Pub Date : 2024-12-10DOI: 10.1007/s10973-024-13816-y
Aizat A. Samatov, Kirill S. Konyashin, Boris N. Solomonov, Ruslan N. Nagrimanov
Information about the structure-property relationship can be useful for the synthesis of compounds with desired properties, analysis of the role of intermolecular interactions in various physicochemical processes and separation of the synthesis product from impurities. In the present work, the influence of the position of the carbonyl group on the saturated vapour pressure and enthalpy of vaporization of ketones was studied. The saturated vapour pressures of isomeric decanones, undecanones and isophorone were measured by the transpiration method. The enthalpies of vaporization of isomeric ketones were determined using various methods: solution calorimetry, transpiration and correlation gas chromatography. The obtained values agree with each other within 1 kJ mol−1. It was shown that 2-alkanones have higher enthalpies of vaporization and lower vapour pressures than 3-, 4-, 5-, 6-alkanones, which can be explained by the stronger intermolecular interactions existing between the molecules of 2-alkanones compared to others isomers.
{"title":"Influence of the position of carbonyl group in ketones on their enthalpies of vaporization and saturated vapour pressures","authors":"Aizat A. Samatov, Kirill S. Konyashin, Boris N. Solomonov, Ruslan N. Nagrimanov","doi":"10.1007/s10973-024-13816-y","DOIUrl":"10.1007/s10973-024-13816-y","url":null,"abstract":"<div><p>Information about the structure-property relationship can be useful for the synthesis of compounds with desired properties, analysis of the role of intermolecular interactions in various physicochemical processes and separation of the synthesis product from impurities. In the present work, the influence of the position of the carbonyl group on the saturated vapour pressure and enthalpy of vaporization of ketones was studied. The saturated vapour pressures of isomeric decanones, undecanones and isophorone were measured by the transpiration method. The enthalpies of vaporization of isomeric ketones were determined using various methods: solution calorimetry, transpiration and correlation gas chromatography. The obtained values agree with each other within 1 kJ mol<sup>−1</sup>. It was shown that 2<i>-</i>alkanones have higher enthalpies of vaporization and lower vapour pressures than 3-, 4-, 5-, 6-alkanones, which can be explained by the stronger intermolecular interactions existing between the molecules of 2-alkanones compared to others isomers.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14913 - 14924"},"PeriodicalIF":3.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1007/s10973-024-13795-0
Usman Afzal, Nehad Ali Shah, Zeeshan, Jae Dong Chung
Bioheat transfer is pivotal in a range of medical and daily applications, contributing to health and well-being. In hyperthermia treatment, it facilitates the elevation of temperatures in malignant tissues, thereby increasing their sensitivity to interventions such as radiation and chemotherapy, as well as in wearable monitoring devices, rehabilitation methods like heating pads and wraps, and electric blankets. This paper investigates the effects of thermal memory and dynamic linear thermal shocks on heat transfer within biological tissues. The research utilizes an advanced form of the Pennes equation for this analysis. The mathematical framework is based on an innovative time fractional generalized Fourier’s law, which can clarify particular aspects of atypical thermal diffusion phenomena. In the model being analyzed, the temperature gradient and its historical context influence the thermal flux. Additionally, at a specific location within the tissue, the thermal source induces a linear thermal shock at every instant. For both graphical and numerical simulations, Mathcad is employed to assess how the thermal memory parameter influences heat transfer.
{"title":"Thermal memory and moving linear thermal shocks on heat transfer within biological tissues: an Atangana Baleneau fractional integral","authors":"Usman Afzal, Nehad Ali Shah, Zeeshan, Jae Dong Chung","doi":"10.1007/s10973-024-13795-0","DOIUrl":"10.1007/s10973-024-13795-0","url":null,"abstract":"<div><p>Bioheat transfer is pivotal in a range of medical and daily applications, contributing to health and well-being. In hyperthermia treatment, it facilitates the elevation of temperatures in malignant tissues, thereby increasing their sensitivity to interventions such as radiation and chemotherapy, as well as in wearable monitoring devices, rehabilitation methods like heating pads and wraps, and electric blankets. This paper investigates the effects of thermal memory and dynamic linear thermal shocks on heat transfer within biological tissues. The research utilizes an advanced form of the Pennes equation for this analysis. The mathematical framework is based on an innovative time fractional generalized Fourier’s law, which can clarify particular aspects of atypical thermal diffusion phenomena. In the model being analyzed, the temperature gradient and its historical context influence the thermal flux. Additionally, at a specific location within the tissue, the thermal source induces a linear thermal shock at every instant. For both graphical and numerical simulations, Mathcad is employed to assess how the thermal memory parameter influences heat transfer.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"15339 - 15351"},"PeriodicalIF":3.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1007/s10973-024-13733-0
Ozgur Cem Kugu, Ozge Yetik
In this study, an attempt has been made to develop a different design for a gray cast iron rear brake disk used in the automotive industry, which can serve as an alternative to traditional designs. The designs were created to enable the production of this brake disk on the Disamatic vertical molding machine. The purpose of this study is to prevent casting defects that may occur in traditional designs. The simulation parameters were clearly explained and the correctness of the mesh structure was stated. These are the necessary parameters to show how reliable our study is. In order to minimize air bubble and sand inclusion defects encountered in the casting of a 4.5-kg automobile brake disk, different runner system simulations were performed and optimized instead of traditional runner system designs. Three different models were evaluated. The result of this study showed that the newly developed designs might be more useful than the traditional design. The resulting different filling profiles were directly associated with the gating system. The Reynolds number was used to indicate whether the liquid metal flow was turbulent or not, making it easier to make a sensible choice between designs. The designs were compared in terms of possible casting defects. The results revealed that the new designs had a more homogeneous filling profile and a lower risk of casting defects. It was found that design 2 was the most suitable option among the proposed models.
{"title":"Evaluation of flow simulation results of gray cast iron brake disk for alternative gating system design","authors":"Ozgur Cem Kugu, Ozge Yetik","doi":"10.1007/s10973-024-13733-0","DOIUrl":"10.1007/s10973-024-13733-0","url":null,"abstract":"<div><p>In this study, an attempt has been made to develop a different design for a gray cast iron rear brake disk used in the automotive industry, which can serve as an alternative to traditional designs. The designs were created to enable the production of this brake disk on the Disamatic vertical molding machine. The purpose of this study is to prevent casting defects that may occur in traditional designs. The simulation parameters were clearly explained and the correctness of the mesh structure was stated. These are the necessary parameters to show how reliable our study is. In order to minimize air bubble and sand inclusion defects encountered in the casting of a 4.5-kg automobile brake disk, different runner system simulations were performed and optimized instead of traditional runner system designs. Three different models were evaluated. The result of this study showed that the newly developed designs might be more useful than the traditional design. The resulting different filling profiles were directly associated with the gating system. The Reynolds number was used to indicate whether the liquid metal flow was turbulent or not, making it easier to make a sensible choice between designs. The designs were compared in terms of possible casting defects. The results revealed that the new designs had a more homogeneous filling profile and a lower risk of casting defects. It was found that design 2 was the most suitable option among the proposed models.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"15159 - 15177"},"PeriodicalIF":3.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10973-024-13733-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1007/s10973-024-13802-4
Yi Zhang, Bingtao Wang, Yan Xia, Li Zhang, Yingke Zhu, Zhenghong Guo, Juan Li
High flame retardancy and thermal conductivity are key performances for advanced electronic packaging materials. Herein, boron nitride (BN) and epoxy curing agent were chemically bonded with highly flame retardant DOPO moieties to obtain BN-DOPO thermal conductive filler and DOPO-PA curing agent with flame retardancy. The effect of BN-DOPO and DOPO-PA on the thermal stability, flame retardancy, combustion behavior and thermal conductive performance of EP composites were analyzed in detail. Compared with EP/Al(OH)3, up to 32.5% in LOI, V0 rating in UL-94, prolonged 125 s of TTI, 22% reduction of PHRR and 29% reduction of THR in cone test were observed when both BN-DOPO and DOPO-PA were incorporated into EP cross-linking network. According to the residual char morphology, the excellent flame retardancy of EP/Al(OH)3 composite containing BN-DOPO and DOPO-PA was attributed to the formation of compact front char covered by fluffy porous carbon and thick continuous back char with tiny aluminum oxide particles. Moreover, the introduction of a small amount of BN-DOPO and DOPO-PA could also greatly improve the thermal conductivity of EP/Al(OH)3 by 107% due to the better compatibility resulting in lower interface thermal resistance and more effective thermal transfer caused by the participation of BN-DOPO and DOPO-PA into epoxy curing reactions.
{"title":"Highly flame retardant and thermal conductive epoxy composites using curing agent and boron nitride modified by phosphorus containing group","authors":"Yi Zhang, Bingtao Wang, Yan Xia, Li Zhang, Yingke Zhu, Zhenghong Guo, Juan Li","doi":"10.1007/s10973-024-13802-4","DOIUrl":"10.1007/s10973-024-13802-4","url":null,"abstract":"<div><p>High flame retardancy and thermal conductivity are key performances for advanced electronic packaging materials. Herein, boron nitride (BN) and epoxy curing agent were chemically bonded with highly flame retardant DOPO moieties to obtain BN-DOPO thermal conductive filler and DOPO-PA curing agent with flame retardancy. The effect of BN-DOPO and DOPO-PA on the thermal stability, flame retardancy, combustion behavior and thermal conductive performance of EP composites were analyzed in detail. Compared with EP/Al(OH)<sub>3</sub>, up to 32.5% in LOI, V0 rating in UL-94, prolonged 125 s of TTI, 22% reduction of PHRR and 29% reduction of THR in cone test were observed when both BN-DOPO and DOPO-PA were incorporated into EP cross-linking network. According to the residual char morphology, the excellent flame retardancy of EP/Al(OH)<sub>3</sub> composite containing BN-DOPO and DOPO-PA was attributed to the formation of compact front char covered by fluffy porous carbon and thick continuous back char with tiny aluminum oxide particles. Moreover, the introduction of a small amount of BN-DOPO and DOPO-PA could also greatly improve the thermal conductivity of EP/Al(OH)<sub>3</sub> by 107% due to the better compatibility resulting in lower interface thermal resistance and more effective thermal transfer caused by the participation of BN-DOPO and DOPO-PA into epoxy curing reactions.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14687 - 14698"},"PeriodicalIF":3.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1007/s10973-024-13727-y
Priya Tak, Hemant Poonia
Viscoelastic liquids are of great interest for industrial and engineering applications due to their unique properties. This research presents a comparative examination of tri-nanomaterial Darcy-Forchheimer flow, involving Oldroyd-B, Maxwell, and Jeffrey (OMJ) nanofluids, over a permeable stretching sheet. The analysis integrates the influences of quadratic thermal radiation, activation energy, magnetic field, and heat source. Additionally, Buongiorno’s model has been utilized along with convective thermal boundary conditions. By leveraging local non-similar approach (LNSA), the modelled highly nonlinear partial differential equations (PDEs) are transformed into a set of ordinary differential equations (ODEs) which are further solved using the finite-difference-based bvp5c solver. It is determined that a rise in the Forchheimer parameter reduces the velocity field. The least and highest temperature profile is observed for Maxwell and Oldroyd-B nanofluids, respectively. It is further noted that per-unit increase in the Forchheimer parameter declines the drag coefficient by 15.43%, 23.87%, and 14.49% for Oldroyd-B, Maxwell, and Jeffrey nanofluid, respectively. As the temperature ratio raises, the heat transfer rate and mass transfer rate increase. Additionally, it is seen that the Oldroyd-B has the highest transfer rates followed by Jeffrey and Maxwell nanofluid.