Pub Date : 2024-07-30DOI: 10.1007/s11030-024-10944-3
Supawadee Sainimnuan, Aunlika Chimprasit, Supa Hannongbua, Patchreenart Saparpakorn
Phosphodiesterase type 5 (PDE5) inhibitors play a crucial role in blocking PDE5 to improve erectile dysfunction (ED). However, most PDE5 drugs revealed side effects including the loss of vision due to the PDE6 inhibition. Phenanthrene derivatives isolated from E. macrobulbon were previously reported as PDE5 inhibitors. Two phenanthrene derivatives (cpds 1-2) revealed better inhibition to PDE5 than PDE6 and cpd 1 is more selective to PDE5 than cpd 2. To elucidate why the phenanthrene derivatives could inhibit PDE5 and PDE6, their binding modes were investigated using molecular dynamics simulations and quantum chemical calculations, as compared to the PDE5 drugs. From the results, all four drugs and phenanthrene derivatives revealed similar π-π interactions to Phe820 in PDE5. Additional H-bond interaction to Gln817 in PDE5 resulted in better PDE5 inhibition of vardenafil and tadalafil. Moreover, cpds 1-2 were able to form the H-bond interaction with Asp764 in PDE5. In the case of the PDE6, the loss of π-π interaction to Phe776 and H-bond interaction to Gln773 indicated the important points for losing the PDE6 inhibition. In conclusion, to develop the new potent PDE5 inhibitors, not only the important interaction with PDE5 but also the interaction with PDE6 should be considered. In phenanthrene derivatives, the middle ring was significant to form π-π interactions to Phe820 in PDE5 and hydroxyl substituent was also the key part to form the H-bond interaction with Asp764 in PDE5. Principal component analysis (PCA) and free energy landscape (FEL) analysis indicated the stability of the system. The bioavailability, drug-likeness, and pharmacokinetics of phenanthrene derivatives were also predicted. These derivatives revealed good drug-likeness and GI absorption. The obtained results showed that phenanthrene derivatives could be interesting for the development of PDE5 inhibitors in the future.
{"title":"Role of interaction mode of phenanthrene derivatives as selective PDE5 inhibitors using molecular dynamics simulations and quantum chemical calculations.","authors":"Supawadee Sainimnuan, Aunlika Chimprasit, Supa Hannongbua, Patchreenart Saparpakorn","doi":"10.1007/s11030-024-10944-3","DOIUrl":"https://doi.org/10.1007/s11030-024-10944-3","url":null,"abstract":"<p><p>Phosphodiesterase type 5 (PDE5) inhibitors play a crucial role in blocking PDE5 to improve erectile dysfunction (ED). However, most PDE5 drugs revealed side effects including the loss of vision due to the PDE6 inhibition. Phenanthrene derivatives isolated from E. macrobulbon were previously reported as PDE5 inhibitors. Two phenanthrene derivatives (cpds 1-2) revealed better inhibition to PDE5 than PDE6 and cpd 1 is more selective to PDE5 than cpd 2. To elucidate why the phenanthrene derivatives could inhibit PDE5 and PDE6, their binding modes were investigated using molecular dynamics simulations and quantum chemical calculations, as compared to the PDE5 drugs. From the results, all four drugs and phenanthrene derivatives revealed similar π-π interactions to Phe820 in PDE5. Additional H-bond interaction to Gln817 in PDE5 resulted in better PDE5 inhibition of vardenafil and tadalafil. Moreover, cpds 1-2 were able to form the H-bond interaction with Asp764 in PDE5. In the case of the PDE6, the loss of π-π interaction to Phe776 and H-bond interaction to Gln773 indicated the important points for losing the PDE6 inhibition. In conclusion, to develop the new potent PDE5 inhibitors, not only the important interaction with PDE5 but also the interaction with PDE6 should be considered. In phenanthrene derivatives, the middle ring was significant to form π-π interactions to Phe820 in PDE5 and hydroxyl substituent was also the key part to form the H-bond interaction with Asp764 in PDE5. Principal component analysis (PCA) and free energy landscape (FEL) analysis indicated the stability of the system. The bioavailability, drug-likeness, and pharmacokinetics of phenanthrene derivatives were also predicted. These derivatives revealed good drug-likeness and GI absorption. The obtained results showed that phenanthrene derivatives could be interesting for the development of PDE5 inhibitors in the future.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1007/s11030-024-10939-0
Jia-Hao Tao, Ping-Lang Ruan, Jun Zhang, Yong Zhou, Cha-Xiang Guan
Cyclin-dependent kinases (CDKs) are overexpressed in tumor cells, and their aberrant activation can promote the progression of non-small-cell lung cancer (NSCLC). We utilized structure-based virtual screening and experimental validation to screen for potential CDKs antagonists among TargetMol natural products. Molecular docking and molecular dynamics simulation results indicate that Dolastatin 10 exhibits strong interactions with multiple subtypes of CDKs (CDK1, CDK2, CDK3, CDK4, and CDK6), forming stable CDKs-Dolastatin 10 complex compounds. Furthermore, in vitro experiments demonstrate that Dolastatin 10 significantly inhibits the viability, migration, and invasion of H1299 cells in a concentration-dependent manner, arresting the cell cycle at the G2/M phase by inducing cell senescence. These findings suggest that Dolastatin 10 may serve as a potential CDKs antagonist deserving further investigation.
{"title":"Identification of the potential Pan-CDK antagonists: tracing the path of virtual screening and inhibitory activity on lung cancer cells.","authors":"Jia-Hao Tao, Ping-Lang Ruan, Jun Zhang, Yong Zhou, Cha-Xiang Guan","doi":"10.1007/s11030-024-10939-0","DOIUrl":"https://doi.org/10.1007/s11030-024-10939-0","url":null,"abstract":"<p><p>Cyclin-dependent kinases (CDKs) are overexpressed in tumor cells, and their aberrant activation can promote the progression of non-small-cell lung cancer (NSCLC). We utilized structure-based virtual screening and experimental validation to screen for potential CDKs antagonists among TargetMol natural products. Molecular docking and molecular dynamics simulation results indicate that Dolastatin 10 exhibits strong interactions with multiple subtypes of CDKs (CDK1, CDK2, CDK3, CDK4, and CDK6), forming stable CDKs-Dolastatin 10 complex compounds. Furthermore, in vitro experiments demonstrate that Dolastatin 10 significantly inhibits the viability, migration, and invasion of H1299 cells in a concentration-dependent manner, arresting the cell cycle at the G2/M phase by inducing cell senescence. These findings suggest that Dolastatin 10 may serve as a potential CDKs antagonist deserving further investigation.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inspired from the important applications of spirocyclic compounds in medicinal chemistry, a new series of pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids was reported via Cu(I)-catalyzed click reaction from isatin-pyrazoline linked terminal alkynes with in situ derived benzyl azides. Antimicrobial evaluation data showed that all hybrids exhibited promising efficacy towards the tested microbial strains. Antimicrobial screening as well as docking studies suggested that hybrid 6a was found to be most potent towards Aspergillus niger (MIC = 0.0122 μmol/mL) and Escherichia coli (MIC = 0.0061 μmol/mL). Molecular docking studies of 6a within the binding pockets of antibacterial and antifungal targets revealed good interactions with the binding energies of - 144.544 kcal/mol and - 154.364 kcal/mol against 1KZN (E. coli) and 3D3Z (A. niger), respectively. Further, MD simulations were performed to study the stability of the complexes formed at 300 K. Based on the RMSD trajectories, it is evident that 3D3Z-6a complex exhibits minimal deviation, whereas the 1KZN-6a complex displayed little more deviation compared to the protein but, both are in acceptable range. Moreover, 3D3Z-6a and 1KZN-6a showed maximum number of hydrogen bonds at 50 ns and 70 ns, respectively, thereby complementing the stability of these complexes.
{"title":"Pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids: Design, synthesis, antimicrobial efficacy and molecular modelling studies.","authors":"Akanksha Bhukal, Vijay Kumar, Anirudh Pratap Singh Raman, Anil Kumar, Prashant Singh, Kashmiri Lal","doi":"10.1007/s11030-024-10928-3","DOIUrl":"https://doi.org/10.1007/s11030-024-10928-3","url":null,"abstract":"<p><p>Inspired from the important applications of spirocyclic compounds in medicinal chemistry, a new series of pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids was reported via Cu(I)-catalyzed click reaction from isatin-pyrazoline linked terminal alkynes with in situ derived benzyl azides. Antimicrobial evaluation data showed that all hybrids exhibited promising efficacy towards the tested microbial strains. Antimicrobial screening as well as docking studies suggested that hybrid 6a was found to be most potent towards Aspergillus niger (MIC = 0.0122 μmol/mL) and Escherichia coli (MIC = 0.0061 μmol/mL). Molecular docking studies of 6a within the binding pockets of antibacterial and antifungal targets revealed good interactions with the binding energies of - 144.544 kcal/mol and - 154.364 kcal/mol against 1KZN (E. coli) and 3D3Z (A. niger), respectively. Further, MD simulations were performed to study the stability of the complexes formed at 300 K. Based on the RMSD trajectories, it is evident that 3D3Z-6a complex exhibits minimal deviation, whereas the 1KZN-6a complex displayed little more deviation compared to the protein but, both are in acceptable range. Moreover, 3D3Z-6a and 1KZN-6a showed maximum number of hydrogen bonds at 50 ns and 70 ns, respectively, thereby complementing the stability of these complexes.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1007/s11030-024-10932-7
Nyzar Mabeth O Odchimar, Mark Andrian B Macalalad, Fredmoore L Orosco
Nipah Virus is a re-emerging zoonotic paramyxovirus that poses a significant threat to both swine industry and human health. The pursuit of potential antiviral agents with both preventive and therapeutic properties holds promise for targeting such viruses. To expedite this search, leveraging computational biology is essential. Streptomyces is renowned for its capacity to produce large and diverse metabolites with promising bioactivities. In the current study, we conducted a comprehensive structure-based virtual screening of 6524 Streptomyces spp. metabolites sourced from the StreptomeDB database to evaluate their potential inhibitory effects on three Nipah virus fusion (NiVF) protein conformations: NiVF pre-fusion 1-mer (NiVF-1mer), pre-fusion 3-mer (NiVF-3mer), and NiVF post-fusion (NiVF-PoF). Prior to virtual screening, the drug-likeness of Streptomyces spp. compounds was profiled using ADMET properties. From the 913 ADMET-filtered compounds, the subsequent targeted and confirmatory blind docking analysis revealed that S896 or virginiamycin M1, a known macrolide antibiotic, showed a maximum binding affinity with the NiVF proteins, suggesting a multi-targeting inhibitory property. In addition, the 200-ns molecular dynamics simulation and MM/PBSA analyses revealed stable and strong binding affinity between the NiVF-S896 complexes, indicating favorable interactions between S896 and the target proteins. These findings suggest the potential of virginiamycin M1, an antibiotic, as a promising multi-targeting antiviral drug. However, in vitro and in vivo experimental validations are necessary to assess their safety and efficacy.
{"title":"From antibiotic to antiviral: computational screening reveals a multi-targeting antibiotic from Streptomyces spp. against Nipah virus fusion proteins.","authors":"Nyzar Mabeth O Odchimar, Mark Andrian B Macalalad, Fredmoore L Orosco","doi":"10.1007/s11030-024-10932-7","DOIUrl":"https://doi.org/10.1007/s11030-024-10932-7","url":null,"abstract":"<p><p>Nipah Virus is a re-emerging zoonotic paramyxovirus that poses a significant threat to both swine industry and human health. The pursuit of potential antiviral agents with both preventive and therapeutic properties holds promise for targeting such viruses. To expedite this search, leveraging computational biology is essential. Streptomyces is renowned for its capacity to produce large and diverse metabolites with promising bioactivities. In the current study, we conducted a comprehensive structure-based virtual screening of 6524 Streptomyces spp. metabolites sourced from the StreptomeDB database to evaluate their potential inhibitory effects on three Nipah virus fusion (NiVF) protein conformations: NiVF pre-fusion 1-mer (NiVF-1mer), pre-fusion 3-mer (NiVF-3mer), and NiVF post-fusion (NiVF-PoF). Prior to virtual screening, the drug-likeness of Streptomyces spp. compounds was profiled using ADMET properties. From the 913 ADMET-filtered compounds, the subsequent targeted and confirmatory blind docking analysis revealed that S896 or virginiamycin M1, a known macrolide antibiotic, showed a maximum binding affinity with the NiVF proteins, suggesting a multi-targeting inhibitory property. In addition, the 200-ns molecular dynamics simulation and MM/PBSA analyses revealed stable and strong binding affinity between the NiVF-S896 complexes, indicating favorable interactions between S896 and the target proteins. These findings suggest the potential of virginiamycin M1, an antibiotic, as a promising multi-targeting antiviral drug. However, in vitro and in vivo experimental validations are necessary to assess their safety and efficacy.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1007/s11030-024-10924-7
Saeeda Mubashra, Ayesha Rafiq, Sana Aslam, Nasir Rasool, Matloob Ahmad
The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.
{"title":"Recent synthetic strategies for N-arylation of pyrrolidines: a potential template for biologically active molecules.","authors":"Saeeda Mubashra, Ayesha Rafiq, Sana Aslam, Nasir Rasool, Matloob Ahmad","doi":"10.1007/s11030-024-10924-7","DOIUrl":"https://doi.org/10.1007/s11030-024-10924-7","url":null,"abstract":"<p><p>The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The excessive activation of the monkeypox virus (MPXV-Congo_8-156) is linked to various skin and respiratory disorders such as rashes, fluid-filled blisters, swollen lymph nodes and encephalitis (inflammation of the brain), highlighting MPXV-Congo_8-156 as a promising target for drug intervention. Despite the effectiveness of Cidofovir, in inhibiting MPXV activity, its limited ability to penetrate the skin and its strong side effects restrict its application. To address this challenge, we screened 500 compounds capable of penetrating the skin and gastrointestinal tract to identify potent MPXV inhibitors. Various characterization schemes and structural models of MPXV-Congo_8-156 were explored with bioinformatics tools like PROTPARAM, SOPMA, SWISS-MODEL and PROCHECK. Using molecular docking in PyRx, we evaluated the binding affinities of these compounds with MPXV-Congo_8-156 and identified the top five candidates ranging from - 9.2 to - 8.8 kcal/mol. ADMET analysis indicated that all five compounds were safer alternatives, showing no AMES toxicity or carcinogenicity in toxicological assessments. Molecular dynamics (MD) simulations, conducted for 100 ns each, confirmed the docking interactions of the top five compounds alongside the control (Cidofovir), validating their potential as MPXV inhibitors. The compounds with PubChem CID numbers 4061636, 4422538, 3583576, 4856107 and 4800629 demonstrated strong support in terms of root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA) value, hydrogen bond analysis, and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis. Thus, our investigation identified these five compounds as promising inhibitors of MPXV, offering potential therapeutic avenues. However, further in vivo studies are necessary to validate our findings.
{"title":"Functional characterization and structural prediction of hypothetical proteins in monkeypox virus and identification of potential inhibitors.","authors":"Reana Raen, Muhammad Muinul Islam, Redwanul Islam, Md Rabiul Islam, Tanima Jarin","doi":"10.1007/s11030-024-10935-4","DOIUrl":"https://doi.org/10.1007/s11030-024-10935-4","url":null,"abstract":"<p><p>The excessive activation of the monkeypox virus (MPXV-Congo_8-156) is linked to various skin and respiratory disorders such as rashes, fluid-filled blisters, swollen lymph nodes and encephalitis (inflammation of the brain), highlighting MPXV-Congo_8-156 as a promising target for drug intervention. Despite the effectiveness of Cidofovir, in inhibiting MPXV activity, its limited ability to penetrate the skin and its strong side effects restrict its application. To address this challenge, we screened 500 compounds capable of penetrating the skin and gastrointestinal tract to identify potent MPXV inhibitors. Various characterization schemes and structural models of MPXV-Congo_8-156 were explored with bioinformatics tools like PROTPARAM, SOPMA, SWISS-MODEL and PROCHECK. Using molecular docking in PyRx, we evaluated the binding affinities of these compounds with MPXV-Congo_8-156 and identified the top five candidates ranging from - 9.2 to - 8.8 kcal/mol. ADMET analysis indicated that all five compounds were safer alternatives, showing no AMES toxicity or carcinogenicity in toxicological assessments. Molecular dynamics (MD) simulations, conducted for 100 ns each, confirmed the docking interactions of the top five compounds alongside the control (Cidofovir), validating their potential as MPXV inhibitors. The compounds with PubChem CID numbers 4061636, 4422538, 3583576, 4856107 and 4800629 demonstrated strong support in terms of root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA) value, hydrogen bond analysis, and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis. Thus, our investigation identified these five compounds as promising inhibitors of MPXV, offering potential therapeutic avenues. However, further in vivo studies are necessary to validate our findings.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A series of indole derivatives containing quinoline structures were designed and synthesized. The synthesized compounds were characterized by NMR and HRMS. And W14 was performed by single crystal X-ray diffraction experiments. The antiviral activity studies showed that some of the target compounds possessed significant activity against tobacco mosaic virus (TMV). In particular, W20 had significant activity. The results of in vivo anti-TMV activity assay showed that W20 possessed the best curative and protective activities with EC50 values of 84.4 and 65.7 μg/mL, which were better than ningnanmycin (NNM) 205.1 and 162.0 μg/mL, respectively. The results of Microscale thermophoresis (MST) showed that W20 had a strong binding affinity for the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) of 0.00519 μmol/L, which was superior to that of NNM (1. 65320 μmol/L). The molecular docking studies were in accordance with the experimental results. In addition, the determination of malondialdehyde (MDA) content in tobacco leaves showed that W20 improved the disease resistance of tobacco. Overall, this study shows that indole derivatives containing quinoline can be used as new antiviral agents for plant viruses for further research.
{"title":"Design, synthesis and antiviral activity of indole derivatives containing quinoline moiety.","authors":"Bangcan He, Yuzhi Hu, Yishan Qin, Yufang Zhang, Xingping Luo, Zhenchao Wang, Wei Xue","doi":"10.1007/s11030-024-10894-w","DOIUrl":"https://doi.org/10.1007/s11030-024-10894-w","url":null,"abstract":"<p><p>A series of indole derivatives containing quinoline structures were designed and synthesized. The synthesized compounds were characterized by NMR and HRMS. And W14 was performed by single crystal X-ray diffraction experiments. The antiviral activity studies showed that some of the target compounds possessed significant activity against tobacco mosaic virus (TMV). In particular, W20 had significant activity. The results of in vivo anti-TMV activity assay showed that W20 possessed the best curative and protective activities with EC<sub>50</sub> values of 84.4 and 65.7 μg/mL, which were better than ningnanmycin (NNM) 205.1 and 162.0 μg/mL, respectively. The results of Microscale thermophoresis (MST) showed that W20 had a strong binding affinity for the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (K<sub>d</sub>) of 0.00519 μmol/L, which was superior to that of NNM (1. 65320 μmol/L). The molecular docking studies were in accordance with the experimental results. In addition, the determination of malondialdehyde (MDA) content in tobacco leaves showed that W20 improved the disease resistance of tobacco. Overall, this study shows that indole derivatives containing quinoline can be used as new antiviral agents for plant viruses for further research.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein methyltransferases (PMTs) are a group of enzymes that help catalyze the transfer of a methyl group to its substrates. These enzymes play an important role in epigenetic regulation and can methylate various substrates with DNA, RNA, protein, and small-molecule secondary metabolites. Dysregulation of methyltransferases is implicated in various human cancers. However, in light of the well-recognized significance of PMTs, reliable and efficient identification methods are essential. In the present work, we propose a machine-learning-based method for the identification of PMTs. Various sequence-based features were calculated, and prediction models were trained using various machine-learning algorithms using a tenfold cross-validation technique. After evaluating each model on the dataset, the SVM-based CKSAAP model achieved the highest prediction accuracy with balanced sensitivity and specificity. Also, this SVM model outperformed deep-learning algorithms for the prediction of PMTs. In addition, cross-database validation was performed to ensure the robustness of the model. Feature importance was assessed using shapley additive explanations (SHAP) values, providing insights into the contributions of different features to the model’s predictions. Finally, the SVM-based CKSAAP model was implemented in a standalone tool, PMTPred, due to its consistent performance during independent testing and cross-database evaluation. We believe that PMTPred will be a useful and efficient tool for the identification of PMTs. The PMTPred is freely available for download at https://github.com/ArvindYadav7/PMTPred and http://www.bioinfoindia.org/PMTPred/home.html for research and academic use.
{"title":"PMTPred: machine-learning-based prediction of protein methyltransferases using the composition of k-spaced amino acid pairs","authors":"Arvind Kumar Yadav, Pradeep Kumar Gupta, Tiratha Raj Singh","doi":"10.1007/s11030-024-10937-2","DOIUrl":"10.1007/s11030-024-10937-2","url":null,"abstract":"<div><p>Protein methyltransferases (PMTs) are a group of enzymes that help catalyze the transfer of a methyl group to its substrates. These enzymes play an important role in epigenetic regulation and can methylate various substrates with DNA, RNA, protein, and small-molecule secondary metabolites. Dysregulation of methyltransferases is implicated in various human cancers. However, in light of the well-recognized significance of PMTs, reliable and efficient identification methods are essential. In the present work, we propose a machine-learning-based method for the identification of PMTs. Various sequence-based features were calculated, and prediction models were trained using various machine-learning algorithms using a tenfold cross-validation technique. After evaluating each model on the dataset, the SVM-based CKSAAP model achieved the highest prediction accuracy with balanced sensitivity and specificity. Also, this SVM model outperformed deep-learning algorithms for the prediction of PMTs. In addition, cross-database validation was performed to ensure the robustness of the model. Feature importance was assessed using shapley additive explanations (SHAP) values, providing insights into the contributions of different features to the model’s predictions. Finally, the SVM-based CKSAAP model was implemented in a standalone tool, PMTPred, due to its consistent performance during independent testing and cross-database evaluation. We believe that PMTPred will be a useful and efficient tool for the identification of PMTs. The PMTPred is freely available for download at https://github.com/ArvindYadav7/PMTPred and http://www.bioinfoindia.org/PMTPred/home.html for research and academic use.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":"28 4","pages":"2301 - 2315"},"PeriodicalIF":3.9,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1007/s11030-024-10907-8
Fatma Fouad Hagar, Samar H Abbas, Eman Atef, Dalia Abdelhamid, Mohamed Abdel-Aziz
Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC50 of the developed compounds determined by different laboratories after 2015.
{"title":"Benzimidazole scaffold as a potent anticancer agent with different mechanisms of action (2016-2023).","authors":"Fatma Fouad Hagar, Samar H Abbas, Eman Atef, Dalia Abdelhamid, Mohamed Abdel-Aziz","doi":"10.1007/s11030-024-10907-8","DOIUrl":"https://doi.org/10.1007/s11030-024-10907-8","url":null,"abstract":"<p><p>Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC<sub>50</sub> of the developed compounds determined by different laboratories after 2015.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1007/s11030-024-10931-8
Dhurgham Al-Fahad, G Ropón-Palacios, Damilola A Omoboyowa, Gagandeep Singh, Rajesh B Patil
Serine/threonine kinase 16 (STK 16) is involved in many facets of cellular regulation; activation of STK 16 plays a crucial role in the migration of cancer cells. Therefore, it is a novel target for the discovery of anticancer agents. Herein, virtual screening and dynamics simulation were used to screen a large library of natural compounds against STK 16 using Schrodinger suit 2021-2 and GROMACS 2021.6. The results predicted five molecules with high binding affinity against the target, with NPC132329 (Arcyriaflavin C) and NPC160898 having higher binding affinity and molecular mechanics generalized born surface area (MM/GBSA), suggesting that it is better than the standard inhibitor. The molecular dymanics (MD) simulation studies showed that the STK 16-NPC132329 complex has the lowest root mean square deviation, and STK 16-NPC160898 was the most stable compared with the standard drug and selective STK 16 inhibitor. The minimal fluctuation was observed in the STK 16-NPC132329 and STK 16-NPC160898 complexes based on the root mean square fluctuation trajectory with NPC132329 and NPC160898 forming 2 and 3 hydrogen bonds respectively with the amino acid residue of the target's binding site. Overall, NPC132329 and NPC160898 are better STK 16 inhibitors than the standard drug and selective inhibitor, which can be further studied to discover novel anticancer drugs.
{"title":"Virtual screening and molecular dynamics simulation of natural compounds as potential inhibitors of serine/threonine kinase 16 for anticancer drug discovery.","authors":"Dhurgham Al-Fahad, G Ropón-Palacios, Damilola A Omoboyowa, Gagandeep Singh, Rajesh B Patil","doi":"10.1007/s11030-024-10931-8","DOIUrl":"https://doi.org/10.1007/s11030-024-10931-8","url":null,"abstract":"<p><p>Serine/threonine kinase 16 (STK 16) is involved in many facets of cellular regulation; activation of STK 16 plays a crucial role in the migration of cancer cells. Therefore, it is a novel target for the discovery of anticancer agents. Herein, virtual screening and dynamics simulation were used to screen a large library of natural compounds against STK 16 using Schrodinger suit 2021-2 and GROMACS 2021.6. The results predicted five molecules with high binding affinity against the target, with NPC132329 (Arcyriaflavin C) and NPC160898 having higher binding affinity and molecular mechanics generalized born surface area (MM/GBSA), suggesting that it is better than the standard inhibitor. The molecular dymanics (MD) simulation studies showed that the STK 16-NPC132329 complex has the lowest root mean square deviation, and STK 16-NPC160898 was the most stable compared with the standard drug and selective STK 16 inhibitor. The minimal fluctuation was observed in the STK 16-NPC132329 and STK 16-NPC160898 complexes based on the root mean square fluctuation trajectory with NPC132329 and NPC160898 forming 2 and 3 hydrogen bonds respectively with the amino acid residue of the target's binding site. Overall, NPC132329 and NPC160898 are better STK 16 inhibitors than the standard drug and selective inhibitor, which can be further studied to discover novel anticancer drugs.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}