Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, Heiko Hoffmann
With the growing use of graph convolutional neural networks (GCNNs) comes the need for explainability. In this paper, we introduce explainability methods for GCNNs. We develop the graph analogues of three prominent explainability methods for convolutional neural networks: contrastive gradient-based (CG) saliency maps, Class Activation Mapping (CAM), and Excitation Back-Propagation (EB) and their variants, gradient-weighted CAM (Grad-CAM) and contrastive EB (c-EB). We show a proof-of-concept of these methods on classification problems in two application domains: visual scene graphs and molecular graphs. To compare the methods, we identify three desirable properties of explanations: (1) their importance to classification, as measured by the impact of occlusions, (2) their contrastivity with respect to different classes, and (3) their sparseness on a graph. We call the corresponding quantitative metrics fidelity, contrastivity, and sparsity and evaluate them for each method. Lastly, we analyze the salient subgraphs obtained from explanations and report frequently occurring patterns.
{"title":"Explainability Methods for Graph Convolutional Neural Networks","authors":"Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, Heiko Hoffmann","doi":"10.1109/CVPR.2019.01103","DOIUrl":"https://doi.org/10.1109/CVPR.2019.01103","url":null,"abstract":"With the growing use of graph convolutional neural networks (GCNNs) comes the need for explainability. In this paper, we introduce explainability methods for GCNNs. We develop the graph analogues of three prominent explainability methods for convolutional neural networks: contrastive gradient-based (CG) saliency maps, Class Activation Mapping (CAM), and Excitation Back-Propagation (EB) and their variants, gradient-weighted CAM (Grad-CAM) and contrastive EB (c-EB). We show a proof-of-concept of these methods on classification problems in two application domains: visual scene graphs and molecular graphs. To compare the methods, we identify three desirable properties of explanations: (1) their importance to classification, as measured by the impact of occlusions, (2) their contrastivity with respect to different classes, and (3) their sparseness on a graph. We call the corresponding quantitative metrics fidelity, contrastivity, and sparsity and evaluate them for each method. Lastly, we analyze the salient subgraphs obtained from explanations and report frequently occurring patterns.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"10764-10773"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83481975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Wan, Wenhan Luo, Baoyuan Wu, Antoni B. Chan, Wei Liu
Crowd counting is a challenging task due to factors such as large variations in crowdedness and severe occlusions. Although recent deep learning based counting algorithms have achieved a great progress, the correlation knowledge among samples and the semantic prior have not yet been fully exploited. In this paper, a residual regression framework is proposed for crowd counting utilizing the correlation information among samples. By incorporating such information into our network, we discover that more intrinsic characteristics can be learned by the network which thus generalizes better to unseen scenarios. Besides, we show how to effectively leverage the semantic prior to improve the performance of crowd counting. We also observe that the adversarial loss can be used to improve the quality of predicted density maps, thus leading to an improvement in crowd counting. Experiments on public datasets demonstrate the effectiveness and generalization ability of the proposed method.
{"title":"Residual Regression With Semantic Prior for Crowd Counting","authors":"Jia Wan, Wenhan Luo, Baoyuan Wu, Antoni B. Chan, Wei Liu","doi":"10.1109/CVPR.2019.00416","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00416","url":null,"abstract":"Crowd counting is a challenging task due to factors such as large variations in crowdedness and severe occlusions. Although recent deep learning based counting algorithms have achieved a great progress, the correlation knowledge among samples and the semantic prior have not yet been fully exploited. In this paper, a residual regression framework is proposed for crowd counting utilizing the correlation information among samples. By incorporating such information into our network, we discover that more intrinsic characteristics can be learned by the network which thus generalizes better to unseen scenarios. Besides, we show how to effectively leverage the semantic prior to improve the performance of crowd counting. We also observe that the adversarial loss can be used to improve the quality of predicted density maps, thus leading to an improvement in crowd counting. Experiments on public datasets demonstrate the effectiveness and generalization ability of the proposed method.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"27 1","pages":"4031-4040"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87297270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose a novel algorithm for monocular depth estimation using relative depth maps. First, using a convolutional neural network, we estimate relative depths between pairs of regions, as well as ordinary depths, at various scales. Second, we restore relative depth maps from selectively estimated data based on the rank-1 property of pairwise comparison matrices. Third, we decompose ordinary and relative depth maps into components and recombine them optimally to reconstruct a final depth map. Experimental results show that the proposed algorithm provides the state-of-art depth estimation performance.
{"title":"Monocular Depth Estimation Using Relative Depth Maps","authors":"Jae-Han Lee, Chang-Su Kim","doi":"10.1109/CVPR.2019.00996","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00996","url":null,"abstract":"We propose a novel algorithm for monocular depth estimation using relative depth maps. First, using a convolutional neural network, we estimate relative depths between pairs of regions, as well as ordinary depths, at various scales. Second, we restore relative depth maps from selectively estimated data based on the rank-1 property of pairwise comparison matrices. Third, we decompose ordinary and relative depth maps into components and recombine them optimally to reconstruct a final depth map. Experimental results show that the proposed algorithm provides the state-of-art depth estimation performance.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"5 1","pages":"9721-9730"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87736584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Convolutional Neural Networks (CNNs) have become deeper and more complicated compared with the pioneering AlexNet. However, current prevailing training scheme follows the previous way of adding supervision to the last layer of the network only and propagating error information up layer-by-layer. In this paper, we propose Deeply-supervised Knowledge Synergy (DKS), a new method aiming to train CNNs with improved generalization ability for image classification tasks without introducing extra computational cost during inference. Inspired by the deeply-supervised learning scheme, we first append auxiliary supervision branches on top of certain intermediate network layers. While properly using auxiliary supervision can improve model accuracy to some degree, we go one step further to explore the possibility of utilizing the probabilistic knowledge dynamically learnt by the classifiers connected to the backbone network as a new regularization to improve the training. A novel synergy loss, which considers pairwise knowledge matching among all supervision branches, is presented. Intriguingly, it enables dense pairwise knowledge matching operations in both top-down and bottom-up directions at each training iteration, resembling a dynamic synergy process for the same task. We evaluate DKS on image classification datasets using state-of-the-art CNN architectures, and show that the models trained with it are consistently better than the corresponding counterparts. For instance, on the ImageNet classification benchmark, our ResNet-152 model outperforms the baseline model with a 1.47% margin in Top-1 accuracy. Code is available at https://github.com/sundw2014/DKS.
{"title":"Deeply-Supervised Knowledge Synergy","authors":"Dawei Sun, Anbang Yao, Aojun Zhou, Hao Zhao","doi":"10.1109/CVPR.2019.00716","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00716","url":null,"abstract":"Convolutional Neural Networks (CNNs) have become deeper and more complicated compared with the pioneering AlexNet. However, current prevailing training scheme follows the previous way of adding supervision to the last layer of the network only and propagating error information up layer-by-layer. In this paper, we propose Deeply-supervised Knowledge Synergy (DKS), a new method aiming to train CNNs with improved generalization ability for image classification tasks without introducing extra computational cost during inference. Inspired by the deeply-supervised learning scheme, we first append auxiliary supervision branches on top of certain intermediate network layers. While properly using auxiliary supervision can improve model accuracy to some degree, we go one step further to explore the possibility of utilizing the probabilistic knowledge dynamically learnt by the classifiers connected to the backbone network as a new regularization to improve the training. A novel synergy loss, which considers pairwise knowledge matching among all supervision branches, is presented. Intriguingly, it enables dense pairwise knowledge matching operations in both top-down and bottom-up directions at each training iteration, resembling a dynamic synergy process for the same task. We evaluate DKS on image classification datasets using state-of-the-art CNN architectures, and show that the models trained with it are consistently better than the corresponding counterparts. For instance, on the ImageNet classification benchmark, our ResNet-152 model outperforms the baseline model with a 1.47% margin in Top-1 accuracy. Code is available at https://github.com/sundw2014/DKS.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"61 1","pages":"6990-6999"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90591628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Numerous applications require a robust metric that can predict whether image differences are visible or not. However, the accuracy of existing white-box visibility metrics, such as HDR-VDP, is often not good enough. CNN-based black-box visibility metrics have proven to be more accurate, but they cannot account for differences in viewing conditions, such as display brightness and viewing distance. In this paper, we propose a CNN-based visibility metric, which maintains the accuracy of deep network solutions and accounts for viewing conditions. To achieve this, we extend the existing dataset of locally visible differences (LocVis) with a new set of measurements, collected considering aforementioned viewing conditions. Then, we develop a hybrid model that combines white-box processing stages for modeling the effects of luminance masking and contrast sensitivity, with a black-box deep neural network. We demonstrate that the novel hybrid model can handle the change of viewing conditions correctly and outperforms state-of-the-art metrics.
{"title":"Predicting Visible Image Differences Under Varying Display Brightness and Viewing Distance","authors":"Nanyang Ye, Krzysztof Wolski, Rafał K. Mantiuk","doi":"10.1109/CVPR.2019.00558","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00558","url":null,"abstract":"Numerous applications require a robust metric that can predict whether image differences are visible or not. However, the accuracy of existing white-box visibility metrics, such as HDR-VDP, is often not good enough. CNN-based black-box visibility metrics have proven to be more accurate, but they cannot account for differences in viewing conditions, such as display brightness and viewing distance. In this paper, we propose a CNN-based visibility metric, which maintains the accuracy of deep network solutions and accounts for viewing conditions. To achieve this, we extend the existing dataset of locally visible differences (LocVis) with a new set of measurements, collected considering aforementioned viewing conditions. Then, we develop a hybrid model that combines white-box processing stages for modeling the effects of luminance masking and contrast sensitivity, with a black-box deep neural network. We demonstrate that the novel hybrid model can handle the change of viewing conditions correctly and outperforms state-of-the-art metrics.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"53 1","pages":"5429-5437"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85621061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dídac Surís, Adrià Recasens, David Bau, David F. Harwath, James R. Glass, A. Torralba
We propose a framework for learning through drawing. Our goal is to learn the correspondence between spoken words and abstract visual attributes, from a dataset of spoken descriptions of images. Building upon recent findings that GAN representations can be manipulated to edit semantic concepts in the generated output, we propose a new method to use such GAN-generated images to train a model using a triplet loss. To apply the method, we develop Audio CLEVRGAN, a new dataset of audio descriptions of GAN-generated CLEVR images, and we describe a training procedure that creates a curriculum of GAN-generated images that focuses training on image pairs that differ in a specific, informative way. Training is done without additional supervision beyond the spoken captions and the GAN. We find that training that takes advantage of GAN-generated edited examples results in improvements in the model's ability to learn attributes compared to previous results. Our proposed learning framework also results in models that can associate spoken words with some abstract visual concepts such as color and size.
{"title":"Learning Words by Drawing Images","authors":"Dídac Surís, Adrià Recasens, David Bau, David F. Harwath, James R. Glass, A. Torralba","doi":"10.1109/CVPR.2019.00213","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00213","url":null,"abstract":"We propose a framework for learning through drawing. Our goal is to learn the correspondence between spoken words and abstract visual attributes, from a dataset of spoken descriptions of images. Building upon recent findings that GAN representations can be manipulated to edit semantic concepts in the generated output, we propose a new method to use such GAN-generated images to train a model using a triplet loss. To apply the method, we develop Audio CLEVRGAN, a new dataset of audio descriptions of GAN-generated CLEVR images, and we describe a training procedure that creates a curriculum of GAN-generated images that focuses training on image pairs that differ in a specific, informative way. Training is done without additional supervision beyond the spoken captions and the GAN. We find that training that takes advantage of GAN-generated edited examples results in improvements in the model's ability to learn attributes compared to previous results. Our proposed learning framework also results in models that can associate spoken words with some abstract visual concepts such as color and size.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"213 1 1","pages":"2029-2038"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85642682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A key component of Simultaneous Localization and Mapping (SLAM) systems is the joint optimization of the estimated 3D map and camera trajectory. Bundle adjustment (BA) is the gold standard for this. Due to the large number of variables in dense RGB-D SLAM, previous work has focused on approximating BA. In contrast, in this paper we present a novel, fast direct BA formulation which we implement in a real-time dense RGB-D SLAM algorithm. In addition, we show that direct RGB-D SLAM systems are highly sensitive to rolling shutter, RGB and depth sensor synchronization, and calibration errors. In order to facilitate state-of-the-art research on direct RGB-D SLAM, we propose a novel, well-calibrated benchmark for this task that uses synchronized global shutter RGB and depth cameras. It includes a training set, a test set without public ground truth, and an online evaluation service. We observe that the ranking of methods changes on this dataset compared to existing ones, and our proposed algorithm outperforms all other evaluated SLAM methods. Our benchmark and our open source SLAM algorithm are available at: www.eth3d.net
同时定位与测绘(SLAM)系统的一个关键组成部分是估计的三维地图和相机轨迹的联合优化。捆绑调整(BA)是这方面的黄金标准。由于密集RGB-D SLAM中存在大量变量,以往的工作主要集中在近似BA上。相比之下,在本文中,我们提出了一种新的,快速的直接BA公式,我们在实时密集RGB-D SLAM算法中实现。此外,我们发现直接RGB- d SLAM系统对滚动快门、RGB和深度传感器同步以及校准误差高度敏感。为了促进对直接RGB- d SLAM的最新研究,我们提出了一种新的、校准良好的基准,该基准使用同步全局快门RGB和深度相机。它包括一个训练集,一个没有公开基础真理的测试集,以及一个在线评估服务。我们观察到,与现有方法相比,该数据集上方法的排名发生了变化,并且我们提出的算法优于所有其他已评估的SLAM方法。我们的基准测试和开源SLAM算法可在:www.eth3d.net上获得
{"title":"BAD SLAM: Bundle Adjusted Direct RGB-D SLAM","authors":"Thomas Schöps, Torsten Sattler, M. Pollefeys","doi":"10.1109/CVPR.2019.00022","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00022","url":null,"abstract":"A key component of Simultaneous Localization and Mapping (SLAM) systems is the joint optimization of the estimated 3D map and camera trajectory. Bundle adjustment (BA) is the gold standard for this. Due to the large number of variables in dense RGB-D SLAM, previous work has focused on approximating BA. In contrast, in this paper we present a novel, fast direct BA formulation which we implement in a real-time dense RGB-D SLAM algorithm. In addition, we show that direct RGB-D SLAM systems are highly sensitive to rolling shutter, RGB and depth sensor synchronization, and calibration errors. In order to facilitate state-of-the-art research on direct RGB-D SLAM, we propose a novel, well-calibrated benchmark for this task that uses synchronized global shutter RGB and depth cameras. It includes a training set, a test set without public ground truth, and an online evaluation service. We observe that the ranking of methods changes on this dataset compared to existing ones, and our proposed algorithm outperforms all other evaluated SLAM methods. Our benchmark and our open source SLAM algorithm are available at: www.eth3d.net","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"23 1","pages":"134-144"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85972063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conventional domain adaptation methods usually resort to deep neural networks or subspace learning to find invariant representations across domains. However, most deep learning methods highly rely on large-size source domains and are computationally expensive to train, while subspace learning methods always have a quadratic time complexity that suffers from the large domain size. This paper provides a simple and efficient solution, which could be regarded as a well-performing baseline for domain adaptation tasks. Our method is built upon the nearest centroid classifier, seeking a subspace where the centroids in the target domain are moderately shifted from those in the source domain. Specifically, we design a unified objective without accessing the source domain data and adopt an alternating minimization scheme to iteratively discover the pseudo target labels, invariant subspace, and target centroids. Besides its privacy-preserving property (distant supervision), the algorithm is provably convergent and has a promising linear time complexity. In addition, the proposed method can be readily extended to multi-source setting and domain generalization, and it remarkably enhances popular deep adaptation methods by borrowing the learned transferable features. Extensive experiments on several benchmarks including object, digit, and face recognition datasets validate that our methods yield state-of-the-art results in various domain adaptation tasks.
{"title":"Distant Supervised Centroid Shift: A Simple and Efficient Approach to Visual Domain Adaptation","authors":"Jian Liang, R. He, Zhenan Sun, T. Tan","doi":"10.1109/CVPR.2019.00309","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00309","url":null,"abstract":"Conventional domain adaptation methods usually resort to deep neural networks or subspace learning to find invariant representations across domains. However, most deep learning methods highly rely on large-size source domains and are computationally expensive to train, while subspace learning methods always have a quadratic time complexity that suffers from the large domain size. This paper provides a simple and efficient solution, which could be regarded as a well-performing baseline for domain adaptation tasks. Our method is built upon the nearest centroid classifier, seeking a subspace where the centroids in the target domain are moderately shifted from those in the source domain. Specifically, we design a unified objective without accessing the source domain data and adopt an alternating minimization scheme to iteratively discover the pseudo target labels, invariant subspace, and target centroids. Besides its privacy-preserving property (distant supervision), the algorithm is provably convergent and has a promising linear time complexity. In addition, the proposed method can be readily extended to multi-source setting and domain generalization, and it remarkably enhances popular deep adaptation methods by borrowing the learned transferable features. Extensive experiments on several benchmarks including object, digit, and face recognition datasets validate that our methods yield state-of-the-art results in various domain adaptation tasks.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"24 1","pages":"2970-2979"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73073990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Wang, Peng Wang, Zhenheng Yang, Chenxu Luo, Yezhou Yang, W. Xu
In this paper, we propose UnOS, an unified system for unsupervised optical flow and stereo depth estimation using convolutional neural network (CNN) by taking advantages of their inherent geometrical consistency based on the rigid-scene assumption. UnOS significantly outperforms other state-of-the-art (SOTA) unsupervised approaches that treated the two tasks independently. Specifically, given two consecutive stereo image pairs from a video, UnOS estimates per-pixel stereo depth images, camera ego-motion and optical flow with three parallel CNNs. Based on these quantities, UnOS computes rigid optical flow and compares it against the optical flow estimated from the FlowNet, yielding pixels satisfying the rigid-scene assumption. Then, we encourage geometrical consistency between the two estimated flows within rigid regions, from which we derive a rigid-aware direct visual odometry (RDVO) module. We also propose rigid and occlusion-aware flow-consistency losses for the learning of UnOS. We evaluated our results on the popular KITTI dataset over 4 related tasks, ie stereo depth, optical flow, visual odometry and motion segmentation.
{"title":"UnOS: Unified Unsupervised Optical-Flow and Stereo-Depth Estimation by Watching Videos","authors":"Yang Wang, Peng Wang, Zhenheng Yang, Chenxu Luo, Yezhou Yang, W. Xu","doi":"10.1109/CVPR.2019.00826","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00826","url":null,"abstract":"In this paper, we propose UnOS, an unified system for unsupervised optical flow and stereo depth estimation using convolutional neural network (CNN) by taking advantages of their inherent geometrical consistency based on the rigid-scene assumption. UnOS significantly outperforms other state-of-the-art (SOTA) unsupervised approaches that treated the two tasks independently. Specifically, given two consecutive stereo image pairs from a video, UnOS estimates per-pixel stereo depth images, camera ego-motion and optical flow with three parallel CNNs. Based on these quantities, UnOS computes rigid optical flow and compares it against the optical flow estimated from the FlowNet, yielding pixels satisfying the rigid-scene assumption. Then, we encourage geometrical consistency between the two estimated flows within rigid regions, from which we derive a rigid-aware direct visual odometry (RDVO) module. We also propose rigid and occlusion-aware flow-consistency losses for the learning of UnOS. We evaluated our results on the popular KITTI dataset over 4 related tasks, ie stereo depth, optical flow, visual odometry and motion segmentation.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"2 1","pages":"8063-8073"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74709738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose a new learning paradigm, Local to Global Learning (LGL), for Deep Neural Networks (DNNs) to improve the performance of classification problems. The core of LGL is to learn a DNN model from fewer categories (local) to more categories (global) gradually within the entire training set. LGL is most related to the Self-Paced Learning (SPL) algorithm but its formulation is different from SPL. SPL trains its data from simple to complex, while LGL from local to global. In this paper, we incorporate the idea of LGL into the learning objective of DNNs and explain why LGL works better from an information-theoretic perspective. Experiments on the toy data, CIFAR-10, CIFAR-100, and ImageNet dataset show that LGL outperforms the baseline and SPL-based algorithms.
我们提出了一种新的学习范式,局部到全局学习(LGL),用于深度神经网络(dnn)来提高分类问题的性能。LGL的核心是在整个训练集中,从更少的类别(局部)逐渐学习到更多的类别(全局)。LGL与自进度学习(self - pace Learning, SPL)算法关系最为密切,但其表述与自进度学习(self - pace Learning)算法不同。SPL从简单到复杂的数据训练,LGL从本地到全局的数据训练。在本文中,我们将LGL的思想融入到深度神经网络的学习目标中,并从信息论的角度解释了LGL为什么能更好地工作。在玩具数据、CIFAR-10、CIFAR-100和ImageNet数据集上的实验表明,LGL优于基线算法和基于pl的算法。
{"title":"Local to Global Learning: Gradually Adding Classes for Training Deep Neural Networks","authors":"Hao Cheng, Dongze Lian, Bowen Deng, Shenghua Gao, T. Tan, Yanlin Geng","doi":"10.1109/CVPR.2019.00488","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00488","url":null,"abstract":"We propose a new learning paradigm, Local to Global Learning (LGL), for Deep Neural Networks (DNNs) to improve the performance of classification problems. The core of LGL is to learn a DNN model from fewer categories (local) to more categories (global) gradually within the entire training set. LGL is most related to the Self-Paced Learning (SPL) algorithm but its formulation is different from SPL. SPL trains its data from simple to complex, while LGL from local to global. In this paper, we incorporate the idea of LGL into the learning objective of DNNs and explain why LGL works better from an information-theoretic perspective. Experiments on the toy data, CIFAR-10, CIFAR-100, and ImageNet dataset show that LGL outperforms the baseline and SPL-based algorithms.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"947 1","pages":"4743-4751"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77578172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}