 2020-01-01 DOI: 10.1109/IGARSS39084.2020.9323126
Shuai Jiang, Yalong Pang, Lu-yuan Wang, Ji-yang Yu, Bowen Cheng, Zongling Li
Aiming at the problems of poor adaptability of traditional target detection algorithms and high computational resources of deep learning algorithms, a BP neural network target detection algorithm based on histogram statistics is proposed. It is based on the principle that similar areas have similar histograms. In this algorithm, the two-dimensional image information converts to the one-dimensional histogram information. We establish a three-layer neural network model, and the histogram is used as the input of the BP neural network. Compared to the traditional target detection algorithms, its complexity is low, and its efficiency and accuracy is high. The experimental results show that the fewer classification categories, the higher target detection probability. The computational complexity of the BP neural network is low, so the computational efficiency is quite high. The accuracy of target recognition is higher than 97% with SAR and optical images.
针对传统目标检测算法适应性差和深度学习算法计算资源大的问题,提出了一种基于直方图统计的BP神经网络目标检测算法。它基于相似区域具有相似直方图的原理。该算法将二维图像信息转换为一维直方图信息。我们建立了一个三层神经网络模型,并将直方图作为BP神经网络的输入。与传统的目标检测算法相比,其复杂度低,效率和精度高。实验结果表明,分类类别越少,目标检测概率越高。BP神经网络的计算复杂度较低,因此计算效率相当高。SAR和光学图像的目标识别准确率均高于97%。
{"title":"A Target Detection Algorithm of Neural Network Based on Histogram Statistics","authors":"Shuai Jiang, Yalong Pang, Lu-yuan Wang, Ji-yang Yu, Bowen Cheng, Zongling Li","doi":"10.1109/IGARSS39084.2020.9323126","DOIUrl":"https://doi.org/10.1109/IGARSS39084.2020.9323126","url":null,"abstract":"Aiming at the problems of poor adaptability of traditional target detection algorithms and high computational resources of deep learning algorithms, a BP neural network target detection algorithm based on histogram statistics is proposed. It is based on the principle that similar areas have similar histograms. In this algorithm, the two-dimensional image information converts to the one-dimensional histogram information. We establish a three-layer neural network model, and the histogram is used as the input of the BP neural network. Compared to the traditional target detection algorithms, its complexity is low, and its efficiency and accuracy is high. The experimental results show that the fewer classification categories, the higher target detection probability. The computational complexity of the BP neural network is low, so the computational efficiency is quite high. The accuracy of target recognition is higher than 97% with SAR and optical images.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"22 1","pages":"1628-1631"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79504496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting Land Surface Temperature Using Artificial Neural Network 利用人工神经网络预测地表温度
Pub Date : 2020-01-01 DOI: 10.1109/IGARSS39084.2020.9323745
G. Nimish, B. Aithal
{"title":"Forecasting Land Surface Temperature Using Artificial Neural Network","authors":"G. Nimish, B. Aithal","doi":"10.1109/IGARSS39084.2020.9323745","DOIUrl":"https://doi.org/10.1109/IGARSS39084.2020.9323745","url":null,"abstract":"","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"37 1","pages":"4387-4390"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83575976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining the Source Location and Evolution of the May 2015 Summit Inflation Event at Kilauea Volcano Hawai'i 确定2015年5月夏威夷基拉韦厄火山高峰膨胀事件的来源位置和演变
Pub Date : 2020-01-01 DOI: 10.1109/IGARSS39084.2020.9324193
M. J. Bemelmans, E. V. Dalfsen, M. Poland
{"title":"Determining the Source Location and Evolution of the May 2015 Summit Inflation Event at Kilauea Volcano Hawai'i","authors":"M. J. Bemelmans, E. V. Dalfsen, M. Poland","doi":"10.1109/IGARSS39084.2020.9324193","DOIUrl":"https://doi.org/10.1109/IGARSS39084.2020.9324193","url":null,"abstract":"","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"2 1","pages":"6818-6821"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78773085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Split Window Algorithm Calibration and Validation for TASI Sensor TASI传感器的分窗算法标定与验证
Pub Date : 2019-07-01 DOI: 10.1109/IGARSS.2019.8898750
Victoria Ionca, M. Bogliolo, G. Laneve, G. Liberti, A. Palombo, S. Pignatti
In this work, we present the calibration and validation method we have applied in order to retrieve the split window (SW) coefficients for land surface temperature (LST) estimations from Thermal Airborne Spectrographic imager (TASI). For calibration and validation two different datasets has been used, both extracted from SeeBor V5.0 training dataset. The coefficients have been retrieved by a multiple regression analysis and MODTRAN simulations. For the radiative transfer experiment, we considered seven different viewing angles in a range between 0° and 60° with a step of 10°. Simulations have been performed considering all TASI channel combinations and the sensor spectral response functions. Preliminary results are presented for best band combinations suitable for SW algorithm application; these are channel 19 (10.034 gm) with 28 (11.024 gm), and channel 29 (11.134 gm) with 31 (11.354 gm). Finally, validation of the LST retrievals presents a RMSE lower than 0.6 K for both band combinations.
在这项工作中,我们提出了我们应用的校准和验证方法,以便从热机载光谱成像仪(TASI)检索地表温度(LST)估计的分裂窗口(SW)系数。为了校准和验证,使用了两个不同的数据集,都是从SeeBor V5.0训练数据集中提取的。通过多元回归分析和MODTRAN模拟反演了系数。对于辐射传递实验,我们考虑了0°到60°范围内的7种不同视角,步长为10°。考虑了所有TASI通道组合和传感器光谱响应函数,进行了仿真。给出了适合于SW算法应用的最佳频段组合的初步结果;分别是19号通道(10.034克)和28号通道(11.024克),以及29号通道(11.134克)和31号通道(11.354克)。最后,对LST检索结果的验证表明,两种波段组合的RMSE均低于0.6 K。
{"title":"Split Window Algorithm Calibration and Validation for TASI Sensor","authors":"Victoria Ionca, M. Bogliolo, G. Laneve, G. Liberti, A. Palombo, S. Pignatti","doi":"10.1109/IGARSS.2019.8898750","DOIUrl":"https://doi.org/10.1109/IGARSS.2019.8898750","url":null,"abstract":"In this work, we present the calibration and validation method we have applied in order to retrieve the split window (SW) coefficients for land surface temperature (LST) estimations from Thermal Airborne Spectrographic imager (TASI). For calibration and validation two different datasets has been used, both extracted from SeeBor V5.0 training dataset. The coefficients have been retrieved by a multiple regression analysis and MODTRAN simulations. For the radiative transfer experiment, we considered seven different viewing angles in a range between 0° and 60° with a step of 10°. Simulations have been performed considering all TASI channel combinations and the sensor spectral response functions. Preliminary results are presented for best band combinations suitable for SW algorithm application; these are channel 19 (10.034 gm) with 28 (11.024 gm), and channel 29 (11.134 gm) with 31 (11.354 gm). Finally, validation of the LST retrievals presents a RMSE lower than 0.6 K for both band combinations.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"14 1","pages":"3420-3423"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83764870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Worldview-3 and Sentinel-2 Imagery for Mapping Naturally Occurring Asbestos (NOA) in Serpentinites Rocks in Southern Italy Worldview-3和Sentinel-2图像用于绘制意大利南部蛇纹岩中的天然石棉(NOA)
Pub Date : 2019-07-01 DOI: 10.1109/IGARSS.2019.8898336
S. Pascucci, S. Pignatti, C. Belviso, F. Cavalcante, M. Bogliolo
The paper compares the potential of WorldView-3 (WV-3) and Sentinel-2 (S-2) satellite data for mapping naturally occurring asbestos (NOA) outcrops to be used by geologists in the planning phase of environmental monitoring. The wide distribution as well as the variety and extent of asbestos-bearing rocks make the selected area a significant case study for the evaluation of the feasibility of multispectral VNIR-SWIR (0.425-2.330 µm) remote sensing observations for NOA outcrops mapping, in those areas where the density of vegetation allows their spectral identification. Different classification procedures were used to produce NOA outcrops maps for the study area. In our study, we found in general a good agreement (k > 0.8) between the produced NOA outcrops maps and the extensive available in situ data for the accessible locations.
本文比较了WorldView-3 (WV-3)和Sentinel-2 (S-2)卫星数据在绘制天然石棉露头地图方面的潜力,以供地质学家在环境监测的规划阶段使用。含石棉岩石的广泛分布以及种类和范围使所选区域成为评估多光谱VNIR-SWIR(0.25% -2.330µm)遥感观测用于noaa露头测绘可行性的重要案例研究,在那些植被密度允许其光谱识别的地区。采用不同的分类程序为研究区制作NOA露头图。在我们的研究中,我们发现在生成的NOA露头图与可到达位置的大量可用的原位数据之间总体上有很好的一致性(k > 0.8)。
{"title":"Worldview-3 and Sentinel-2 Imagery for Mapping Naturally Occurring Asbestos (NOA) in Serpentinites Rocks in Southern Italy","authors":"S. Pascucci, S. Pignatti, C. Belviso, F. Cavalcante, M. Bogliolo","doi":"10.1109/IGARSS.2019.8898336","DOIUrl":"https://doi.org/10.1109/IGARSS.2019.8898336","url":null,"abstract":"The paper compares the potential of WorldView-3 (WV-3) and Sentinel-2 (S-2) satellite data for mapping naturally occurring asbestos (NOA) outcrops to be used by geologists in the planning phase of environmental monitoring. The wide distribution as well as the variety and extent of asbestos-bearing rocks make the selected area a significant case study for the evaluation of the feasibility of multispectral VNIR-SWIR (0.425-2.330 µm) remote sensing observations for NOA outcrops mapping, in those areas where the density of vegetation allows their spectral identification. Different classification procedures were used to produce NOA outcrops maps for the study area. In our study, we found in general a good agreement (k > 0.8) between the produced NOA outcrops maps and the extensive available in situ data for the accessible locations.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"31 1","pages":"6756-6759"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74951722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cost Effective Approach for Mapping Prosopis Invasion in Arid South Africa Using SPOT-6 Imagery and Two Machine Learning Classifiers 基于SPOT-6图像和两种机器学习分类器的南非干旱地区拟南藜入侵地图绘制方法
Pub Date : 2019-07-01 DOI: 10.1109/IGARSS.2019.8900609
Nyasha Mureriwa, E. Adam, Adewale Samuel Adelabu
This study evaluates the use of SPOT-6 data in conjunction with two machine learning classifiers, namely, Random Forest (RF) and Support Vector Machines (SVM) to map Prosopis glandulosa, its co-existing acacia species and other land-cover types in an arid South African environment. This highly invasive species has been difficult to control using physical, chemical and biological methods because of insufficient knowledge of the species dynamic and lack of spatial data. Results show that it is possible to distinguish Prosopis glandulosa from coexisting Acacia karoo and Acacia mellifera as well as other general land cover types. Classification using SVM obtained a higher overall accuracy of 78.66% (Kappa of 0.7428) whilst RF obtained a lower classification accuracy of 69.93% (Kappa of 0.6331). The high accuracies obtained show the potential to map the invasive species spread on a large scale. This can assist monitoring and planning against future invasions.
本研究评估了SPOT-6数据与两种机器学习分类器(即随机森林(RF)和支持向量机(SVM))结合使用的情况,以绘制南非干旱环境中Prosopis glandulosa,其共存的金合欢物种和其他土地覆盖类型。由于对其物种动态认识不足和缺乏空间数据,难以采用物理、化学和生物方法对其进行控制。结果表明,在不同土地覆被类型中,有可能将腺拟槐与共生的金合欢、美洲金合欢以及其他一般土地覆被类型区分开来。SVM分类总体准确率较高,为78.66% (Kappa为0.7428),而RF分类准确率较低,为69.93% (Kappa为0.6331)。所获得的高准确度显示了在大范围内绘制入侵物种分布图的潜力。这有助于监控和规划未来的入侵。
{"title":"Cost Effective Approach for Mapping Prosopis Invasion in Arid South Africa Using SPOT-6 Imagery and Two Machine Learning Classifiers","authors":"Nyasha Mureriwa, E. Adam, Adewale Samuel Adelabu","doi":"10.1109/IGARSS.2019.8900609","DOIUrl":"https://doi.org/10.1109/IGARSS.2019.8900609","url":null,"abstract":"This study evaluates the use of SPOT-6 data in conjunction with two machine learning classifiers, namely, Random Forest (RF) and Support Vector Machines (SVM) to map Prosopis glandulosa, its co-existing acacia species and other land-cover types in an arid South African environment. This highly invasive species has been difficult to control using physical, chemical and biological methods because of insufficient knowledge of the species dynamic and lack of spatial data. Results show that it is possible to distinguish Prosopis glandulosa from coexisting Acacia karoo and Acacia mellifera as well as other general land cover types. Classification using SVM obtained a higher overall accuracy of 78.66% (Kappa of 0.7428) whilst RF obtained a lower classification accuracy of 69.93% (Kappa of 0.6331). The high accuracies obtained show the potential to map the invasive species spread on a large scale. This can assist monitoring and planning against future invasions.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"116 1","pages":"3724-3727"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77889686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Impact of Specular Point Estimation Inaccuracies on TechoDemoSat-1 GNSS-Reflectometry Observables Over Oceans 镜面点估计不准确对TechoDemoSat-1 gnss -反射测量海洋观测的影响
Pub Date : 2019-07-01 DOI: 10.1109/IGARSS.2019.8898561
G. Grieco, A. Stoffelen, M. Portabella
2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), 28 July - 2 August 2019, Yokohama, Japan
2019年IEEE国际地球科学与遥感研讨会(IGARSS 2019), 2019年7月28日至8月2日,日本横滨
{"title":"Impact of Specular Point Estimation Inaccuracies on TechoDemoSat-1 GNSS-Reflectometry Observables Over Oceans","authors":"G. Grieco, A. Stoffelen, M. Portabella","doi":"10.1109/IGARSS.2019.8898561","DOIUrl":"https://doi.org/10.1109/IGARSS.2019.8898561","url":null,"abstract":"2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), 28 July - 2 August 2019, Yokohama, Japan","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"344 2 1","pages":"8715-8718"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75734057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Researth on the Detection Method of Antarctic Ice Sheet Freezing and Thawing Based on Gee and Sentinel-1 Data 基于Gee和Sentinel-1数据的南极冰盖冻融探测方法研究
Pub Date : 2019-01-01 DOI: 10.1109/IGARSS.2019.8898788
Yun Cheng, Lu Zhang, Huiqian Chen, Bing Sun
{"title":"Researth on the Detection Method of Antarctic Ice Sheet Freezing and Thawing Based on Gee and Sentinel-1 Data","authors":"Yun Cheng, Lu Zhang, Huiqian Chen, Bing Sun","doi":"10.1109/IGARSS.2019.8898788","DOIUrl":"https://doi.org/10.1109/IGARSS.2019.8898788","url":null,"abstract":"","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"4 1","pages":"4141-4144"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75644403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1