Radiosensitization approaches have shown promise in enhancing the therapeutic efficacy of radiation in nuclear medicine. This review article focuses on using nanoparticles (NPs) as radiosensitizers in nuclear medicine applications. This review covers various NP-based radiosensitization mechanisms, such as increasing radiation-induced DNA damages, alternation and modulation of tumor microenvironment, and improving radionuclide delivery efficiency. We also discussed about the challenges and opportunities of NP radiosensitization in clinical practice. Our review showed that NP-based radiosensitization strategies can result in important advancements in nuclear medicine and therefore improve cancer treatments. Despite these advancements in NP radiosensitization strategies, there are several challenges that limit their application in clinical practice. Therefore, continued research is needed to address key challenges in oncology. The future of NP radiosensitization strategies in nuclear medicine looks promising, with potential therapeutic options. This article tried to provide insights into the current status, challenges, and future perspective of NP-based radiosensitization strategies in nuclear medicine treatments.