Pub Date : 2024-04-23DOI: 10.1007/s43684-024-00063-z
Xin Yu, Xi Chen, Yuan Fan, Songsong Cheng
In this paper, we present a continuous-time algorithm with a dynamic event-triggered communication (DETC) mechanism for solving a class of distributed convex optimization problems that satisfy a metric subregularity condition. The proposed algorithm addresses the challenge of limited bandwidth in multi-agent systems by utilizing a continuous-time optimization approach with DETC. Furthermore, we prove that the distributed event-triggered algorithm converges exponentially to the optimal set, even without strong convexity conditions. Finally, we provide a comparison example to demonstrate the efficiency of our algorithm in communication resource-saving.
{"title":"Distributed optimization via dynamic event-triggered scheme with metric subregularity condition","authors":"Xin Yu, Xi Chen, Yuan Fan, Songsong Cheng","doi":"10.1007/s43684-024-00063-z","DOIUrl":"10.1007/s43684-024-00063-z","url":null,"abstract":"<div><p>In this paper, we present a continuous-time algorithm with a dynamic event-triggered communication (DETC) mechanism for solving a class of distributed convex optimization problems that satisfy a metric subregularity condition. The proposed algorithm addresses the challenge of limited bandwidth in multi-agent systems by utilizing a continuous-time optimization approach with DETC. Furthermore, we prove that the distributed event-triggered algorithm converges exponentially to the optimal set, even without strong convexity conditions. Finally, we provide a comparison example to demonstrate the efficiency of our algorithm in communication resource-saving.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00063-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140671897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.1007/s43684-023-00057-3
Qiufeng Yu, Hui Zhao, Li Teng, Li Li, Ansar Yasar, Stéphane Galland
With the aim to enhance prediction accuracy for nonlinear time series, this paper put forward an improved deep Echo State Network based on reservoir states reconstruction driven by a Self-Normalizing Activation (SNA) function as the replacement for the traditional Hyperbolic tangent activation function to reduce the model’s sensitivity to hyper-parameters. The Strategy was implemented in a two-state reconstruction process by first inputting the time series data to the model separately. Once, the time data passes through the reservoirs and is activated by the SNA activation function, the new state for the reservoirs is created. The state is input to the next layer, and the concatenate states module saves. Pairs of states are selected from the activated multi-layer reservoirs and input into the state reconstruction module. Multiple input states are transformed through the state reconstruction module and finally saved to the concatenate state module. Two evaluation metrics were used to benchmark against three other ESNs with SNA activation functions to achieve better prediction accuracy.
为了提高非线性时间序列的预测精度,本文提出了一种基于水库状态重构的改进型深度回波状态网络,用自归一化激活(SNA)函数替代传统的双曲正切激活函数,以降低模型对超参数的敏感性。该策略在双态重构过程中实施,首先将时间序列数据分别输入模型。一旦时间数据通过储层并被 SNA 激活函数激活,储层的新状态就会产生。该状态被输入到下一层,并由连接状态模块保存。从激活的多层蓄水池中选取成对的状态,输入状态重建模块。多个输入状态通过状态重构模块进行转换,最后保存到串联状态模块。为了达到更高的预测精度,我们使用了两个评估指标来与其他三个使用 SNA 激活函数的 ESN 进行比较。
{"title":"Prediction for nonlinear time series by improved deep echo state network based on reservoir states reconstruction","authors":"Qiufeng Yu, Hui Zhao, Li Teng, Li Li, Ansar Yasar, Stéphane Galland","doi":"10.1007/s43684-023-00057-3","DOIUrl":"10.1007/s43684-023-00057-3","url":null,"abstract":"<div><p>With the aim to enhance prediction accuracy for nonlinear time series, this paper put forward an improved deep Echo State Network based on reservoir states reconstruction driven by a Self-Normalizing Activation (SNA) function as the replacement for the traditional Hyperbolic tangent activation function to reduce the model’s sensitivity to hyper-parameters. The Strategy was implemented in a two-state reconstruction process by first inputting the time series data to the model separately. Once, the time data passes through the reservoirs and is activated by the SNA activation function, the new state for the reservoirs is created. The state is input to the next layer, and the concatenate states module saves. Pairs of states are selected from the activated multi-layer reservoirs and input into the state reconstruction module. Multiple input states are transformed through the state reconstruction module and finally saved to the concatenate state module. Two evaluation metrics were used to benchmark against three other ESNs with SNA activation functions to achieve better prediction accuracy.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00057-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140443110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09DOI: 10.1007/s43684-023-00060-8
Meng Li, Hengyang Sun, Yanjun Huang, Hong Chen
With the tremendous success of machine learning (ML), concerns about their black-box nature have grown. The issue of interpretability affects trust in ML systems and raises ethical concerns such as algorithmic bias. In recent years, the feature attribution explanation method based on Shapley value has become the mainstream explainable artificial intelligence approach for explaining ML models. This paper provides a comprehensive overview of Shapley value-based attribution methods. We begin by outlining the foundational theory of Shapley value rooted in cooperative game theory and discussing its desirable properties. To enhance comprehension and aid in identifying relevant algorithms, we propose a comprehensive classification framework for existing Shapley value-based feature attribution methods from three dimensions: Shapley value type, feature replacement method, and approximation method. Furthermore, we emphasize the practical application of the Shapley value at different stages of ML model development, encompassing pre-modeling, modeling, and post-modeling phases. Finally, this work summarizes the limitations associated with the Shapley value and discusses potential directions for future research.
随着机器学习(ML)的巨大成功,人们对其黑箱性质的担忧与日俱增。可解释性问题影响了人们对 ML 系统的信任,并引发了算法偏见等伦理问题。近年来,基于 Shapley 值的特征归因解释方法已成为解释 ML 模型的主流可解释人工智能方法。本文全面概述了基于 Shapley 值的归因方法。我们首先概述了植根于合作博弈论的 Shapley 值基础理论,并讨论了其理想特性。为了加深理解并帮助识别相关算法,我们从三个维度为现有的基于 Shapley 值的特征归因方法提出了一个综合分类框架:夏普利值类型、特征替换方法和近似方法。此外,我们还强调了 Shapley 值在 ML 模型开发不同阶段的实际应用,包括建模前、建模和建模后阶段。最后,这项工作总结了与 Shapley 值相关的局限性,并讨论了未来研究的潜在方向。
{"title":"Shapley value: from cooperative game to explainable artificial intelligence","authors":"Meng Li, Hengyang Sun, Yanjun Huang, Hong Chen","doi":"10.1007/s43684-023-00060-8","DOIUrl":"10.1007/s43684-023-00060-8","url":null,"abstract":"<div><p>With the tremendous success of machine learning (ML), concerns about their black-box nature have grown. The issue of interpretability affects trust in ML systems and raises ethical concerns such as algorithmic bias. In recent years, the feature attribution explanation method based on Shapley value has become the mainstream explainable artificial intelligence approach for explaining ML models. This paper provides a comprehensive overview of Shapley value-based attribution methods. We begin by outlining the foundational theory of Shapley value rooted in cooperative game theory and discussing its desirable properties. To enhance comprehension and aid in identifying relevant algorithms, we propose a comprehensive classification framework for existing Shapley value-based feature attribution methods from three dimensions: Shapley value type, feature replacement method, and approximation method. Furthermore, we emphasize the practical application of the Shapley value at different stages of ML model development, encompassing pre-modeling, modeling, and post-modeling phases. Finally, this work summarizes the limitations associated with the Shapley value and discusses potential directions for future research.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00060-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139850285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.1007/s43684-023-00059-1
Marc Guerreiro Augusto, Benjamin Acar, Andrea Carolina Soto, Fikret Sivrikaya, Sahin Albayrak
The future of driving is autonomous. It requires a comprehensive stack of embedded software components, enabled by open-source and proprietary platforms at different abstraction layers, and then operating within a larger ecosystem. Autonomous driving demands connectivity, cooperation and automation to form the cornerstone of autonomous mobility solutions. Platform economy principles have revolutionized the way we produce, deliver and consume products and services worldwide. More and more businesses in the field of mobility and transport appear to implement transaction, innovation, and integration platforms as core enablers for Mobility-as-a-Service and transport applications. Artificial intelligence approaches, especially those dealing with distributed systems, enable new mobility solutions, such as autonomous driving. This paper contributes to understanding the intertwining role between distributed artificial intelligence, autonomous mobility and the resulting platform ecosystem. A systematic literature review is applied, in order to identify the intersection between those aspects. Furthermore, the research project BeIntelli is considered as a hands-on application of our findings. Taking into account our analysis and the aforementioned research project, we pose a blueprint architecture for autonomous mobility. This architecture is the subject of further research. Our conclusions facilitate the development and implementation of future urban transportation systems and resulting mobility ecosystems in practice.
{"title":"Driving into the future: a cross-cutting analysis of distributed artificial intelligence, CCAM and the platform economy","authors":"Marc Guerreiro Augusto, Benjamin Acar, Andrea Carolina Soto, Fikret Sivrikaya, Sahin Albayrak","doi":"10.1007/s43684-023-00059-1","DOIUrl":"10.1007/s43684-023-00059-1","url":null,"abstract":"<div><p>The future of driving is autonomous. It requires a comprehensive stack of embedded software components, enabled by open-source and proprietary platforms at different abstraction layers, and then operating within a larger ecosystem. Autonomous driving demands connectivity, cooperation and automation to form the cornerstone of autonomous mobility solutions. Platform economy principles have revolutionized the way we produce, deliver and consume products and services worldwide. More and more businesses in the field of mobility and transport appear to implement transaction, innovation, and integration platforms as core enablers for Mobility-as-a-Service and transport applications. Artificial intelligence approaches, especially those dealing with distributed systems, enable new mobility solutions, such as autonomous driving. This paper contributes to understanding the intertwining role between distributed artificial intelligence, autonomous mobility and the resulting platform ecosystem. A systematic literature review is applied, in order to identify the intersection between those aspects. Furthermore, the research project BeIntelli is considered as a hands-on application of our findings. Taking into account our analysis and the aforementioned research project, we pose a blueprint architecture for autonomous mobility. This architecture is the subject of further research. Our conclusions facilitate the development and implementation of future urban transportation systems and resulting mobility ecosystems in practice.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00059-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.1007/s43684-023-00058-2
Xinyue Chen, Yueyi Wang, Yingyue Xu, Miaojing Shi
Current studies in few-shot semantic segmentation mostly utilize meta-learning frameworks to obtain models that can be generalized to new categories. However, these models trained on base classes with sufficient annotated samples are biased towards these base classes, which results in semantic confusion and ambiguity between base classes and new classes. A strategy is to use an additional base learner to recognize the objects of base classes and then refine the prediction results output by the meta learner. In this way, the interaction between these two learners and the way of combining results from the two learners are important. This paper proposes a new model, namely Distilling Base and Meta (DBAM) network by using self-attention mechanism and contrastive learning to enhance the few-shot segmentation performance. First, the self-attention-based ensemble module (SEM) is proposed to produce a more accurate adjustment factor for improving the fusion of two predictions of the two learners. Second, the prototype feature optimization module (PFOM) is proposed to provide an interaction between the two learners, which enhances the ability to distinguish the base classes from the target class by introducing contrastive learning loss. Extensive experiments have demonstrated that our method improves on the PASCAL-5i under 1-shot and 5-shot settings, respectively.
目前有关少量语义分割的研究大多利用元学习框架来获得可推广到新类别的模型。然而,这些在有足够注释样本的基类上训练出来的模型偏向于这些基类,从而导致基类和新类别之间的语义混淆和模糊。一种策略是使用额外的基类学习器来识别基类对象,然后完善元学习器输出的预测结果。这样一来,这两个学习器之间的互动以及将两个学习器的结果结合起来的方式就变得非常重要。本文提出了一种新的模型,即利用自我注意机制和对比学习来提高少镜头分割性能的 Distilling Base and Meta(DBAM)网络。首先,提出了基于自我注意的集合模块(SEM),以产生更精确的调整因子,改善两个学习器的两个预测的融合。其次,提出了原型特征优化模块(PFOM),以提供两个学习器之间的互动,通过引入对比学习损失来增强区分基础类和目标类的能力。广泛的实验证明,我们的方法在 1 次和 5 次的设置下分别比 PASCAL-5i 有所改进。
{"title":"Distilling base-and-meta network with contrastive learning for few-shot semantic segmentation","authors":"Xinyue Chen, Yueyi Wang, Yingyue Xu, Miaojing Shi","doi":"10.1007/s43684-023-00058-2","DOIUrl":"10.1007/s43684-023-00058-2","url":null,"abstract":"<div><p>Current studies in few-shot semantic segmentation mostly utilize meta-learning frameworks to obtain models that can be generalized to new categories. However, these models trained on base classes with sufficient annotated samples are biased towards these base classes, which results in semantic confusion and ambiguity between base classes and new classes. A strategy is to use an additional base learner to recognize the objects of base classes and then refine the prediction results output by the meta learner. In this way, the interaction between these two learners and the way of combining results from the two learners are important. This paper proposes a new model, namely Distilling Base and Meta (DBAM) network by using self-attention mechanism and contrastive learning to enhance the few-shot segmentation performance. First, the self-attention-based ensemble module (SEM) is proposed to produce a more accurate adjustment factor for improving the fusion of two predictions of the two learners. Second, the prototype feature optimization module (PFOM) is proposed to provide an interaction between the two learners, which enhances the ability to distinguish the base classes from the target class by introducing contrastive learning loss. Extensive experiments have demonstrated that our method improves on the PASCAL-5<sup><i>i</i></sup> under 1-shot and 5-shot settings, respectively.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00058-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139234399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-20DOI: 10.1007/s43684-023-00056-4
Siqin Wang, Qingdu Li
In response to the impact of COVID-19, the manufacturing industry and academic industrial research have largely shifted to online or hybrid conference formats. The sudden change has posed challenges for researchers and teams to adapt. Based on the current state of online conferences, inadequate communication, disruptions during meetings, confusion and loss of meeting information, and difficulties in conducting online collaborations are observed. This paper presents a design of a real-time discussion board that combines online conferences and synchronous discussions to address the issues arising from remote collaborations in industrial research. The research demonstrates that synchronous discussions conducted within multi-team industrial collaboration teams with specific and diverse issues can better control the flow of meetings, enhance meeting efficiency, promote participant interaction and engagement, reduce information loss, and weaken the boundaries between online and offline collaboration.
{"title":"Remote collaborative process optimization in research and design of industrial manufacturing","authors":"Siqin Wang, Qingdu Li","doi":"10.1007/s43684-023-00056-4","DOIUrl":"10.1007/s43684-023-00056-4","url":null,"abstract":"<div><p>In response to the impact of COVID-19, the manufacturing industry and academic industrial research have largely shifted to online or hybrid conference formats. The sudden change has posed challenges for researchers and teams to adapt. Based on the current state of online conferences, inadequate communication, disruptions during meetings, confusion and loss of meeting information, and difficulties in conducting online collaborations are observed. This paper presents a design of a real-time discussion board that combines online conferences and synchronous discussions to address the issues arising from remote collaborations in industrial research. The research demonstrates that synchronous discussions conducted within multi-team industrial collaboration teams with specific and diverse issues can better control the flow of meetings, enhance meeting efficiency, promote participant interaction and engagement, reduce information loss, and weaken the boundaries between online and offline collaboration.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00056-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139254991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1007/s43684-023-00054-6
Shuwei Li, Qingyun Yu, Hao Ding
With the increasing number of space satellites, the demand for satellite communication (including maneuvering, command uploading and data downloading) has also grown significantly. However, the actual communication resources of ground station are relatively limited, which leads to an oversubscribed problem. How to make use of limited ground station resources to complete satellite communication requests more fully and efficiently in the strict visible time is the focus of satellite range scheduling research. This paper reviews and looks forward to the research on Satellite Range Scheduling Problem (SRSP). Firstly, SRSP is defined as the scheduling problem of establishing communication between satellites and ground stations, and the classification and development of SRSP are introduced. Then, this paper analyzes three common problem description models, and establishes a mathematical model based on the analysis of optimization objectives and constraints. Thirdly, this paper classifies and summarizes the common solving methods of SRSP, and analyzes their characteristics and application scenarios. Finally, combined with the work in this paper, the future research direction of SRSP is envisioned.
{"title":"Reviews and prospects in satellite range scheduling problem","authors":"Shuwei Li, Qingyun Yu, Hao Ding","doi":"10.1007/s43684-023-00054-6","DOIUrl":"10.1007/s43684-023-00054-6","url":null,"abstract":"<div><p>With the increasing number of space satellites, the demand for satellite communication (including maneuvering, command uploading and data downloading) has also grown significantly. However, the actual communication resources of ground station are relatively limited, which leads to an oversubscribed problem. How to make use of limited ground station resources to complete satellite communication requests more fully and efficiently in the strict visible time is the focus of satellite range scheduling research. This paper reviews and looks forward to the research on Satellite Range Scheduling Problem (SRSP). Firstly, SRSP is defined as the scheduling problem of establishing communication between satellites and ground stations, and the classification and development of SRSP are introduced. Then, this paper analyzes three common problem description models, and establishes a mathematical model based on the analysis of optimization objectives and constraints. Thirdly, this paper classifies and summarizes the common solving methods of SRSP, and analyzes their characteristics and application scenarios. Finally, combined with the work in this paper, the future research direction of SRSP is envisioned.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00054-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135885180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.1007/s43684-023-00055-5
Haibin Xie, Peng Li, Zhiyong Ding
Because the number of clustering cores needs to be set before implementing the K-means algorithm, this type of algorithm often fails in applications with increasing data and changing distribution characteristics. This paper proposes an evolutionary algorithm DCC, which can dynamically adjust the number of clustering cores with data change. DCC algorithm uses the Gaussian function as the activation function of each core. Each clustering core can adjust its center vector and coverage based on the response to the input data and its memory state to better fit the sample clusters in the space. The DCC algorithm model can evolve from 0. After each new sample is added, the winning dynamic core can be adjusted or split by competitive learning, so that the number of clustering cores of the algorithm always maintains a better adaptation relationship with the existing data. Furthermore, because its clustering core can split, it can subdivide the densely distributed data clusters. Finally, detailed experimental results show that the evolutionary clustering algorithm DCC based on the dynamic core method has excellent clustering performance and strong robustness.
{"title":"A dynamic core evolutionary clustering algorithm based on saturated memory","authors":"Haibin Xie, Peng Li, Zhiyong Ding","doi":"10.1007/s43684-023-00055-5","DOIUrl":"10.1007/s43684-023-00055-5","url":null,"abstract":"<div><p>Because the number of clustering cores needs to be set before implementing the K-means algorithm, this type of algorithm often fails in applications with increasing data and changing distribution characteristics. This paper proposes an evolutionary algorithm DCC, which can dynamically adjust the number of clustering cores with data change. DCC algorithm uses the Gaussian function as the activation function of each core. Each clustering core can adjust its center vector and coverage based on the response to the input data and its memory state to better fit the sample clusters in the space. The DCC algorithm model can evolve from 0. After each new sample is added, the winning dynamic core can be adjusted or split by competitive learning, so that the number of clustering cores of the algorithm always maintains a better adaptation relationship with the existing data. Furthermore, because its clustering core can split, it can subdivide the densely distributed data clusters. Finally, detailed experimental results show that the evolutionary clustering algorithm DCC based on the dynamic core method has excellent clustering performance and strong robustness.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00055-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-25DOI: 10.1007/s43684-023-00053-7
Zeyuan Yan, Li Li, Hui Zhao, Yazan Mualla, Ansar Yasar
Although the pick-up/drop-off (PUDO) strategy in carpooling offers the convenience of short-distance walking for passengers during boarding and disembarking, there is a noticeable hesitancy among commuters to adopt this travel method, despite its numerous benefits. Here, this paper establishes a tripartite evolutionary game theory (EGT) model to verify the evolutionary stability of choosing the PUDO strategy of drivers and passengers and offering subsidies strategy of carpooling platforms in carpooling system. The model presented in this paper serves as a valuable tool for assessing the dissemination and implementation of PUDO strategy and offering subsidies strategy in carpooling applications. Subsequently, an empirical analysis is conducted to examine and compare the sensitivity of the parameters across various scenarios. The findings suggest that: firstly, providing subsidies to passengers and drivers, along with deductions for drivers through carpooling platforms, is an effective way to promote wider adoption of the PUDO strategy. Then, the decision-making process is divided into three stages: initial stage, middle stage, and mature stage. PUDO strategy progresses from initial rejection to widespread acceptance among drivers in the middle stage and, in the mature stage, both passengers and drivers tend to adopt it under carpooling platform subsidies; the factors influencing the costs of waiting and walking times, as well as the subsidies granted to passengers, are essential determinants that require careful consideration by passengers, drivers, and carpooling platforms when choosing the PUDO strategy. Our work provides valuable insight into the PUDO strategy’s applicability and the declared results provide implications for traffic managers and carpooling platforms to offer a suitable incentive.
{"title":"A tripartite evolutionary game analysis of providing subsidies for pick-up/drop-off strategy in carpooling problem","authors":"Zeyuan Yan, Li Li, Hui Zhao, Yazan Mualla, Ansar Yasar","doi":"10.1007/s43684-023-00053-7","DOIUrl":"10.1007/s43684-023-00053-7","url":null,"abstract":"<div><p>Although the pick-up/drop-off (PUDO) strategy in carpooling offers the convenience of short-distance walking for passengers during boarding and disembarking, there is a noticeable hesitancy among commuters to adopt this travel method, despite its numerous benefits. Here, this paper establishes a tripartite evolutionary game theory (EGT) model to verify the evolutionary stability of choosing the PUDO strategy of drivers and passengers and offering subsidies strategy of carpooling platforms in carpooling system. The model presented in this paper serves as a valuable tool for assessing the dissemination and implementation of PUDO strategy and offering subsidies strategy in carpooling applications. Subsequently, an empirical analysis is conducted to examine and compare the sensitivity of the parameters across various scenarios. The findings suggest that: firstly, providing subsidies to passengers and drivers, along with deductions for drivers through carpooling platforms, is an effective way to promote wider adoption of the PUDO strategy. Then, the decision-making process is divided into three stages: initial stage, middle stage, and mature stage. PUDO strategy progresses from initial rejection to widespread acceptance among drivers in the middle stage and, in the mature stage, both passengers and drivers tend to adopt it under carpooling platform subsidies; the factors influencing the costs of waiting and walking times, as well as the subsidies granted to passengers, are essential determinants that require careful consideration by passengers, drivers, and carpooling platforms when choosing the PUDO strategy. Our work provides valuable insight into the PUDO strategy’s applicability and the declared results provide implications for traffic managers and carpooling platforms to offer a suitable incentive.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00053-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.1007/s43684-023-00052-8
Yibei Li, Lizheng Liu, Zhongxue Gan, Xiaoming Hu
In this paper, the formation control problem for a multi-agent system is studied. Two new robust control algorithms for serial and parallel formations respectively are proposed, which take the constraints of limited field of view into consideration. Without the need for any global information, the only relative information required is distance and bearing angle, thus is easy to implement with onboard directional sensors. It is then demonstrated how complex formations can be realized by combining the proposed basic controllers. Finally, effectiveness of the proposed algorithms is illustrated by numerical examples.
{"title":"Robust formation control for unicycle robots with directional sensor information","authors":"Yibei Li, Lizheng Liu, Zhongxue Gan, Xiaoming Hu","doi":"10.1007/s43684-023-00052-8","DOIUrl":"10.1007/s43684-023-00052-8","url":null,"abstract":"<div><p>In this paper, the formation control problem for a multi-agent system is studied. Two new robust control algorithms for serial and parallel formations respectively are proposed, which take the constraints of limited field of view into consideration. Without the need for any global information, the only relative information required is distance and bearing angle, thus is easy to implement with onboard directional sensors. It is then demonstrated how complex formations can be realized by combining the proposed basic controllers. Finally, effectiveness of the proposed algorithms is illustrated by numerical examples.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-023-00052-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45824193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}