Correction to: Acta Veterinaria Scandinavica
https://doi.org/10.1186/s13028-022-00637-y
Following publication of the original article [1], we have been notified that reference 13 was published incorrectly.
It is now as follows:
13. Farouk MM, El-Molla A, Salib FA, Soliman YA. Epidemiology of Salmonella species in diarrheic sheep and goats. Pakistan J Zool. 2021;54:1–9.
It should be as follows:
13. Farouk MM, El-Molla A, Salib FA, Soliman YA. Epidemiology of Salmonella species in diarrheic sheep and goats. Pakistan J. Zool. 2022;54:381–9. https://doi.org/10.17582/journal.pjz/20201012161016.
The original article was updated.
Hawwas et al. (2022) Salmonella serovars in sheep and goats and their probable zoonotic potential to humans in Suez Canal Area, Egypt (2022). 64:17 https://doi.org/10.1186/s13028-022-00637-y
Download references
Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St, Ismailia, 41522, Egypt
Hanan Abd El-Halim Hawwas, Abdel-Karim Mahmoud Aboueisha, Hanaa Mohamed Fadel & Heba Sayed El‑Mahallawy
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
Correspondence to Heba Sayed El‑Mahallawy.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The online version of the original article can be found at https://doi.org/10.1186/s13028-022-00637-y.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are
Background: Swine dysentery, caused by Brachyspira hyodysenteriae, is a severe pig disease. Resistance to tylosins is common and resistance to tiamulin has been reported since the 1990s. Still, dysentery is not notifiable to authorities. The disease therefore escapes control from an overall population perspective. In Sweden, a program that aimed to control dysentery at national level was initiated in 2020, mainly due to the unexpected diagnosis of tiamulin resistant Brachyspira hyodysenteriae in 2016.
Results: Through joint efforts of a network including farmers, government, animal health organisations and abattoirs it was concluded that outbreaks of dysentery had taken place in 25 herds between 2016 and 2019. By 1 January 2020, nine of these herds were still not declared free from the disease. From that date, the network decided that Brachyspira hyodysenteriae was to be cultured whenever dysentery could be suspected. Thus, 148, 157 and 124 herds were scrutinised for Brachyspira hyodysenteriae in 2020, 2021 and 2022, respectively, whereof five, three and two new herds were confirmed positive. By 31 December 2022, four herds were judged as impossible to sanitise. However, they posed no problem since they were identified by the network, pigs to and from these enterprises could be transported without jeopardising other herds. When Brachyspira hyodysenteriae was diagnosed in fattening herds purchasing growers, Brachyspira hyodysenteriae could not be detected in the delivering herds. That result, together with other observations, indicated that Brachyspira hyodysenteriae ought to be regarded as ubiquitous, although at a low level in healthy pigs.
Conclusions: Eradication of dysentery contributed to substantial welfare and financial improvements in affected herds. Dysentery was controlled successfully at national level through the united efforts from competing stake holders, such as different abattoirs and animal health organisations. However, as Brachyspira hyodysenteriae was assumed to be ubiquitous, although at a low level in healthy pigs, the duration of the successful control of dysentery was concluded to only be transient. Without permanent monitoring for Brachyspira hyodysenteriae, the knowledge of the national status will rapidly decline to the level prior to the initiation of the control program.
To mitigate the use of antibiotics for many of the multifactorial diseases seen in pigs, horses and cattle, new diagnostic tools are needed. Acute phase protein (APP) measurements can, in humans, be used to guide antibiotic treatment initiation, evaluate treatment efficacy, and make a prognosis. The aim of this review is to collect evidence on the clinical functionality of APP measurements as a tool to guide antibiotic treatment in pigs, horses, and cattle. Literature was retrieved using Medline, CAB Abstracts and Google Scholar. The acute phase response has been investigated for a plethora of diseases and clinical signs and the major acute phase proteins are elevated in diseased compared to healthy animals. Few studies correlated acute phase response with aetiology, antibiotic treatment efficacy, prognosis, or severity of disease. The existing research does not support that APP can be used to guide antibiotic treatment, but the reported studies indicate that C-reactive protein (CRP) might be able to differentiate between bacterial and non-bacterial causes of disease in pigs. Serum amyloid A (SAA) might reflect underlying aetiology in horses and infectious or non-infectious cases of mastitis in cows.
Within the field of clinical research, reports on the stability of avian serum amyloid A (SAA) under varying storage conditions are currently scarce. In this study, avian plasma samples were evaluated for SAA, a major acute-phase protein in birds, to assess how varying storage periods and repeated freeze-thaw cycles impact the stability of SAA in the frozen samples. Seven plasma samples from two species and six plasma samples from three species stored at ‒20 °C were used to evaluate the time and temperature effects accordingly. A chicken-specific SAA ELISA kit was used for the measurements. Statistical analysis was performed using SPSS, and the Kruskal-Wallis test and Spearman's correlation coefficient were applied, with statistical significance set at P < 0.05. The SAA concentrations measured daily for 30 days showed no statistically significant differences over time. Freezing-thawing was repeated five times, and a significant negative relationship was confirmed over the cycles (r=‒0.8857, P < 0.05). Although no significance was observed between a decreased concentration and the number of cycles, a decrease in the concentration of > 10% was observed after the fourth cycle in four out of six samples. However, one to three freeze-thaw cycles did not result in a significant decline. Taken together, the results indicate that a negative correlation existed between the mean concentration and multiple freeze-thaw cycles, indicating that these should be avoided where possible.
Background: Environmental bacteria in animal healthcare facilities may constitute a risk for healthcare-associated infections (HAI). Knowledge of the bacterial microflora composition and factors influencing the environmental bacterial load can support tailored interventions to lower the risk for HAI. The aims of this study were to: (1) quantify and identify environmental bacteria in one operating room (OR) and one ultrasound room (UR) in a small animal hospital, (2) compare the bacterial load to threshold values suggested for use in human healthcare facilities, (3) characterise the genetic relationship between selected bacterial species to assess clonal dissemination, and (4) investigate factors associated with bacterial load during surgery. Settle plates were used for passive air sampling and dip slides for surface sampling. Bacteria were identified by Matrix Assisted Laser Desorption-Time Of Flight. Antimicrobial susceptibility was determined by broth microdilution. Single nucleotide polymorphism-analysis was performed to identify genetically related isolates. Linear regression was performed to analyse associations between observed explanatory factors and bacterial load.
Results: The bacterial load on settle plates and dip slides were low both in the OR and the UR, most of the samples were below threshold values suggested for use in human healthcare facilities. All settle plates sampled during surgery were below the threshold values suggested for use in human clean surgical procedures. Staphylococcus spp. and Micrococcus spp. were the dominating species. There was no indication of clonal relationship among the sequenced isolates. Bacteria carrying genes conveying resistance to disinfectants were revealed. Air change and compliance with hygiene routines were sufficient in the OR. No other factors possibly associated with the bacterial load were identified.
Conclusions: This study presents a generally low bacterial load in the studied OR and UR, indicating a low risk of transmission of infectious agents from the clinical environment. The results show that it is possible to achieve bacterial loads below threshold values suggested for use in human healthcare facilities in ORs in small animal hospitals and thus posing a reduced risk of HAI. Bacteria carrying genes conveying resistance to disinfectants indicates that resistant bacteria can persist in the clinical environment, with increased risk for HAI.

