首页 > 最新文献

Molecular Diversity最新文献

英文 中文
Stereo-selectivity of enantiomeric inhibitors to ubiquitin-specific protease 7 (USP7) dissected by molecular docking, molecular dynamics simulations, and binding free energy calculations. 通过分子对接、分子动力学模拟和结合自由能计算剖析泛素特异性蛋白酶 7 (USP7) 对映体抑制剂的立体选择性。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-09-19 DOI: 10.1007/s11030-024-10948-z
Yusheng Zhang, Wenwen Dou, Ziqi Zhao, Guozhen Li, Chunlong Li, Xiangyu Chen, Linkai Mou

The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.

泛素特异性蛋白酶 7(USP7)是一种去泛素化酶,是包括前列腺癌和肝癌在内的多种癌症的诱人治疗靶点。将抑制剂的立体化学中心从 S 转变为 R(S-ALM → R-ALM34)可显著提高 USP7 的抑制活性。然而,对映体抑制剂对 USP7 的立体选择性的分子机制仍不清楚。本研究采用分子对接、分子动力学(MD)模拟、分子力学/广义伯恩表面积(MM/GBSA)计算和自由能图谱等方法来揭开这一谜团。MD 模拟显示,与 R-ALM34 对应物相比,S-ALM34 表现出高度的构象灵活性,S-ALM34 结合导致 USP7 的域内运动增强,尤其是 BL1 和 BL2 环以及两个螺旋 α4 和 α5。MM/GBSA 计算表明,R-ALM34 与 USP7 的结合力比 S-ALM34 强 - 4.99 kcal/mol,与实验数据观察到的趋势相似。进一步进行了 MM/GBSA 自由能分解,以区分配体-残基谱。这些分析不仅确定了与 R-ALM34 相互作用的热点残基,还揭示了来自 F409、K420、H456 和 Y514 的疏水相互作用在 R-ALM34 与 USP7 的结合中起着主要的决定作用。这一结果有望揭示能量基础和构象动力学信息,从而有助于设计针对 USP7 的更强效、更具选择性的抑制剂。
{"title":"Stereo-selectivity of enantiomeric inhibitors to ubiquitin-specific protease 7 (USP7) dissected by molecular docking, molecular dynamics simulations, and binding free energy calculations.","authors":"Yusheng Zhang, Wenwen Dou, Ziqi Zhao, Guozhen Li, Chunlong Li, Xiangyu Chen, Linkai Mou","doi":"10.1007/s11030-024-10948-z","DOIUrl":"https://doi.org/10.1007/s11030-024-10948-z","url":null,"abstract":"<p><p>The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI and ML for small molecule drug discovery in the big data era II 大数据时代用于小分子药物发现的人工智能和 ML II.
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-09-16 DOI: 10.1007/s11030-024-10983-w
Kunal Roy
{"title":"AI and ML for small molecule drug discovery in the big data era II","authors":"Kunal Roy","doi":"10.1007/s11030-024-10983-w","DOIUrl":"10.1007/s11030-024-10983-w","url":null,"abstract":"","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":"28 4","pages":"1847 - 1848"},"PeriodicalIF":3.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An overview: total synthesis of arborisidine, and arbornamine. 概述:arborisidine 和 arbornamine 的全合成。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-09-06 DOI: 10.1007/s11030-024-10978-7
Gitanjali Yadav, Megha, Sangeeta Yadav, Ravi Tomar

Arborisidine and Arbornamine are two monoterpenoid indole alkaloids that were isolated from the Malayan Kopsia arborea plant. This review provides valuable information about the total and formal syntheses of these alkaloids. The synthesis strategies discussed in this review, such as Pictet-Spengler cyclization, chemo- and stereoselective oxidative cyclization, Michael/Mannich cascade process, and intramolecular N-alkylation, can be useful for developing new methods to synthesize these and other similar compounds.

Arborisidine 和 Arbornamine 是从马来亚 Kopsia arborea 植物中分离出的两种单萜吲哚生物碱。本综述提供了有关这些生物碱的全合成和正式合成的宝贵信息。本综述中讨论的合成策略,如 Pictet-Spengler 环化、化学和立体选择性氧化环化、迈克尔/曼尼希级联过程和分子内 N-烷基化,可用于开发合成这些化合物和其他类似化合物的新方法。
{"title":"An overview: total synthesis of arborisidine, and arbornamine.","authors":"Gitanjali Yadav, Megha, Sangeeta Yadav, Ravi Tomar","doi":"10.1007/s11030-024-10978-7","DOIUrl":"https://doi.org/10.1007/s11030-024-10978-7","url":null,"abstract":"<p><p>Arborisidine and Arbornamine are two monoterpenoid indole alkaloids that were isolated from the Malayan Kopsia arborea plant. This review provides valuable information about the total and formal syntheses of these alkaloids. The synthesis strategies discussed in this review, such as Pictet-Spengler cyclization, chemo- and stereoselective oxidative cyclization, Michael/Mannich cascade process, and intramolecular N-alkylation, can be useful for developing new methods to synthesize these and other similar compounds.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning, network pharmacology, and molecular dynamics reveal potent cyclopeptide inhibitors against dengue virus proteins. 机器学习、网络药理学和分子动力学揭示了针对登革热病毒蛋白的强效环肽抑制剂。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-09-04 DOI: 10.1007/s11030-024-10975-w
Mohammed A Imam, Thamir A Alandijany, Hashim R Felemban, Roba M Attar, Arwa A Faizo, Hattan S Gattan, Vivek Dhar Dwivedi, Esam I Azhar

The dengue virus is a major global health hazard responsible for an estimated 390 million diseases yearly. This study focused on identifying cyclopeptide inhibitors for envelope structural proteins E, NS1, NS3, and NS5. Additionally, 5579 cyclopeptides were individually screened against the four target proteins using a machine learning-based quantitative structure-activity relationship model. Subsequently, the best 10 cyclopeptides from each protein were selected for molecular docking with their corresponding proteins. Moreover, the protein-peptide complexes with the highest affinity were subjected to a 100-ns molecular dynamics simulation. The protein-protein complexes exhibited superior structural stability and binding interactions. Based on the results of the MD simulation analyses, which included checking values for Root Mean Square Deviation, Root Mean Square Fluctuation, Principal Component Analysis (PCA), free energy landscapes, and energetic components, it was found that NS5-CP03714 complex is more stable and has stronger binding interactions than NS3-CP02054. PCA and free energy landscape plots have confirmed the higher conformational stability of NS5-CP03714. Analysis of the energetic components revealed that NS5-CP03714 (total binding energy = - 47.19 kcal/mol) exhibits more favorable interaction energies and overall binding energy compared to NS3-CP02054 (total binding energy = - 27.36 kcal/mol), suggesting a stronger and more stable formation of the complex. In addition, the drug-target network of two specific peptides (CP02950 and CP05582) and their associated target proteins were analyzed. This analysis revealed valuable information about their ability to target several proteins and their potential for broad-spectrum activity. Additional experimental investigations are necessary to validate these computational results and assess the efficacy of identified peptide inhibitors in biological systems.

登革热病毒是一种严重危害全球健康的病毒,估计每年导致 3.9 亿人患病。这项研究的重点是确定包膜结构蛋白 E、NS1、NS3 和 NS5 的环肽抑制剂。此外,利用基于机器学习的定量结构-活性关系模型,针对这四种目标蛋白单独筛选了 5579 种环肽。随后,从每种蛋白质中选出最佳的 10 种环肽与相应的蛋白质进行分子对接。此外,还对亲和力最高的蛋白-肽复合物进行了 100-ns 的分子动力学模拟。这些蛋白质-蛋白质复合物表现出卓越的结构稳定性和结合相互作用。根据 MD 模拟分析的结果(包括均方根偏差、均方根波动、主成分分析(PCA)、自由能景观和能量成分的校验值),发现 NS5-CP03714 复合物比 NS3-CP02054 更稳定,具有更强的结合相互作用。PCA和自由能图谱证实了NS5-CP03714具有更高的构象稳定性。能量成分分析表明,与 NS3-CP02054(总结合能 = - 27.36 kcal/mol)相比,NS5-CP03714(总结合能 = - 47.19 kcal/mol)表现出更有利的相互作用能和总结合能,表明复合物的形成更强、更稳定。此外,还分析了两种特定多肽(CP02950 和 CP05582)及其相关靶蛋白的药物-靶标网络。该分析揭示了有关这两种肽靶向多种蛋白质的能力及其广谱活性潜力的宝贵信息。为了验证这些计算结果并评估已鉴定的多肽抑制剂在生物系统中的功效,有必要进行更多的实验研究。
{"title":"Machine learning, network pharmacology, and molecular dynamics reveal potent cyclopeptide inhibitors against dengue virus proteins.","authors":"Mohammed A Imam, Thamir A Alandijany, Hashim R Felemban, Roba M Attar, Arwa A Faizo, Hattan S Gattan, Vivek Dhar Dwivedi, Esam I Azhar","doi":"10.1007/s11030-024-10975-w","DOIUrl":"https://doi.org/10.1007/s11030-024-10975-w","url":null,"abstract":"<p><p>The dengue virus is a major global health hazard responsible for an estimated 390 million diseases yearly. This study focused on identifying cyclopeptide inhibitors for envelope structural proteins E, NS1, NS3, and NS5. Additionally, 5579 cyclopeptides were individually screened against the four target proteins using a machine learning-based quantitative structure-activity relationship model. Subsequently, the best 10 cyclopeptides from each protein were selected for molecular docking with their corresponding proteins. Moreover, the protein-peptide complexes with the highest affinity were subjected to a 100-ns molecular dynamics simulation. The protein-protein complexes exhibited superior structural stability and binding interactions. Based on the results of the MD simulation analyses, which included checking values for Root Mean Square Deviation, Root Mean Square Fluctuation, Principal Component Analysis (PCA), free energy landscapes, and energetic components, it was found that NS5-CP03714 complex is more stable and has stronger binding interactions than NS3-CP02054. PCA and free energy landscape plots have confirmed the higher conformational stability of NS5-CP03714. Analysis of the energetic components revealed that NS5-CP03714 (total binding energy = - 47.19 kcal/mol) exhibits more favorable interaction energies and overall binding energy compared to NS3-CP02054 (total binding energy = - 27.36 kcal/mol), suggesting a stronger and more stable formation of the complex. In addition, the drug-target network of two specific peptides (CP02950 and CP05582) and their associated target proteins were analyzed. This analysis revealed valuable information about their ability to target several proteins and their potential for broad-spectrum activity. Additional experimental investigations are necessary to validate these computational results and assess the efficacy of identified peptide inhibitors in biological systems.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavonol derivatives containing piperazine and quinoxaline fragments: synthesis and antifungal activity. 含有哌嗪和喹喔啉片段的黄酮醇衍生物:合成和抗真菌活性。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-09-03 DOI: 10.1007/s11030-024-10977-8
Yi Liu, Hui Xin, Yuhong Wang, Qing Zhou, Jiao Tian, Chunmei Hu, Xingping Luo, Haotao Pu, Wei Xue

A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC50) was 12.9 and 25.8 μg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 μg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 μg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 μg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.

设计并合成了一系列含有哌嗪和喹喔啉的黄酮醇衍生物。生物活性测试结果表明,一些目标化合物对多种真菌具有良好的抗真菌活性。N5 对拟南芥(Phomopsis sp,P.s.)和疫霉(Phytophthora capsica,P.c.)的抗真菌活性最好。N5 对 P.s. 和 P.c. 的半数最大有效浓度(EC50)分别为 12.9 和 25.8 μg/mL,优于唑菌酯(Az,25.4 和 71.1 μg/mL)。此外,在 200 μg/mL 的浓度下,N5 对猕猴桃的体内保护和治疗活性分别为 85.9% 和 67.0%,优于 Az(65.9% 和 57.0%)。对辣椒叶的保护和治疗活性在 200 μg/mL 时分别为 80.6% 和 66.5%,优于 Az(77.6% 和 60.0%)。扫描电子显微镜(SEM)实验表明,N5 的作用使菌丝弯曲、折叠,改变了菌丝的形态,对菌丝造成了破坏。通过测定相对电导率、细胞质内容物的泄漏和丙二醛(MDA)含量表明,N5 能破坏病原真菌细胞膜的完整性,改变细胞膜的通透性,影响菌丝的正常生长。
{"title":"Flavonol derivatives containing piperazine and quinoxaline fragments: synthesis and antifungal activity.","authors":"Yi Liu, Hui Xin, Yuhong Wang, Qing Zhou, Jiao Tian, Chunmei Hu, Xingping Luo, Haotao Pu, Wei Xue","doi":"10.1007/s11030-024-10977-8","DOIUrl":"https://doi.org/10.1007/s11030-024-10977-8","url":null,"abstract":"<p><p>A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC<sub>50</sub>) was 12.9 and 25.8 μg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 μg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 μg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 μg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and validation of oxidative stress-related diagnostic markers for recurrent pregnancy loss: insights from machine learning and molecular analysis. 鉴定和验证与氧化应激相关的复发性妊娠丢失诊断标记:机器学习和分子分析的启示。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-09-03 DOI: 10.1007/s11030-024-10947-0
Hui Hu, Li Yu, Yating Cheng, Yao Xiong, Daoxi Qi, Boyu Li, Xiaokang Zhang, Fang Zheng

It has been recognized that oxidative stress (OS) is implicated in the etiology of recurrent pregnancy loss (RPL), yet the biomarkers reflecting oxidative stress in association with RPL remain scarce. The dataset GSE165004 was retrieved from the Gene Expression Omnibus (GEO) database. From the GeneCards database, a compendium of 789 genes related to oxidative stress-related genes (OSRGs) was compiled. By intersecting differentially expressed genes (DEGs) in normal and RPL samples with OSRGs, differentially expressed OSRGs (DE-OSRGs) were identified. In addition, four machine learning algorithms were employed for the selection of diagnostic markers for RPL. The Receiver Operating Characteristic (ROC) curves for these genes were generated and a predictive nomogram for the diagnostic markers was established. The functions and pathways associated with the diagnostic markers were elucidated, and the correlations between immune cells and diagnostic markers were examined. Potential therapeutics targeting the diagnostic markers were proposed based on data from the Comparative Toxicogenomics Database and ClinicalTrials.gov. The candidate biomarker genes from the four models were further validated in RPL tissue samples using RT-PCR and immunohistochemistry. A set of 20 DE-OSRGs was identified, with 4 genes (KRAS, C2orf69, CYP17A1, and UCP3) being recognized by machine learning algorithms as diagnostic markers exhibiting robust diagnostic capabilities. The nomogram constructed demonstrated favorable predictive accuracy. Pathways including ribosome, peroxisome, Parkinson's disease, oxidative phosphorylation, Huntington's disease, and Alzheimer's disease were co-enriched by KRAS, C2orf69, and CYP17A1. Cell chemotaxis terms were commonly enriched by all four diagnostic markers. Significant differences in the abundance of five cell types, namely eosinophils, monocytes, natural killer cells, regulatory T cells, and T follicular helper cells, were observed between normal and RPL samples. A total of 180 drugs were predicted to target the diagnostic markers, including C544151, D014635, and CYP17A1. In the validation cohort of RPL patients, the LASSO model demonstrated superiority over other models. The expression levels of KRAS, C2orf69, and CYP17A1 were significantly reduced in RPL, while UCP3 levels were elevated, indicating their suitability as molecular markers for RPL. Four oxidative stress-related diagnostic markers (KRAS, C2orf69, CYP17A1, and UCP3) have been proposed to diagnose and potentially treat RPL.

人们已经认识到氧化应激(OS)与复发性妊娠失败(RPL)的病因有关,但反映与RPL相关的氧化应激的生物标志物仍然很少。我们从基因表达总库(Gene Expression Omnibus,GEO)数据库中检索到了数据集 GSE165004。从基因卡片(GeneCards)数据库中汇编了789个与氧化应激相关的基因(OSRGs)。通过将正常样本和RPL样本中的差异表达基因(DEGs)与OSRGs交叉,确定了差异表达的OSRGs(DE-OSRGs)。此外,还采用了四种机器学习算法来选择 RPL 的诊断标记物。生成了这些基因的接收者操作特征曲线(ROC),并建立了诊断标记物的预测提名图。阐明了与诊断标志物相关的功能和途径,并研究了免疫细胞与诊断标志物之间的相关性。根据比较毒物基因组学数据库和ClinicalTrials.gov的数据,提出了针对诊断标志物的潜在疗法。利用 RT-PCR 和免疫组化技术在 RPL 组织样本中进一步验证了四个模型中的候选生物标记基因。最终确定了一组 20 个 DE-OSRGs,其中 4 个基因(KRAS、C2orf69、CYP17A1 和 UCP3)被机器学习算法认定为诊断标志物,表现出强大的诊断能力。所构建的提名图显示了良好的预测准确性。KRAS、C2orf69 和 CYP17A1 共同富集了包括核糖体、过氧化物酶体、帕金森病、氧化磷酸化、亨廷顿病和阿尔茨海默病在内的各种途径。细胞趋化术语通常被所有四种诊断标记物富集。在正常样本和 RPL 样本之间,嗜酸性粒细胞、单核细胞、自然杀伤细胞、调节性 T 细胞和 T 滤泡辅助细胞这五种细胞类型的丰度存在显著差异。预测共有 180 种药物以诊断标记物为靶标,包括 C544151、D014635 和 CYP17A1。在 RPL 患者的验证队列中,LASSO 模型比其他模型更具优势。在 RPL 中,KRAS、C2orf69 和 CYP17A1 的表达水平明显降低,而 UCP3 水平升高,这表明它们适合作为 RPL 的分子标记。四种与氧化应激相关的诊断标志物(KRAS、C2orf69、CYP17A1 和 UCP3)已被提出用于诊断和治疗 RPL。
{"title":"Identification and validation of oxidative stress-related diagnostic markers for recurrent pregnancy loss: insights from machine learning and molecular analysis.","authors":"Hui Hu, Li Yu, Yating Cheng, Yao Xiong, Daoxi Qi, Boyu Li, Xiaokang Zhang, Fang Zheng","doi":"10.1007/s11030-024-10947-0","DOIUrl":"https://doi.org/10.1007/s11030-024-10947-0","url":null,"abstract":"<p><p>It has been recognized that oxidative stress (OS) is implicated in the etiology of recurrent pregnancy loss (RPL), yet the biomarkers reflecting oxidative stress in association with RPL remain scarce. The dataset GSE165004 was retrieved from the Gene Expression Omnibus (GEO) database. From the GeneCards database, a compendium of 789 genes related to oxidative stress-related genes (OSRGs) was compiled. By intersecting differentially expressed genes (DEGs) in normal and RPL samples with OSRGs, differentially expressed OSRGs (DE-OSRGs) were identified. In addition, four machine learning algorithms were employed for the selection of diagnostic markers for RPL. The Receiver Operating Characteristic (ROC) curves for these genes were generated and a predictive nomogram for the diagnostic markers was established. The functions and pathways associated with the diagnostic markers were elucidated, and the correlations between immune cells and diagnostic markers were examined. Potential therapeutics targeting the diagnostic markers were proposed based on data from the Comparative Toxicogenomics Database and ClinicalTrials.gov. The candidate biomarker genes from the four models were further validated in RPL tissue samples using RT-PCR and immunohistochemistry. A set of 20 DE-OSRGs was identified, with 4 genes (KRAS, C2orf69, CYP17A1, and UCP3) being recognized by machine learning algorithms as diagnostic markers exhibiting robust diagnostic capabilities. The nomogram constructed demonstrated favorable predictive accuracy. Pathways including ribosome, peroxisome, Parkinson's disease, oxidative phosphorylation, Huntington's disease, and Alzheimer's disease were co-enriched by KRAS, C2orf69, and CYP17A1. Cell chemotaxis terms were commonly enriched by all four diagnostic markers. Significant differences in the abundance of five cell types, namely eosinophils, monocytes, natural killer cells, regulatory T cells, and T follicular helper cells, were observed between normal and RPL samples. A total of 180 drugs were predicted to target the diagnostic markers, including C544151, D014635, and CYP17A1. In the validation cohort of RPL patients, the LASSO model demonstrated superiority over other models. The expression levels of KRAS, C2orf69, and CYP17A1 were significantly reduced in RPL, while UCP3 levels were elevated, indicating their suitability as molecular markers for RPL. Four oxidative stress-related diagnostic markers (KRAS, C2orf69, CYP17A1, and UCP3) have been proposed to diagnose and potentially treat RPL.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of potential NUDT5 inhibitors from marine bacterial natural compounds via molecular dynamics and free energy landscape analysis. 通过分子动力学和自由能谱分析从海洋细菌天然化合物中鉴定潜在的 NUDT5 抑制剂。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-09-03 DOI: 10.1007/s11030-024-10950-5
Amit Dubey, Amer M Alanazi, Rima Bhardwaj, Andrea Ragusa

NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp28A and Trp46B residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.

核苷酸水解酶 5(NUDT5)是一种参与水解与其他分子(如 ADP-核糖)相连的核苷酸二磷酸盐的酶。这种辅助因子在氧化还原反应中至关重要,对参与 DNA 修复和基因组稳定性的 sirtuins 和聚(ADP-核糖)聚合酶的活性也至关重要。研究表明,NUDT5 的活性还能影响 NAD+ 的平衡,从而影响癌细胞的新陈代谢和存活。因此,发现 NUDT5 抑制剂已成为治疗癌症的一种潜在方法。在这项研究中,我们针对 NUDT5 酶对海洋细菌化合物进行了高通量虚拟筛选,并根据其对接得分选出了四个分子。这些化合物在 NUDT5 活性位点内建立了强烈的相互作用,分子分析突出了 Trp28A 和 Trp46B 残基的关键作用。超过 200 ns 的分子动力学模拟表明,这些化合物具有稳定的行为,其均方根偏差值始终低于 3 Å,表明其构象具有稳定性。自由能谱分析进一步证实了它们作为 NUDT5 抑制剂的潜力,为针对 NUDT5 相关乳腺癌的新型治疗策略提供了途径。
{"title":"Identification of potential NUDT5 inhibitors from marine bacterial natural compounds via molecular dynamics and free energy landscape analysis.","authors":"Amit Dubey, Amer M Alanazi, Rima Bhardwaj, Andrea Ragusa","doi":"10.1007/s11030-024-10950-5","DOIUrl":"https://doi.org/10.1007/s11030-024-10950-5","url":null,"abstract":"<p><p>NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp<sup>28A</sup> and Trp<sup>46B</sup> residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligand and structure-based virtual screening approaches in drug discovery: minireview. 药物发现中的配体和基于结构的虚拟筛选方法:小视图。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-09-02 DOI: 10.1007/s11030-024-10979-6
Matheus Nunes da Rocha, Damião Sampaio de Sousa, Francisco Rogenio da Silva Mendes, Helcio Silva Dos Santos, Gabrielle Silva Marinho, Márcia Machado Marinho, Emmanuel Silva Marinho

The compilation of ligand and structure-based molecular modeling methods has become an important practice in virtual screening applied to drug discovery. This systematic review addresses and ranks various virtual screening strategies to drive the selection of the optimal method for studies that have as their starting point a multi-ligand investigation and investigation based on the protein structure of a therapeutic target. This study shows examples of applications and an evaluation based on the objective and problematic of a series of virtual screening studies present in the ScienceDirect® database. The results showed that the molecular docking technique is widely used in scientific production, indicating that approaches that use protein structure as a starting point are the most promising strategy for drug discovery that relies on virtual screening-based research.

配体和基于结构的分子建模方法的汇编已成为虚拟筛选应用于药物发现的重要实践。这篇系统性综述探讨了各种虚拟筛选策略并对其进行了排序,以便为以多配体研究和基于治疗靶点蛋白质结构的研究为出发点的研究选择最佳方法。本研究展示了一些应用实例,并根据 ScienceDirect® 数据库中一系列虚拟筛选研究的目标和问题进行了评估。结果表明,分子对接技术在科研生产中得到了广泛应用,这表明以蛋白质结构为出发点的方法是依赖虚拟筛选研究发现药物的最有前途的策略。
{"title":"Ligand and structure-based virtual screening approaches in drug discovery: minireview.","authors":"Matheus Nunes da Rocha, Damião Sampaio de Sousa, Francisco Rogenio da Silva Mendes, Helcio Silva Dos Santos, Gabrielle Silva Marinho, Márcia Machado Marinho, Emmanuel Silva Marinho","doi":"10.1007/s11030-024-10979-6","DOIUrl":"https://doi.org/10.1007/s11030-024-10979-6","url":null,"abstract":"<p><p>The compilation of ligand and structure-based molecular modeling methods has become an important practice in virtual screening applied to drug discovery. This systematic review addresses and ranks various virtual screening strategies to drive the selection of the optimal method for studies that have as their starting point a multi-ligand investigation and investigation based on the protein structure of a therapeutic target. This study shows examples of applications and an evaluation based on the objective and problematic of a series of virtual screening studies present in the ScienceDirect® database. The results showed that the molecular docking technique is widely used in scientific production, indicating that approaches that use protein structure as a starting point are the most promising strategy for drug discovery that relies on virtual screening-based research.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological evaluation of sulfonamide derivatives containing imidazole moiety as ALK5 inhibitors. 含咪唑分子的磺酰胺衍生物作为 ALK5 抑制剂的合成与生物学评价
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-30 DOI: 10.1007/s11030-024-10973-y
Shu-Yan Ding, Yu-Xuan Yang, Chuang Liu, Xu-Yin Quan, Zi-Han Zhao, Cheng-Hua Jin

Four series of sulfonamide derivatives (13a-b, 14a-d, 15a-b, and 16a-d) were synthesized and evaluated for their activin receptor-like kinase 5 (ALK5) inhibitory activities. Of these, compounds 13b (IC50 = 0.130 μM) and 15a (IC50 = 0.130 μM) showed the highest inhibitory activities against ALK5 kinase, with activities similar to the positive control LY-2157299. Notably, we discovered that introduction of sulfonamide group at the 2-position of the central imidazole ring significantly increased ALK5 inhibitory activity. Compounds 13b and 15a did not show toxicity in A549 cells up to the maximum concentration of 50 μM, and effectively inhibited TGF-β1-induced Smad-signaling and cell motility in A549 cells. The results indicate that compounds 13b and 15a are worth of further development as anticancer agents.

研究人员合成了四个系列的磺酰胺衍生物(13a-b、14a-d、15a-b和16a-d),并评估了它们对活化素受体样激酶5(ALK5)的抑制活性。其中,化合物 13b(IC50 = 0.130 μM)和 15a(IC50 = 0.130 μM)对 ALK5 激酶的抑制活性最高,与阳性对照 LY-2157299 的活性相似。值得注意的是,我们发现在中心咪唑环的 2 位引入磺酰胺基团可显著提高 ALK5 的抑制活性。化合物 13b 和 15a 在最大浓度为 50 μM 时对 A549 细胞无毒性,并能有效抑制 TGF-β1 诱导的 A549 细胞 Smad 信号转导和细胞运动。结果表明,化合物 13b 和 15a 值得作为抗癌剂进一步开发。
{"title":"Synthesis and biological evaluation of sulfonamide derivatives containing imidazole moiety as ALK5 inhibitors.","authors":"Shu-Yan Ding, Yu-Xuan Yang, Chuang Liu, Xu-Yin Quan, Zi-Han Zhao, Cheng-Hua Jin","doi":"10.1007/s11030-024-10973-y","DOIUrl":"https://doi.org/10.1007/s11030-024-10973-y","url":null,"abstract":"<p><p>Four series of sulfonamide derivatives (13a-b, 14a-d, 15a-b, and 16a-d) were synthesized and evaluated for their activin receptor-like kinase 5 (ALK5) inhibitory activities. Of these, compounds 13b (IC<sub>50</sub> = 0.130 μM) and 15a (IC<sub>50</sub> = 0.130 μM) showed the highest inhibitory activities against ALK5 kinase, with activities similar to the positive control LY-2157299. Notably, we discovered that introduction of sulfonamide group at the 2-position of the central imidazole ring significantly increased ALK5 inhibitory activity. Compounds 13b and 15a did not show toxicity in A549 cells up to the maximum concentration of 50 μM, and effectively inhibited TGF-β1-induced Smad-signaling and cell motility in A549 cells. The results indicate that compounds 13b and 15a are worth of further development as anticancer agents.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of ligand‑based and structure‑based virtual screening for the discovery of novel Janus kinase 2 inhibitors against philadelphia-negative myeloproliferative neoplasms. 结合基于配体和基于结构的虚拟筛选,发现新型 Janus 激酶 2 抑制剂,对抗费城阴性骨髓增殖性肿瘤。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-29 DOI: 10.1007/s11030-024-10938-1
Binyou Wang, Jianmin Guo, Bo Chen, Yan Jiao, Ying Wan, Jianming Wu, Yiwei Wang

The activating V617F mutation in Janus kinase 2 (JAK2) has been shown to be the major cause for classic Philadelphia-negative myeloproliferative neoplasms (MPNs). Thus, the development of pharmacologic JAK2 inhibitors is an essential move in combating MPNs. In this study, screening methods examining both ligands and their structures were developed to discover novel JAK2 inhibitors from the ChemDiv database with virtual screening identifying 886 candidate inhibitors. Next, these compounds were further filtered using ADMET, drug likeliness, and PAINS filtering, which reduced the compound number even further. This consolidated list of candidate compounds (n = 49) was then evaluated biologically at molecular level and the highest performing inhibitor with a novel scaffold was selected for further examination. This candidate inhibitor, CD4, was then subjected to molecular dynamics studies, with complex stability, root-mean-square deviation, radius of gyration, binding free energy, and binding properties all examined. The result suggested that CD4 interacts with JAK2 and that the CD4-JAK2 complex is stable. This study was able to identify a candidate inhibitor that warrants further examination and optimization and may potentially serve as a future MPN treatment.

Janus 激酶 2(JAK2)中的激活性 V617F 突变已被证明是导致典型的费城阴性骨髓增殖性肿瘤(MPN)的主要原因。因此,开发药理 JAK2 抑制剂是抗击 MPN 的重要举措。在这项研究中,我们开发了同时检查配体及其结构的筛选方法,以从 ChemDiv 数据库中发现新型 JAK2 抑制剂,并通过虚拟筛选确定了 886 种候选抑制剂。接下来,利用 ADMET、药物相似性和 PAINS 筛选法对这些化合物进行了进一步筛选,从而进一步减少了化合物数量。然后,对合并后的候选化合物清单(n = 49)进行分子水平的生物学评估,并选择了性能最高、具有新型支架的抑制剂进行进一步研究。然后对这种候选抑制剂 CD4 进行了分子动力学研究,对复合物的稳定性、均方根偏差、回旋半径、结合自由能和结合特性进行了检测。结果表明,CD4与JAK2相互作用,CD4-JAK2复合物是稳定的。这项研究发现了一种候选抑制剂,值得进一步研究和优化,并有可能成为未来治疗 MPN 的药物。
{"title":"Combination of ligand‑based and structure‑based virtual screening for the discovery of novel Janus kinase 2 inhibitors against philadelphia-negative myeloproliferative neoplasms.","authors":"Binyou Wang, Jianmin Guo, Bo Chen, Yan Jiao, Ying Wan, Jianming Wu, Yiwei Wang","doi":"10.1007/s11030-024-10938-1","DOIUrl":"https://doi.org/10.1007/s11030-024-10938-1","url":null,"abstract":"<p><p>The activating V617F mutation in Janus kinase 2 (JAK2) has been shown to be the major cause for classic Philadelphia-negative myeloproliferative neoplasms (MPNs). Thus, the development of pharmacologic JAK2 inhibitors is an essential move in combating MPNs. In this study, screening methods examining both ligands and their structures were developed to discover novel JAK2 inhibitors from the ChemDiv database with virtual screening identifying 886 candidate inhibitors. Next, these compounds were further filtered using ADMET, drug likeliness, and PAINS filtering, which reduced the compound number even further. This consolidated list of candidate compounds (n = 49) was then evaluated biologically at molecular level and the highest performing inhibitor with a novel scaffold was selected for further examination. This candidate inhibitor, CD4, was then subjected to molecular dynamics studies, with complex stability, root-mean-square deviation, radius of gyration, binding free energy, and binding properties all examined. The result suggested that CD4 interacts with JAK2 and that the CD4-JAK2 complex is stable. This study was able to identify a candidate inhibitor that warrants further examination and optimization and may potentially serve as a future MPN treatment.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Diversity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1