首页 > 最新文献

Journal of Solution Chemistry最新文献

英文 中文
Activity Coefficients of the System {yNaCl + (1 − y)NaH2PO4}(aq) AT T = 298.15 K Determined by Electromotive Force Measurements 通过电动势测量确定的 {yNaCl + (1 - y)NaH2PO4}(aq) AT T = 298.15 K 系统的活性系数
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-08-30 DOI: 10.1007/s10953-024-01409-0
Daniela Ž. Popović, Tijana G. Ivanović, Jelena Miladinović, Zoran P. Miladinović, Ferenc T. Pastor, Mouad Arrad, Tijana Tomović

The mean ionic activity coefficients of NaCl in the system {yNaCl + (1 − y) NaH2PO4}(aq) were determined by electromotive force measurements (EMF) in two series in which the NaCl ionic strength fraction was as follows: I series, y = (0.2368; 0.3101; 0.4101; 0.5051; 0.6090; 0.7775; 0.9039) and II series, y = (0.1998; 0.4005; 0.5993; 0.8105) in the range of total ionic strength of the solution Im = (0.0887–1.0081) mol·kg−1 at a temperature T = 298.15 K. A cell of the Na–ISE∣({text{NaCl}(m}_{text{NaCl}})), ({text{Na}}{text{H}_{2}text{PO}}_{4}{(m}_{{text{Na}}{text{H}_{2}text{PO}}_{4}}))∣Ag∣AgCl type was utilized for the EMF measurements. The standard electrode potential of the electrode pair was estimated as E0 = 23.2288 mV. The values of the mean ionic activity coefficient of NaCl in the mixed electrolyte solution, ({gamma }_{pm text{NaCl}}), were determined using the Nerst equation. The experimental results from this study were treated with the models proposed by Pitzer, Clegg and Scatchard to estimate the mixture parameters. A high degree of agreement was found between the experimental and calculated values of the mean ionic activity coefficients of NaCl with an average standard deviation of fit being (text{s}.text{d}.left({gamma }_{pm }right)sim) 2.5·10–3 for each of the three models. The values of the osmotic coefficients of the system {yNaCl + (1 − y)NaH2PO4}(aq) were estimated based on the determined model parameters and compared with literature data. Negligible differences were found between the estimated and experimental values of the osmotic coefficients.

通过电动力测量法(EMF)测定了 NaCl 离子强度分数如下的两个系列中 {yNaCl + (1 - y) NaH2PO4}(aq)体系中 NaCl 的平均离子活度系数:I 系列,y = (0.2368; 0.3101; 0.4101; 0.5051; 0.6090; 0.7775; 0.9039) 和 II 系列,y = (0.1998; 0.4005; 0.5993; 0.8105) 在温度 T = 298.15 K.电磁场测量使用了 Na-ISE∣({text{NaCl}(m}_{text{NaCl}})({text{Na}}{text{H}_{2}}text{PO}}_{4}}{(m}_{text{Na}}{text{H}_{2}}text{PO}}_{4}})∣Ag∣AgCl 型电池。电极对的标准电极电位估计为 E0 = 23.2288 mV。混合电解质溶液中 NaCl 的平均离子活度系数({gamma }_{pm text{NaCl}} )的值是用 Nerst 方程确定的。用 Pitzer、Clegg 和 Scatchard 提出的模型来处理这项研究的实验结果,以估算混合参数。发现 NaCl 的平均离子活度系数的实验值和计算值之间具有高度的一致性,三个模型的平均拟合标准偏差均为(text{s}.text{d}.left({gamma }_{pm }right)sim) 2.5-10-3。根据确定的模型参数估算了{yNaCl + (1 - y)NaH2PO4}(aq) 系统的渗透系数值,并与文献数据进行了比较。结果发现,渗透系数的估计值与实验值之间的差异微乎其微。
{"title":"Activity Coefficients of the System {yNaCl + (1 − y)NaH2PO4}(aq) AT T = 298.15 K Determined by Electromotive Force Measurements","authors":"Daniela Ž. Popović,&nbsp;Tijana G. Ivanović,&nbsp;Jelena Miladinović,&nbsp;Zoran P. Miladinović,&nbsp;Ferenc T. Pastor,&nbsp;Mouad Arrad,&nbsp;Tijana Tomović","doi":"10.1007/s10953-024-01409-0","DOIUrl":"10.1007/s10953-024-01409-0","url":null,"abstract":"<div><p>The mean ionic activity coefficients of NaCl in the system {<i>y</i>NaCl + (1 − <i>y</i>) NaH<sub>2</sub>PO<sub>4</sub>}(aq) were determined by electromotive force measurements (EMF) in two series in which the NaCl ionic strength fraction was as follows: I series, <i>y</i> = (0.2368; 0.3101; 0.4101; 0.5051; 0.6090; 0.7775; 0.9039) and II series, <i>y</i> = (0.1998; 0.4005; 0.5993; 0.8105) in the range of total ionic strength of the solution <i>I</i><sub>m</sub> = (0.0887–1.0081) mol·kg<sup>−1</sup> at a temperature <i>T</i> = 298.15 K. A cell of the Na–ISE∣<span>({text{NaCl}(m}_{text{NaCl}}))</span>, <span>({text{Na}}{text{H}_{2}text{PO}}_{4}{(m}_{{text{Na}}{text{H}_{2}text{PO}}_{4}}))</span>∣Ag∣AgCl type was utilized for the EMF measurements. The standard electrode potential of the electrode pair was estimated as <i>E</i><sup>0</sup> = 23.2288 mV. The values of the mean ionic activity coefficient of NaCl in the mixed electrolyte solution, <span>({gamma }_{pm text{NaCl}})</span>, were determined using the Nerst equation. The experimental results from this study were treated with the models proposed by Pitzer, Clegg and Scatchard to estimate the mixture parameters. A high degree of agreement was found between the experimental and calculated values of the mean ionic activity coefficients of NaCl with an average standard deviation of fit being <span>(text{s}.text{d}.left({gamma }_{pm }right)sim)</span> 2.5·10<sup>–3</sup> for each of the three models. The values of the osmotic coefficients of the system {<i>y</i>NaCl + (1 − <i>y</i>)NaH<sub>2</sub>PO<sub>4</sub>}(aq) were estimated based on the determined model parameters and compared with literature data. Negligible differences were found between the estimated and experimental values of the osmotic coefficients.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"73 - 91"},"PeriodicalIF":1.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-024-01409-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protic Ionic Liquids with Chelating Amine 含螯合胺的质离子液体
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-08-28 DOI: 10.1007/s10953-024-01408-1
Chi Wang, Jing-jing Zhu, Yue Qiu, Hui Wang, Yu Xu, Hossein Haghani, Hua Er

In this review, we aim to present the unique physicochemical properties of protic ionic liquids (PILs) composed of alkyl (= hexyl, octyl, and 2-ethylhexyl) ethylenediaminium cations paired with trifluoroacetate (= TFA), trifluoromethanesulfonate (= TFS), bis(trifluoromethylsulfonyl)imide (= TFSA) anions, and acyl (= butanoyl, hexanoyl, octanoyl, decanoyl, and dodecanoyl) alaninate anions. Our primary objective is to evaluate the performance of these PILs, particularly those with hexyl- or 2-ethylhexylethylenediaminium cations, which demonstrate the potential for forming room-temperature PILs with lower viscosity and higher electroconductivity. Furthermore, we investigate the thermal degradation temperatures, revealing that PILs with TFSA anions possess the highest thermal stability, followed by TFS, acylalaninate, and TFA anions. The distinctive chelating ethylenediamine moiety in the cationic unit of these PILs, especially in AA-PILs with acylalaninate anions, enhances their ability to encapsulate transition metal ions, making them highly effective for metal ion coordination, with a preference order of Cu2+ > Co2+ > Ni2+. This study underscores the potential of these PILs for applications in metal-containing wastewater treatment and the synthesis of metal nanomaterials, highlighting their versatility and importance in these fields.

在本综述中,我们旨在介绍由烷基(=己基、辛基和 2-乙基己基)乙二胺阳离子与三氟乙酸(=TFA)配对组成的原生离子液体(PILs)的独特物理化学特性、三氟甲磺酸(= TFS)、双(三氟甲基磺酰基)亚胺(= TFSA)阴离子和酰基(= 丁酰基、己酰基、辛酰基、癸酰基和十二酰基)丙氨酸阴离子配对而成。我们的主要目的是评估这些 PIL 的性能,尤其是那些含有己基或 2- 乙基己基乙二胺阳离子的 PIL,这些阳离子证明了形成具有较低粘度和较高电导率的室温 PIL 的潜力。此外,我们还对热降解温度进行了研究,结果表明带有 TFSA 阴离子的 PIL 具有最高的热稳定性,其次是 TFS、酰丙氨酸盐和 TFA 阴离子。这些 PIL(尤其是带有酰丙氨酸阴离子的 AA-PIL)阳离子单元中独特的螯合乙二胺分子增强了它们封装过渡金属离子的能力,使其成为金属离子配位的高效材料,优先配位顺序为 Cu2+ > Co2+ > Ni2+。这项研究强调了这些 PILs 在含金属废水处理和金属纳米材料合成方面的应用潜力,突出了它们在这些领域的多功能性和重要性。
{"title":"Protic Ionic Liquids with Chelating Amine","authors":"Chi Wang,&nbsp;Jing-jing Zhu,&nbsp;Yue Qiu,&nbsp;Hui Wang,&nbsp;Yu Xu,&nbsp;Hossein Haghani,&nbsp;Hua Er","doi":"10.1007/s10953-024-01408-1","DOIUrl":"10.1007/s10953-024-01408-1","url":null,"abstract":"<div><p>In this review, we aim to present the unique physicochemical properties of protic ionic liquids (PILs) composed of alkyl (= hexyl, octyl, and 2-ethylhexyl) ethylenediaminium cations paired with trifluoroacetate (= TFA), trifluoromethanesulfonate (= TFS), bis(trifluoromethylsulfonyl)imide (= TFSA) anions, and acyl (= butanoyl, hexanoyl, octanoyl, decanoyl, and dodecanoyl) alaninate anions. Our primary objective is to evaluate the performance of these PILs, particularly those with hexyl- or 2-ethylhexylethylenediaminium cations, which demonstrate the potential for forming room-temperature PILs with lower viscosity and higher electroconductivity. Furthermore, we investigate the thermal degradation temperatures, revealing that PILs with TFSA anions possess the highest thermal stability, followed by TFS, acylalaninate, and TFA anions. The distinctive chelating ethylenediamine moiety in the cationic unit of these PILs, especially in AA-PILs with acylalaninate anions, enhances their ability to encapsulate transition metal ions, making them highly effective for metal ion coordination, with a preference order of Cu<sup>2+</sup> &gt; Co<sup>2+</sup> &gt; Ni<sup>2+</sup>. This study underscores the potential of these PILs for applications in metal-containing wastewater treatment and the synthesis of metal nanomaterials, highlighting their versatility and importance in these fields.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"55 - 72"},"PeriodicalIF":1.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equilibria Data for the CO2 + Ethanol + Ketoprofen Systems – Experimental and Modeling 二氧化碳+乙醇+酮洛芬体系的平衡数据--实验和建模
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-08-24 DOI: 10.1007/s10953-024-01405-4
José Vinicius Mattos, Matías José Molina, Sabrina Belén Rodriguez-Reartes, Leandro Ferreira-Pinto, Marcelo Santiago Zabaloy, Lúcio Cardozo-Filho

This study investigated the solid–fluid and vapor–liquid equilibrium of varying the molar fraction of ketoprofen in binary system (CO2 + ketoprofen), 3.14 × 10–5, 4.70 × 10–5 and 8.11 × 10–5, and the concentration of ketoprofen in ternary system (CO2 + ethanol + ketoprofen), 0.05073 and 0.10277 molKetoprofen·kgethanol−1, on a CO2-free basis for both systems. The aim was to study the solubility of ketoprofen at different molar fractions and predict its behavior over a wide range of temperatures and pressures by means of thermodynamic modeling. Experiments were conducted as a function of temperature from 313 to 333 K and pressure up to 14 MPa, using a visual synthetic static method with a variable volume cell. The collected data highlight an increase of the ketoprofen solubility with the temperature, while a ketoprofen content has a low impact on the bubble point pressure of the tested ternary system. Data were then correlated by using the thermodynamic modeling employed the Redlich–Kwong–Peng–Robinson equation of state (RK–PR EoS) with quadratic mixing rules for fluid phases and a pure solid model for ketoprofen. Then, a number of complete isopleths at set global composition were computed for the CO2 + ketoprofen binary system being indicated solid–fluid, solid–fluid–fluid, and fluid–fluid regions. The obtained results suggest that the thermodynamic models used in this work were able to describe the experimentally observed phase behavior.

Graphical Abstract

本研究以无二氧化碳为基础,研究了改变二元体系(二氧化碳+酮洛芬)中酮洛芬的摩尔分数(3.14 × 10-5、4.70 × 10-5和8.11 × 10-5)和三元体系(二氧化碳+乙醇+酮洛芬)中酮洛芬的浓度(0.05073和0.10277 molKetoprofen-kethanol-1)时的固液平衡和汽液平衡。目的是研究酮洛芬在不同摩尔分数下的溶解度,并通过热力学模型预测其在各种温度和压力下的行为。实验采用可视化合成静态法,使用可变容积池,温度范围为 313 至 333 K,压力范围为 14 MPa。收集到的数据表明,酮洛芬的溶解度随温度升高而增加,而酮洛芬含量对测试三元体系的气泡点压力影响较小。然后,利用热力学模型对数据进行了关联,该模型采用了 Redlich-Kwong-Peng-Robinson 状态方程(RK-PR EoS),其中流体相采用二次混合规则,酮洛芬采用纯固体模型。然后,计算了二氧化碳+酮洛芬二元体系在设定全局成分下的若干完整等值线,分别表示固-流体、固-流体-流体和流-流体区域。结果表明,这项工作中使用的热力学模型能够描述实验观察到的相行为。
{"title":"Equilibria Data for the CO2 + Ethanol + Ketoprofen Systems – Experimental and Modeling","authors":"José Vinicius Mattos,&nbsp;Matías José Molina,&nbsp;Sabrina Belén Rodriguez-Reartes,&nbsp;Leandro Ferreira-Pinto,&nbsp;Marcelo Santiago Zabaloy,&nbsp;Lúcio Cardozo-Filho","doi":"10.1007/s10953-024-01405-4","DOIUrl":"10.1007/s10953-024-01405-4","url":null,"abstract":"<div><p>This study investigated the solid–fluid and vapor–liquid equilibrium of varying the molar fraction of ketoprofen in binary system (CO<sub>2</sub> + ketoprofen), 3.14 × 10<sup>–5</sup>, 4.70 × 10<sup>–5</sup> and 8.11 × 10<sup>–5</sup>, and the concentration of ketoprofen in ternary system (CO<sub>2</sub> + ethanol + ketoprofen), 0.05073 and 0.10277 mol<sub>Ketoprofen</sub>·kg<sub>ethanol</sub><sup>−1</sup>, on a CO<sub>2</sub>-free basis for both systems. The aim was to study the solubility of ketoprofen at different molar fractions and predict its behavior over a wide range of temperatures and pressures by means of thermodynamic modeling. Experiments were conducted as a function of temperature from 313 to 333 K and pressure up to 14 MPa, using a visual synthetic static method with a variable volume cell. The collected data highlight an increase of the ketoprofen solubility with the temperature, while a ketoprofen content has a low impact on the bubble point pressure of the tested ternary system. Data were then correlated by using the thermodynamic modeling employed the Redlich–Kwong–Peng–Robinson equation of state (RK–PR EoS) with quadratic mixing rules for fluid phases and a pure solid model for ketoprofen. Then, a number of complete isopleths at set global composition were computed for the CO<sub>2</sub> + ketoprofen binary system being indicated solid–fluid, solid–fluid–fluid, and fluid–fluid regions. The obtained results suggest that the thermodynamic models used in this work were able to describe the experimentally observed phase behavior.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"31 - 54"},"PeriodicalIF":1.4,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat of Dilution and Racemization of Chiral Amino Acid Solutions 手性氨基酸溶液的稀释热与消旋化
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-08-21 DOI: 10.1007/s10953-024-01401-8
Matan Oliel, Yitzhak Mastai

Chiral interactions play a crucial role in both chemistry and biology. Understanding the behavior of chiral molecules and their interactions with other molecules is essential, and chiral interactions in solutions are particularly important for studying chiral compounds. Chirality influences the physical and chemical properties of molecules, including solubility, reactivity, and biological activity. In this work, we used isothermal titration calorimetry (ITC), a powerful technique for studying molecular interactions, including chiral interactions in solutions. We conducted a series of ITC measurements to investigate the heat of dilution and the heat of racemization of several amino acids (Asparagine, Histidine, Serine, Alanine, Methionine, and Phenylalanine). We also performed ITC measurements under different solute concentrations and temperatures to examine the effects of these parameters on chiral interactions, as well as the heat of dilution and racemization. The results of our measurements indicated that the heat of dilution, specifically the interactions between the solvent (water) and solute (chiral molecules), had a significant impact compared to the chiral interactions in the solution, which were found to be negligible. This suggests that the interactions between chiral molecules and the solvent play a more dominant role in determining the overall behavior and properties of the system. By studying chiral interactions in solutions, we can gain valuable insights into the behavior of chiral compounds, which can have implications in various fields, including drug design, chemical synthesis, and biological processes.

手性相互作用在化学和生物学中都起着至关重要的作用。了解手性分子的行为及其与其他分子的相互作用至关重要,而溶液中的手性相互作用对于研究手性化合物尤为重要。手性会影响分子的物理和化学特性,包括溶解性、反应性和生物活性。在这项研究中,我们使用了等温滴定量热法(ITC),这是一种研究分子相互作用(包括溶液中的手性相互作用)的强大技术。我们进行了一系列 ITC 测量,以研究几种氨基酸(天冬酰胺、组氨酸、丝氨酸、丙氨酸、蛋氨酸和苯丙氨酸)的稀释热和消旋化热。我们还在不同溶质浓度和温度下进行了 ITC 测量,以研究这些参数对手性相互作用以及稀释热和消旋化热的影响。测量结果表明,稀释热,特别是溶剂(水)和溶质(手性分子)之间的相互作用,与溶液中的手性相互作用相比具有显著影响,后者可以忽略不计。这表明,手性分子与溶剂之间的相互作用在决定系统的整体行为和特性方面发挥着更主要的作用。通过研究溶液中的手性相互作用,我们可以获得有关手性化合物行为的宝贵见解,这对药物设计、化学合成和生物过程等多个领域都有影响。
{"title":"Heat of Dilution and Racemization of Chiral Amino Acid Solutions","authors":"Matan Oliel,&nbsp;Yitzhak Mastai","doi":"10.1007/s10953-024-01401-8","DOIUrl":"10.1007/s10953-024-01401-8","url":null,"abstract":"<div><p>Chiral interactions play a crucial role in both chemistry and biology. Understanding the behavior of chiral molecules and their interactions with other molecules is essential, and chiral interactions in solutions are particularly important for studying chiral compounds. Chirality influences the physical and chemical properties of molecules, including solubility, reactivity, and biological activity. In this work, we used isothermal titration calorimetry (ITC), a powerful technique for studying molecular interactions, including chiral interactions in solutions. We conducted a series of ITC measurements to investigate the heat of dilution and the heat of racemization of several amino acids (Asparagine, Histidine, Serine, Alanine, Methionine, and Phenylalanine). We also performed ITC measurements under different solute concentrations and temperatures to examine the effects of these parameters on chiral interactions, as well as the heat of dilution and racemization. The results of our measurements indicated that the heat of dilution, specifically the interactions between the solvent (water) and solute (chiral molecules), had a significant impact compared to the chiral interactions in the solution, which were found to be negligible. This suggests that the interactions between chiral molecules and the solvent play a more dominant role in determining the overall behavior and properties of the system. By studying chiral interactions in solutions, we can gain valuable insights into the behavior of chiral compounds, which can have implications in various fields, including drug design, chemical synthesis, and biological processes.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1701 - 1714"},"PeriodicalIF":1.4,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-024-01401-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Bioinspired Designed DES for Their Acetylene Sensing Capabilities via DFT Calculations and Molecular Dynamics Simulations 通过 DFT 计算和分子动力学模拟探索生物启发设计的 DES 的乙炔传感能力
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-08-20 DOI: 10.1007/s10953-024-01407-2
Anirudh Pratap Singh Raman, Madhur Babu Singh, Vijay K. Vishvakarma, Kamlesh Kumari, Pallavi Jain, Prashant Singh

Acetylene (C2H2) is a colourless and odourless gas, making leak detection challenging. It can react with certain metals, such as copper and silver, to form highly sensitive and explosive compounds. Therefore, designing a highly efficient C2H2 sensor is of paramount importance for environmental and safety reasons. Utilizing deep eutectic solvents (DESs) offers a cost-effective and efficient method for sensing and removing C2H2. Theoretical exploration of a DES composed of choline chloride and amino acid was conducted using density functional theory (DFT) calculations to assess its efficacy in adsorbing C2H2. The DESs were optimized, and calculations were executed using Gaussian 16 software with the 6-311G* (d,p) basis set and the B3LYP method. The DES exhibited anticorrosive and antioxidant properties, which could enhance the stability and longevity of the sensor, especially in harsh environments. Among the DES systems studied, the system labelled 17A exhibited the most negative Gibbs free energy as determined by the DFT calculations. The change in optimization energy for the 10AAc system in the gaseous state was found to be − 0.3054 kJ·mol–1. Additionally, Molecular Dynamics (MD) simulations were performed to analyse the interactions of the DES-C2H2 complex with the lowest optimization energy (10AAc) using Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) trajectories.

Graphical Abstract

乙炔(C2H2)是一种无色无味的气体,因此泄漏检测非常困难。它能与某些金属(如铜和银)发生反应,形成高度敏感的爆炸性化合物。因此,出于环保和安全考虑,设计一种高效的 C2H2 传感器至关重要。利用深共晶溶剂(DES)提供了一种具有成本效益的高效方法来感应和去除 C2H2。利用密度泛函理论(DFT)计算对氯化胆碱和氨基酸组成的 DES 进行了理论探索,以评估其吸附 C2H2 的功效。采用高斯 16 软件、6-311G* (d,p) 基集和 B3LYP 方法对 DES 进行了优化和计算。DES 具有防腐和抗氧化特性,可提高传感器的稳定性和使用寿命,尤其是在恶劣环境中。在所研究的 DES 系统中,根据 DFT 计算确定,标记为 17A 的系统表现出最大的负吉布斯自由能。研究发现,10AAc 系统在气态时的优化能变化为 - 0.3054 kJ-mol-1。此外,还进行了分子动力学(MD)模拟,利用均方根偏差(RMSD)和均方根波动(RMSF)轨迹分析了优化能最低的 DES-C2H2 复合物(10AAc)的相互作用。
{"title":"Exploring Bioinspired Designed DES for Their Acetylene Sensing Capabilities via DFT Calculations and Molecular Dynamics Simulations","authors":"Anirudh Pratap Singh Raman,&nbsp;Madhur Babu Singh,&nbsp;Vijay K. Vishvakarma,&nbsp;Kamlesh Kumari,&nbsp;Pallavi Jain,&nbsp;Prashant Singh","doi":"10.1007/s10953-024-01407-2","DOIUrl":"10.1007/s10953-024-01407-2","url":null,"abstract":"<div><p>Acetylene (C<sub>2</sub>H<sub>2</sub>) is a colourless and odourless gas, making leak detection challenging. It can react with certain metals, such as copper and silver, to form highly sensitive and explosive compounds. Therefore, designing a highly efficient C<sub>2</sub>H<sub>2</sub> sensor is of paramount importance for environmental and safety reasons. Utilizing deep eutectic solvents (DESs) offers a cost-effective and efficient method for sensing and removing C<sub>2</sub>H<sub>2</sub>. Theoretical exploration of a DES composed of choline chloride and amino acid was conducted using density functional theory (DFT) calculations to assess its efficacy in adsorbing C<sub>2</sub>H<sub>2</sub>. The DESs were optimized, and calculations were executed using Gaussian 16 software with the 6-311G* (d,p) basis set and the B3LYP method. The DES exhibited anticorrosive and antioxidant properties, which could enhance the stability and longevity of the sensor, especially in harsh environments. Among the DES systems studied, the system labelled 17A exhibited the most negative Gibbs free energy as determined by the DFT calculations. The change in optimization energy for the 10AAc system in the gaseous state was found to be − 0.3054 kJ·mol<sup>–1</sup>. Additionally, Molecular Dynamics (MD) simulations were performed to analyse the interactions of the DES-C<sub>2</sub>H<sub>2</sub> complex with the lowest optimization energy (10AAc) using Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) trajectories.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1685 - 1700"},"PeriodicalIF":1.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Solubility and Thermodynamic Properties of Synthetic Nickel Hydroxide Carbonate 合成碳酸氢镍的溶解性和热力学性质评估
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-08-09 DOI: 10.1007/s10953-024-01406-3
D. B. Gogol, A. M. Makasheva, D. T. Sadyrbekov, L. F. Dyussembayeva, I. E. Rozhkovoy, I. I. Ishmiev, O. I. Zemskiy, S. K. Aldabergenova

Knowledge of the values of the thermodynamic functions of natural minerals of transition elements has important applications in the study of the processes of their formation and geochemical migration with groundwater; when developing methods to prevent corrosion of non-ferrous alloys in fresh and sea water; when immobilizing heavy metals in mine drainage and industrial waters, etc. Also, these values are in demand when calculating reactions and developing methods for producing synthetic analogs of minerals, many of which exhibit magnetic, catalytic, photochemical, and other properties. However, in scientific literature, there is a lack of detailed data on the thermodynamic properties of nickel hydroxysalts. A sample of basic nickel carbonate with the theoretical formula Ni3[CO3](OH)4·3H2O was obtained using the hydrothermal synthesis method. The structure of the compound was verified by X-ray diffraction and infrared spectroscopy. Experiments were carried out on sample dissolution in order to measure the solubility constant (solubility product): log10 KSP =  − 45.8 ± 1.8. Based on the data obtained, the thermodynamic parameters of the reaction of dissolution of the compound were determined and the main thermodynamic functions were determined: Gibbs free energy of formation ΔfG° =  − 1554 ± 6 kJ·mol−1; enthalpy of formation ΔfH° =  − 1798 ± 9 kJ·mol−1; standard entropy S° = 260.6 ± 7.8 J·mol−1·K−1.

有关过渡元素天然矿物热力学函数值的知识,在研究其形成过程和随地下水的地球化学迁移时,在制定防止淡水和海水中有色金属合金腐蚀的方法时,在固定矿井排水和工业用水中的重金属时,都有重要应用。此外,在计算反应和开发生产矿物合成类似物的方法时,也需要这些数值,其中许多矿物具有磁性、催化、光化学和其他特性。然而,在科学文献中,缺乏有关镍羟盐热力学性质的详细数据。本研究采用水热合成法获得了理论分子式为 Ni3[CO3](OH)4-3H2O 的碱式碳酸镍样品。通过 X 射线衍射和红外光谱验证了该化合物的结构。对样品进行了溶解实验,以测量溶解常数(溶度积):log10 KSP = - 45.8 ± 1.8。根据获得的数据,确定了化合物溶解反应的热力学参数,并确定了主要的热力学函数:形成的吉布斯自由能 ΔfG° = - 1554 ± 6 kJ-mol-1;形成的焓 ΔfH° = - 1798 ± 9 kJ-mol-1;标准熵 S° = 260.6 ± 7.8 J-mol-1-K-1。
{"title":"Evaluation of Solubility and Thermodynamic Properties of Synthetic Nickel Hydroxide Carbonate","authors":"D. B. Gogol,&nbsp;A. M. Makasheva,&nbsp;D. T. Sadyrbekov,&nbsp;L. F. Dyussembayeva,&nbsp;I. E. Rozhkovoy,&nbsp;I. I. Ishmiev,&nbsp;O. I. Zemskiy,&nbsp;S. K. Aldabergenova","doi":"10.1007/s10953-024-01406-3","DOIUrl":"10.1007/s10953-024-01406-3","url":null,"abstract":"<div><p>Knowledge of the values of the thermodynamic functions of natural minerals of transition elements has important applications in the study of the processes of their formation and geochemical migration with groundwater; when developing methods to prevent corrosion of non-ferrous alloys in fresh and sea water; when immobilizing heavy metals in mine drainage and industrial waters, etc. Also, these values are in demand when calculating reactions and developing methods for producing synthetic analogs of minerals, many of which exhibit magnetic, catalytic, photochemical, and other properties. However, in scientific literature, there is a lack of detailed data on the thermodynamic properties of nickel hydroxysalts. A sample of basic nickel carbonate with the theoretical formula Ni<sub>3</sub>[CO<sub>3</sub>](OH)<sub>4</sub>·3H<sub>2</sub>O was obtained using the hydrothermal synthesis method. The structure of the compound was verified by X-ray diffraction and infrared spectroscopy. Experiments were carried out on sample dissolution in order to measure the solubility constant (solubility product): log<sub>10 </sub><i>K</i><sub>SP</sub> =  − 45.8 ± 1.8. Based on the data obtained, the thermodynamic parameters of the reaction of dissolution of the compound were determined and the main thermodynamic functions were determined: Gibbs free energy of formation Δ<sub>f</sub><i>G</i>° =  − 1554 ± 6 kJ·mol<sup>−1</sup>; enthalpy of formation Δ<sub>f</sub><i>H</i>° =  − 1798 ± 9 kJ·mol<sup>−1</sup>; standard entropy <i>S</i>° = 260.6 ± 7.8 J·mol<sup>−1</sup>·K<sup>−1</sup>.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1674 - 1684"},"PeriodicalIF":1.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Data and Modeling of Viscosity in the Quinary System NaCl + KCl + CaCl2 + MgCl2 + H2O 二元体系 NaCl + KCl + CaCl2 + MgCl2 + H2O 中粘度的实验数据和模型建立
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-07-21 DOI: 10.1007/s10953-024-01400-9
Sheng Wang, Mengjie Luo, Yuzhu Sun, Congying Wang, Xingfu Song

The viscosities of the quinary system NaCl + KCl + CaCl2 + MgCl2 + H2O and its binary subsystems are measured in the temperature range of 288.15 K-308.15 K. The viscosities of binary solutions of MgCl2, NaCl, and CaCl2 increase with the increase in concentration. In contrast, for the binary solution of KCl, the viscosity decreases with increasing concentration at low temperature and low concentration. The extended Jones–Dole model that incorporates higher-order term parameters is used to fit the viscosity of binary solutions, with a maximum Average Relative Deviation (ARD) of 1.42%. By comparing the values of the Pearson correlation coefficients, it is found that MgCl2 has the most significant impact on the viscosity of the quinary system MgCl2 + KCl + NaCl + CaCl2 + H2O, while the impact of KCl is the least. The modified extended Jones–Dole model, with the introduction of parameter Gi, can accurately predict the quinary system, resulting in a maximum AAD value of 0.63%. Moreover, the Hu model is also applied to predict the viscosity of the quinary system, achieving a maximum ARD value being 1.54%. Compared to the Hu model, the modified extended Jones–Dole model performs better. The viscosity calculation models for the quinary system MgCl2 + KCl + NaCl + CaCl2 + H2O in this study contribute key parameters for the design and optimization of the potassium chloride production process.

在 288.15 K-308.15 K 的温度范围内测量了 NaCl + KCl + CaCl2 + MgCl2 + H2O 的二元体系及其二元子体系的粘度。相反,对于 KCl 的二元溶液,在低温和低浓度条件下,粘度随着浓度的增加而降低。采用包含高阶项参数的扩展琼斯-多尔模型来拟合二元溶液的粘度,其最大平均相对偏差(ARD)为 1.42%。通过比较皮尔逊相关系数值,发现 MgCl2 对 MgCl2 + KCl + NaCl + CaCl2 + H2O 二元体系的粘度影响最大,而 KCl 的影响最小。修改后的扩展琼斯-多尔模型引入了参数 Gi,可以准确地预测二元体系,其最大 AAD 值为 0.63%。此外,Hu 模型也可用于预测二元体系的粘度,其最大 ARD 值为 1.54%。与 Hu 模型相比,改进的扩展 Jones-Dole 模型的性能更好。本研究中的 MgCl2 + KCl + NaCl + CaCl2 + H2O 二元体系粘度计算模型为氯化钾生产工艺的设计和优化提供了关键参数。
{"title":"Experimental Data and Modeling of Viscosity in the Quinary System NaCl + KCl + CaCl2 + MgCl2 + H2O","authors":"Sheng Wang,&nbsp;Mengjie Luo,&nbsp;Yuzhu Sun,&nbsp;Congying Wang,&nbsp;Xingfu Song","doi":"10.1007/s10953-024-01400-9","DOIUrl":"10.1007/s10953-024-01400-9","url":null,"abstract":"<div><p>The viscosities of the quinary system NaCl + KCl + CaCl<sub>2</sub> + MgCl<sub>2</sub> + H<sub>2</sub>O and its binary subsystems are measured in the temperature range of 288.15 K-308.15 K. The viscosities of binary solutions of MgCl<sub>2</sub>, NaCl, and CaCl<sub>2</sub> increase with the increase in concentration. In contrast, for the binary solution of KCl, the viscosity decreases with increasing concentration at low temperature and low concentration. The extended Jones–Dole model that incorporates higher-order term parameters is used to fit the viscosity of binary solutions, with a maximum Average Relative Deviation (<i>ARD</i>) of 1.42%. By comparing the values of the Pearson correlation coefficients, it is found that MgCl<sub>2</sub> has the most significant impact on the viscosity of the quinary system MgCl<sub>2</sub> + KCl + NaCl + CaCl<sub>2</sub> + H<sub>2</sub>O, while the impact of KCl is the least. The modified extended Jones–Dole model, with the introduction of parameter <i>G</i><sub><i>i</i></sub>, can accurately predict the quinary system, resulting in a maximum <i>AAD</i> value of 0.63%. Moreover, the Hu model is also applied to predict the viscosity of the quinary system, achieving a maximum <i>ARD</i> value being 1.54%. Compared to the Hu model, the modified extended Jones–Dole model performs better. The viscosity calculation models for the quinary system MgCl<sub>2</sub> + KCl + NaCl + CaCl<sub>2</sub> + H<sub>2</sub>O in this study contribute key parameters for the design and optimization of the potassium chloride production process.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1656 - 1673"},"PeriodicalIF":1.4,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments Regarding “Measurement and Modeling of Excess Molar Volume and Excess Enthalpy of n-Tridecane or n-Tetradecane with Decalin by Application of PFP Theory” 关于 "应用 PFP 理论测量正十三烷或正十四烷与癸醛的过剩摩尔体积和过剩焓并建立相关模型 "的评论
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-07-19 DOI: 10.1007/s10953-024-01404-5
William E. Acree

A polemic is given regarding several of the volumetric properties that Touazi and coworkers reported in their published paper. A critical analysis of the published excess molar volumes for binary decalin + tridecane and decalin + tetradecane mixtures revealed that the values determined at low decalin mole fraction compositions were not consistent with values measured at higher decalin compositions. The analysis further showed that the excess molar volumes for the decalin + tridecane and decalin + tetradecane systems differ significantly from published data reported by independent research groups for binary decalin mixtures containing both smaller (C5 to C12) and larger (C16) linear alkane molecules.

对 Touazi 和同事在其发表的论文中报告的一些体积特性进行了论证。对已发表的癸醛 + 十三烷和癸醛 + 十四烷二元混合物的过量摩尔体积进行的批判性分析表明,在低癸醛摩尔分数成分下测定的值与在高癸醛成分下测定的值不一致。分析进一步表明,癸烷 + 十三烷和癸烷 + 十四烷系统的过量摩尔体积与独立研究小组报告的含有较小(C5 至 C12)和较大(C16)线性烷烃分子的二元癸烷混合物的公开数据有很大差异。
{"title":"Comments Regarding “Measurement and Modeling of Excess Molar Volume and Excess Enthalpy of n-Tridecane or n-Tetradecane with Decalin by Application of PFP Theory”","authors":"William E. Acree","doi":"10.1007/s10953-024-01404-5","DOIUrl":"10.1007/s10953-024-01404-5","url":null,"abstract":"<div><p>A polemic is given regarding several of the volumetric properties that Touazi and coworkers reported in their published paper. A critical analysis of the published excess molar volumes for binary decalin + tridecane and decalin + tetradecane mixtures revealed that the values determined at low decalin mole fraction compositions were not consistent with values measured at higher decalin compositions. The analysis further showed that the excess molar volumes for the decalin + tridecane and decalin + tetradecane systems differ significantly from published data reported by independent research groups for binary decalin mixtures containing both smaller (C<sub>5</sub> to C<sub>12</sub>) and larger (C<sub>16</sub>) linear alkane molecules.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1651 - 1655"},"PeriodicalIF":1.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation Between Ionization and Hydration Energies 电离能与水合能之间的相关性
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-07-11 DOI: 10.1007/s10953-024-01399-z
Andrew Das Arulsamy

Calculations of hydration energies are extremely important in physical, chemical, and life sciences, and therefore their values need to be accurately determined if these energies were to be used to derive the proper and correct physico-chemical mechanisms. Here, we prove the existence of absolute correlation between ionization and hydration energies for transition metal cations. The said absolute correlation can be exploited in an unambiguous manner to verify the calculated hydration energies for divalent and trivalent transition metal cations.

水合能的计算在物理、化学和生命科学中极为重要,因此,如果要利用这些能量推导出适当、正确的物理化学机制,就必须准确确定其数值。在这里,我们证明了过渡金属阳离子的电离能和水合能之间存在绝对相关性。上述绝对相关性可以明确地用于验证二价和三价过渡金属阳离子的水合能计算结果。
{"title":"Correlation Between Ionization and Hydration Energies","authors":"Andrew Das Arulsamy","doi":"10.1007/s10953-024-01399-z","DOIUrl":"10.1007/s10953-024-01399-z","url":null,"abstract":"<div><p>Calculations of hydration energies are extremely important in physical, chemical, and life sciences, and therefore their values need to be accurately determined if these energies were to be used to derive the proper and correct physico-chemical mechanisms. Here, we prove the existence of absolute correlation between ionization and hydration energies for transition metal cations. The said absolute correlation can be exploited in an unambiguous manner to verify the calculated hydration energies for divalent and trivalent transition metal cations.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1633 - 1650"},"PeriodicalIF":1.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density and Viscosity of the Mixtures of Dimethylsulfoxide with Choline Chloride/Ethylene Glycol Eutectic Solvent 二甲基亚砜与氯化胆碱/乙二醇共晶溶剂混合物的密度和粘度
IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-07-10 DOI: 10.1007/s10953-024-01402-7
Jinxiang Yu, Xiangyu Chen, Xiaopo Wang

The density and viscosity of the pseudo-binary mixtures of eutectic solvent (ES) composed of choline chloride and ethylene glycol ([ChCl/EG]) with dimethylsulfoxide (DMSO) were measured. In order to understand the effect of the mole ratio of ChCl:EG, two ChCl/EG ESs with the mole ratio of 1:3 and 1:4 (abbreviated as [ChCl/EG](1:3) and [ChCl/EG](1:4) in this work) were prepared. The measurements were carried out by digital vibrating U-tube density meter and Ubbelohde capillary viscometer from 303.15 to 323.15 K at atmospheric pressure (98.5 kPa). The Jouyban–Acree model was applied to correlate the experimental density and viscosity data of DMSO/[ChCl/EG](1:3) and DMSO/[ChCl/EG](1:4) mixtures. In addition, based on the experimental data, the derived properties of the mixtures, such as excess molar volume and viscosity deviation, were calculated. The comparison and analysis of excess molar volume and viscosity deviation for DMSO/[ChCl/EG](1:2) reported in literature and the results obtained in this work were carried out.

测量了由氯化胆碱和乙二醇([ChCl/EG])组成的共晶溶剂(ES)与二甲基亚砜(DMSO)的假二元混合物的密度和粘度。为了了解 ChCl:EG 摩尔比的影响,制备了两种摩尔比为 1:3 和 1:4 的 ChCl/EG ES(本文中简称为 [ChCl/EG](1:3) 和 [ChCl/EG](1:4))。在 303.15 至 323.15 K、常压(98.5 kPa)条件下,使用数字振动 U 型管密度计和 Ubbelohde 毛细管粘度计进行测量。应用 Jouyban-Acree 模型对 DMSO/[ChCl/EG](1:3)和 DMSO/[ChCl/EG](1:4)混合物的实验密度和粘度数据进行了相关分析。此外,还根据实验数据计算了混合物的推导性质,如过量摩尔体积和粘度偏差。对文献报道的 DMSO/[ChCl/EG](1:2)过剩摩尔体积和粘度偏差与本研究的结果进行了比较和分析。
{"title":"Density and Viscosity of the Mixtures of Dimethylsulfoxide with Choline Chloride/Ethylene Glycol Eutectic Solvent","authors":"Jinxiang Yu,&nbsp;Xiangyu Chen,&nbsp;Xiaopo Wang","doi":"10.1007/s10953-024-01402-7","DOIUrl":"10.1007/s10953-024-01402-7","url":null,"abstract":"<div><p>The density and viscosity of the pseudo-binary mixtures of eutectic solvent (ES) composed of choline chloride and ethylene glycol ([ChCl/EG]) with dimethylsulfoxide (DMSO) were measured. In order to understand the effect of the mole ratio of ChCl:EG, two ChCl/EG ESs with the mole ratio of 1:3 and 1:4 (abbreviated as [ChCl/EG]<sub>(1:3)</sub> and [ChCl/EG]<sub>(1:4)</sub> in this work) were prepared. The measurements were carried out by digital vibrating <i>U</i>-tube density meter and Ubbelohde capillary viscometer from 303.15 to 323.15 K at atmospheric pressure (98.5 kPa). The Jouyban–Acree model was applied to correlate the experimental density and viscosity data of DMSO/[ChCl/EG]<sub>(1:3)</sub> and DMSO/[ChCl/EG]<sub>(1:4)</sub> mixtures. In addition, based on the experimental data, the derived properties of the mixtures, such as excess molar volume and viscosity deviation, were calculated. The comparison and analysis of excess molar volume and viscosity deviation for DMSO/[ChCl/EG]<sub>(1:2)</sub> reported in literature and the results obtained in this work were carried out.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1617 - 1632"},"PeriodicalIF":1.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Solution Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1