This study addresses the complexities of maritime area information collection, particularly in challenging sea environments, by introducing a multi-agent control model for regional information gathering. Focusing on three key areas—regional coverage, collaborative exploration, and agent obstacle avoidance—we aim to establish a multi-unmanned ship coverage detection system. For regional coverage, a multi-objective optimization model considering effective area coverage and time efficiency is proposed, utilizing a heuristic simulated annealing algorithm for optimal allocation and path planning, achieving a 99.67% effective coverage rate in simulations. Collaborative exploration is tackled through a comprehensive optimization model, solved using an improved greedy strategy, resulting in a 100% static target detection and correct detection index. Agent obstacle avoidance is enhanced by a collision avoidance model and a distributed underlying collision avoidance algorithm, ensuring autonomous obstacle avoidance without communication or scheduling. Simulations confirm zero collaborative failures. This research offers practical solutions for multi-agent exploration and coverage in unknown sea areas, balancing workload and time efficiency while considering ship dynamics constraints.