首页 > 最新文献

Advanced Industrial and Engineering Polymer Research最新文献

英文 中文
Novel manufacturing method for highly flexible poly(lactic acid) foams and ferroelectrets 高柔性聚乳酸泡沫和铁电驻极体的新制造方法
Q1 Materials Science Pub Date : 2024-04-01 DOI: 10.1016/j.aiepr.2023.03.005
Dániel Vadas , Katalin Bocz , Tamás Igricz , János Volk , Sándor Bordács , Lajos Madarász , György Marosi

Poly (lactic acid) (PLA) foams have demonstrated a high variety of functional characteristics, still, the rigidity of this cellular material remains a major limiting factor when it comes to implementation options. In this contribution, PLA foams with outstanding flexibility were created for the first time by a new approach of uniaxial stretching and immediate relaxation following supercritical CO2-assisted extrusion foaming. Instead of improving the resilience of the PLA raw material, structural elasticity of the foam was achieved via altering the deformation mechanism from cell wall collapse or rupture towards reversible and extensive flexural strain. In addition, PLA foams with excellent piezoelectric properties were also achieved via high-voltage corona poling, giving additional function to the lens-like anisotropic foam cells. This foaming technology creates the opportunity to produce PLA piezoelectrets in a way entirely different from the state-of-the-art methods. Correlation between the tensile as well as compression elongations and moduli, cell morphology and longitudinal piezoelectric coefficients (d33) of electretized foam samples were studied. Unprecedented reversible tensile elongations of up to 16% and total elongations of up to 35% were reached, as well as considerable d33 values in the range of 50–320 pC/N were obtained for PLA ferroelectrets.

聚乳酸(PLA)泡沫具有多种功能特性,但这种细胞材料的刚性仍然是限制其应用的主要因素。本文首次采用超临界二氧化碳辅助挤压发泡后进行单轴拉伸和立即松弛的新方法,制造出具有出色柔韧性的聚乳酸泡沫。这种方法不是提高聚乳酸原料的回弹性,而是通过改变变形机制,从细胞壁塌陷或破裂转向可逆的广泛挠曲应变,从而实现泡沫的结构弹性。此外,还通过高压电晕极化实现了具有优异压电特性的聚乳酸泡沫,为透镜状各向异性泡沫细胞赋予了额外的功能。这种发泡技术为生产聚乳酸压电体提供了完全不同于最先进方法的机会。我们研究了拉伸和压缩伸长率与模量、细胞形态和电硬化泡沫样品的纵向压电系数(d33)之间的相关性。聚乳酸铁电体的可逆拉伸伸长率达到前所未有的 16%,总伸长率达到 35%,d33 值在 50-320 pC/N 之间。
{"title":"Novel manufacturing method for highly flexible poly(lactic acid) foams and ferroelectrets","authors":"Dániel Vadas ,&nbsp;Katalin Bocz ,&nbsp;Tamás Igricz ,&nbsp;János Volk ,&nbsp;Sándor Bordács ,&nbsp;Lajos Madarász ,&nbsp;György Marosi","doi":"10.1016/j.aiepr.2023.03.005","DOIUrl":"10.1016/j.aiepr.2023.03.005","url":null,"abstract":"<div><p>Poly (lactic acid) (PLA) foams have demonstrated a high variety of functional characteristics, still, the rigidity of this cellular material remains a major limiting factor when it comes to implementation options. In this contribution, PLA foams with outstanding flexibility were created for the first time by a new approach of uniaxial stretching and immediate relaxation following supercritical CO<sub>2</sub>-assisted extrusion foaming. Instead of improving the resilience of the PLA raw material, structural elasticity of the foam was achieved via altering the deformation mechanism from cell wall collapse or rupture towards reversible and extensive flexural strain. In addition, PLA foams with excellent piezoelectric properties were also achieved via high-voltage corona poling, giving additional function to the lens-like anisotropic foam cells. This foaming technology creates the opportunity to produce PLA piezoelectrets in a way entirely different from the state-of-the-art methods. Correlation between the tensile as well as compression elongations and moduli, cell morphology and longitudinal piezoelectric coefficients (<em>d</em><sub><em>33</em></sub>) of electretized foam samples were studied. Unprecedented reversible tensile elongations of up to 16% and total elongations of up to 35% were reached, as well as considerable <em>d</em><sub><em>33</em></sub> values in the range of 50–320 pC/N were obtained for PLA ferroelectrets.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000210/pdfft?md5=12f6fb13ba8d6c1e6aee384ccec75885&pid=1-s2.0-S2542504823000210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46920095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tannic acid-based intumescent flame retardant for improving flame retardancy of epoxy composites 用于提高环氧树脂复合材料阻燃性能的单宁酸基膨胀型阻燃剂
Q1 Materials Science Pub Date : 2024-04-01 DOI: 10.1016/j.aiepr.2024.04.003
Xiaosui Chen, Yaoting Ma, Shuzheng Liu, Aiqing Zhang, Wei Liu, Shengchao Huang
{"title":"A tannic acid-based intumescent flame retardant for improving flame retardancy of epoxy composites","authors":"Xiaosui Chen, Yaoting Ma, Shuzheng Liu, Aiqing Zhang, Wei Liu, Shengchao Huang","doi":"10.1016/j.aiepr.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.aiepr.2024.04.003","url":null,"abstract":"","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140793662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Enhancement in Mechanical Properties of Graphene/MWCNT Reinforced Polyaryletherketone – Carbon Fiber Multiscale Composites: Experimental Studies and Finite Element Analysis 石墨烯/MWCNT 增强聚芳醚酮-碳纤维多尺度复合材料力学性能的协同增强:实验研究与有限元分析
Q1 Materials Science Pub Date : 2024-03-01 DOI: 10.1016/j.aiepr.2024.02.002
Sarath Kumar Painkal, Meera Balachandran, K. Jayanarayanan, Nagaarjun Sridhar, Sanjeev Kumar
{"title":"Synergistic Enhancement in Mechanical Properties of Graphene/MWCNT Reinforced Polyaryletherketone – Carbon Fiber Multiscale Composites: Experimental Studies and Finite Element Analysis","authors":"Sarath Kumar Painkal, Meera Balachandran, K. Jayanarayanan, Nagaarjun Sridhar, Sanjeev Kumar","doi":"10.1016/j.aiepr.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.aiepr.2024.02.002","url":null,"abstract":"","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140083228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compatibilization phenomenon in polymer science and technology: Chemical aspects 聚合物科学与技术中的相容现象:化学方面
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-02-28 DOI: 10.1016/j.aiepr.2024.01.002

Polymer blends are mixtures of two or more macromolecular species – polymers and/or copolymers. They are used to increase the range of properties available from existing polymers without synthesizing new ones, which is time consuming and expensive. But most blends are immiscible, and need to be compatibilized. The compatibilization must not only insure improvement in performance, it must be clearly defined with regard to the method and objective. Keeping this view in focus, the present review classifies the main approaches that are available into four well-defined “routes” to compatibilization for various types of polymers and copolymers. Further, the possibility of using an innovative combination of in-situ polymerization and in-situ compatibilization as a new route to polymeric nano-blends is explained. While most of the present narrative deals with different types of binary polymer/copolymer blends, pathways for extension of some of the methods to ternary or multicomponent blending and the significance of the novel composite compatibilizers in this context are also highlighted.

聚合物混合物是由两种或两种以上高分子聚合物和/或共聚物组成的混合物。共混物用于增加现有聚合物的性能范围,而无需合成新的聚合物,因为合成新聚合物既耗时又昂贵。但大多数混合物是不相溶的,需要进行相容。相容不仅要确保改善性能,还必须明确界定方法和目标。根据这一观点,本综述将现有的主要方法分为四种明确定义的 "路线",用于各类聚合物和共聚物的相容。此外,还解释了将原位聚合和原位相容创新地结合起来作为聚合物纳米混合物新途径的可能性。虽然目前的叙述大多涉及不同类型的二元聚合物/共聚物混合物,但也强调了将某些方法扩展到三元或多组分混合物的途径,以及新型复合相容剂在这方面的重要性。
{"title":"Compatibilization phenomenon in polymer science and technology: Chemical aspects","authors":"","doi":"10.1016/j.aiepr.2024.01.002","DOIUrl":"10.1016/j.aiepr.2024.01.002","url":null,"abstract":"<div><p>Polymer blends are mixtures of two or more macromolecular species – polymers and/or copolymers. They are used to increase the range of properties available from existing polymers without synthesizing new ones, which is time consuming and expensive. But most blends are immiscible, and need to be compatibilized. The compatibilization must not only insure improvement in performance, it must be clearly defined with regard to the method and objective. Keeping this view in focus, the present review classifies the main approaches that are available into four well-defined “routes” to compatibilization for various types of polymers and copolymers. Further, the possibility of using an innovative combination of <em>in-situ</em> polymerization and <em>in-situ</em> compatibilization as a new route to polymeric nano-blends is explained. While most of the present narrative deals with different types of binary polymer/copolymer blends, pathways for extension of some of the methods to ternary or multicomponent blending and the significance of the novel <em>composite compatibilizers</em> in this context are also highlighted.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":9.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504824000083/pdfft?md5=e8a1dcc7deb05df628c05bcd69f672b1&pid=1-s2.0-S2542504824000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140465386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FULLERENE-CONTAINING modifier of MAGNETOACTIVE elastomer 磁性弹性体的富勒烯连接改性剂
Q1 Materials Science Pub Date : 2024-02-01 DOI: 10.1016/j.aiepr.2024.02.001
М.A. Vasilyeva, F.Yu. Sharikov, I.A. Bogdanov
{"title":"FULLERENE-CONTAINING modifier of MAGNETOACTIVE elastomer","authors":"М.A. Vasilyeva, F.Yu. Sharikov, I.A. Bogdanov","doi":"10.1016/j.aiepr.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.aiepr.2024.02.001","url":null,"abstract":"","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139812378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FULLERENE-CONTAINING modifier of MAGNETOACTIVE elastomer 磁性弹性体的富勒烯连接改性剂
Q1 Materials Science Pub Date : 2024-02-01 DOI: 10.1016/j.aiepr.2024.02.001
М.A. Vasilyeva, F.Yu. Sharikov, I.A. Bogdanov
{"title":"FULLERENE-CONTAINING modifier of MAGNETOACTIVE elastomer","authors":"М.A. Vasilyeva, F.Yu. Sharikov, I.A. Bogdanov","doi":"10.1016/j.aiepr.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.aiepr.2024.02.001","url":null,"abstract":"","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139872244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical toxicity assessment of anionic nanoliposomes 阴离子纳米脂质体的临床前毒性评价
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.aiepr.2022.11.002
Amir Abbas Momtazi-Borojeni , Mahdi Hatamipour , Mohammad Reza Sarborji , Mahmoud Reza Jaafari , Amirhossein Sahebkar

Aim

To evaluate the in vivo toxicity of the anionic nanoliposome formulation containing [hydrogenated soy phosphatidylcholine (HSPC)] and [1,2-distearoyl-sn-glycero-3- phosphoglycerol (DSPG)].

Methods

The anionic nanoliposome formulation was prepared by the lipid film hydration method. To assess the toxicity of anionic nanoliposomes, male and female albino mice were weakly treated with intravenous injection of the formulation (100 μmol/kg) for four weeks. The toxicity study was performed by the subacute protocol, four weeks after the last injection. To this end, the plasma levels of lipid indexes, urea, creatinine, AST, ALT, ALP, and fasting blood glucose (FBG) were measured. To evaluate histopathological alterations, the tissues of the vital organs including the heart, liver, kidneys, spleen, and brain were studied using hematoxylin & eosin (H&E) staining.

Results

The results showed nonsignificant changes in total cholesterol, LDL-C, HDL-C, creatinine, urea, AST, ALP, and ALT in the liposome-treated mice when compared with control mice. However, plasma levels of triglycerides were significantly decreased (by 64.5 ± 15.3 mg/dL, p = 0.001) and (by 58.75 ± 15.3 mg/dL, p = 0.002) in the liposome-treated male and female mice, respectively, when compared with corresponding control mice. The FBG level was significantly increased by154 ± 20 mg/dL, p = 0.001 in the liposome-treated male mice when compared with the control male mice. The PAB level was significantly decreased by 12 ± 4.2 HK, p = 0.03 in the liposome-treated male mice when compared with the control male mice. Histological examination of vital organs indicated no significant differences in tissue damage between the liposome-treated and control mice.

Conclusion

The findings of the present study indicated that DSPG-containing nanoliposome formulation exerted no significant adverse effects on the function of vital organs and blood levels of biochemical biomarkers in healthy mice. However, further investigations are needed to find a safe dose of DSPG liposomes concerning the risk of diabetes.

目的评估含有[氢化大豆磷脂酰胆碱(HSPC)]和[1,2-二硬脂酰-sn-甘油-3-磷酸甘油(DSPG)]的阴离子纳米脂质体制剂的体内毒性。 方法采用脂膜水合法制备阴离子纳米脂质体制剂。为了评估阴离子纳米脂质体的毒性,给雌雄白化小鼠静脉注射阴离子纳米脂质体制剂(100 μmol/kg),持续四周。在最后一次注射四周后,采用亚急性方案进行毒性研究。为此,测定了血浆中的血脂指标、尿素、肌酐、谷草转氨酶、谷丙转氨酶、谷草转氨酶和空腹血糖(FBG)。为了评估组织病理学改变,使用苏木精和伊红(H&E)染色法研究了包括心脏、肝脏、肾脏、脾脏和大脑在内的重要器官的组织。结果结果显示,与对照组小鼠相比,脂质体治疗组小鼠的总胆固醇、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、肌酐、尿素、谷草转氨酶、谷丙转氨酶和谷草转氨酶均无显著变化。然而,与相应的对照组小鼠相比,经脂肪族处理的雄性小鼠和雌性小鼠的血浆甘油三酯水平分别明显下降(64.5 ± 15.3 mg/dL,p = 0.001)和(58.75 ± 15.3 mg/dL,p = 0.002)。与对照组雄性小鼠相比,经脂质体处理的雄性小鼠的 FBG 水平明显增加了 154 ± 20 mg/dL,p = 0.001。与对照组雄性小鼠相比,经脂质体处理的雄性小鼠的 PAB 水平明显下降了 12 ± 4.2 HK,p = 0.03。本研究结果表明,含 DSPG 的纳米脂质体制剂对健康小鼠的重要器官功能和血液中的生化生物标志物水平无明显不良影响。不过,还需要进一步研究,以找到与糖尿病风险相关的 DSPG 脂质体的安全剂量。
{"title":"Preclinical toxicity assessment of anionic nanoliposomes","authors":"Amir Abbas Momtazi-Borojeni ,&nbsp;Mahdi Hatamipour ,&nbsp;Mohammad Reza Sarborji ,&nbsp;Mahmoud Reza Jaafari ,&nbsp;Amirhossein Sahebkar","doi":"10.1016/j.aiepr.2022.11.002","DOIUrl":"10.1016/j.aiepr.2022.11.002","url":null,"abstract":"<div><h3>Aim</h3><p>To evaluate the <em>in vivo</em> toxicity of the anionic nanoliposome formulation containing [hydrogenated soy phosphatidylcholine (HSPC)] and [1,2-distearoyl-<em>sn</em>-glycero-3- phosphoglycerol (DSPG)].</p></div><div><h3>Methods</h3><p>The anionic nanoliposome formulation was prepared by the lipid film hydration method. To assess the toxicity of anionic nanoliposomes, male and female albino mice were weakly treated with intravenous injection of the formulation (100 μmol/kg) for four weeks. The toxicity study was performed by the subacute protocol, four weeks after the last injection. To this end, the plasma levels of lipid indexes, urea, creatinine, AST, ALT, ALP, and fasting blood glucose (FBG) were measured. To evaluate histopathological alterations, the tissues of the vital organs including the heart, liver, kidneys, spleen, and brain were studied using hematoxylin &amp; eosin (H&amp;E) staining.</p></div><div><h3>Results</h3><p>The results showed nonsignificant changes in total cholesterol, LDL-C, HDL-C, creatinine, urea, AST, ALP, and ALT in the liposome-treated mice when compared with control mice. However, plasma levels of triglycerides were significantly decreased (by 64.5 ± 15.3 mg/dL, <em>p</em> = 0.001) and (by 58.75 ± 15.3 mg/dL, <em>p</em> = 0.002) in the liposome-treated male and female mice, respectively, when compared with corresponding control mice. The FBG level was significantly increased by154 ± 20 mg/dL, <em>p</em> = 0.001 in the liposome-treated male mice when compared with the control male mice. The PAB level was significantly decreased by 12 ± 4.2 HK, <em>p</em> = 0.03 in the liposome-treated male mice when compared with the control male mice. Histological examination of vital organs indicated no significant differences in tissue damage between the liposome-treated and control mice.</p></div><div><h3>Conclusion</h3><p>The findings of the present study indicated that DSPG-containing nanoliposome formulation exerted no significant adverse effects on the function of vital organs and blood levels of biochemical biomarkers in healthy mice. However, further investigations are needed to find a safe dose of DSPG liposomes concerning the risk of diabetes.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504822000513/pdfft?md5=520f57a2270b079191e0aaf556c0ea0d&pid=1-s2.0-S2542504822000513-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42352081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of polymer composite-based nanomaterial for biomedical applications 聚合物复合纳米材料的生物医学应用机理
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.aiepr.2023.09.002
Nadeem Hussain Solangi , Rama Rao Karri , Nabisab Mujawar Mubarak , Shaukat Ali Mazari

Recent developments in nanomaterials have come to extensive use in various fields, especially in the biomedical industry. Numerous significant obstacles still need to be overcome, particularly those about utilizing nanomaterials in biomedical science, before they can be used for medicinal purposes. Major issues in biomedicine include biological functioning, harmony, toxic effects, and nano-bio surface properties. Thus, researchers may use cutting-edge characterization approaches to study nanomaterials for biomedical applications. Two-dimensional nanomaterials and polymers are crucial components of biological systems. Polymer-based nanomaterials are flexible and more resistant to chemical attack than other NPs. Polymers easily form composite or functionalization with other NPs to improve their performance compared to the traditional NPs. The current review article discussed nanomaterial performance, including carbon nanotubes (CNTs), graphene, MXene and polymers-based biomedical applications. The current state of nanomaterials in the biomedical area is illustrated in this summary article, along with applications and the significance of characterization approaches. The advanced methods for examining the interior geometry, structure, and morphology of nanomaterials are discussed in this piece of writing, including Transmission electron microscopy (TEM), Scanning electronic microscopy (SEM), Atomic Force Microscopy (AFM), Magnetic resonance force microscopy (MRFM) and X-ray diffraction (XRD). Finally, the authors discussed the issues associated with nanomaterials in biomedical applications.

纳米材料的最新发展已广泛应用于各个领域,尤其是生物医学领域。在将纳米材料用于医疗目的之前,仍有许多重大障碍需要克服,特别是在生物医学科学中利用纳米材料方面。生物医学中的主要问题包括生物功能、和谐性、毒性效应和纳米生物表面特性。因此,研究人员可以使用最先进的表征方法来研究生物医学应用中的纳米材料。二维纳米材料和聚合物是生物系统的重要组成部分。与其他纳米粒子相比,聚合物基纳米材料具有柔韧性和更强的抗化学侵蚀能力。与传统的纳米粒子相比,聚合物很容易与其他纳米粒子形成复合或功能化,从而提高其性能。本综述文章讨论了纳米材料的性能,包括碳纳米管(CNT)、石墨烯、MXene 和基于聚合物的生物医学应用。本综述文章阐述了纳米材料在生物医学领域的现状、应用以及表征方法的意义。本文讨论了检查纳米材料内部几何形状、结构和形态的先进方法,包括透射电子显微镜 (TEM)、扫描电子显微镜 (SEM)、原子力显微镜 (AFM)、磁共振力显微镜 (MRFM) 和 X 射线衍射 (XRD)。最后,作者讨论了纳米材料在生物医学应用中的相关问题。
{"title":"Mechanism of polymer composite-based nanomaterial for biomedical applications","authors":"Nadeem Hussain Solangi ,&nbsp;Rama Rao Karri ,&nbsp;Nabisab Mujawar Mubarak ,&nbsp;Shaukat Ali Mazari","doi":"10.1016/j.aiepr.2023.09.002","DOIUrl":"10.1016/j.aiepr.2023.09.002","url":null,"abstract":"<div><p>Recent developments in nanomaterials have come to extensive use in various fields, especially in the biomedical industry. Numerous significant obstacles still need to be overcome, particularly those about utilizing nanomaterials in biomedical science, before they can be used for medicinal purposes. Major issues in biomedicine include biological functioning, harmony, toxic effects, and nano-bio surface properties. Thus, researchers may use cutting-edge characterization approaches to study nanomaterials for biomedical applications. Two-dimensional nanomaterials and polymers are crucial components of biological systems. Polymer-based nanomaterials are flexible and more resistant to chemical attack than other NPs. Polymers easily form composite or functionalization with other NPs to improve their performance compared to the traditional NPs. The current review article discussed nanomaterial performance, including carbon nanotubes (CNTs), graphene, MXene and polymers-based biomedical applications. The current state of nanomaterials in the biomedical area is illustrated in this summary article, along with applications and the significance of characterization approaches. The advanced methods for examining the interior geometry, structure, and morphology of nanomaterials are discussed in this piece of writing, including Transmission electron microscopy (TEM), Scanning electronic microscopy (SEM), Atomic Force Microscopy (AFM), Magnetic resonance force microscopy (MRFM) and X-ray diffraction (XRD). Finally, the authors discussed the issues associated with nanomaterials in biomedical applications.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000544/pdfft?md5=dc4ca2e6d41a9a9756af7c58a574bb59&pid=1-s2.0-S2542504823000544-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into nanocomposite hydrogels; a review on recent advances in characteristics and applications 纳米复合水凝胶研究进展材料特性及应用的最新进展
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.aiepr.2023.06.002
Fatemeh Karchoubi, Reza Afshar Ghotli, Hossein Pahlevani, Mahsa Baghban Salehi

The study of nanocomposite hydrogels in their various scientific areas has grown remarkably along the years with emergence of various theoretical and experimental techniques. Therefore, this review is categorized to provide a comprehensive guide on the fabrication of nanocomposite hydrogels. In this regard, the type and amounts of nanomaterial, and the hydrogel network formation have a significant impact on the improvement of physical, chemical, and biological properties of hydrogels. It has to be noted that these parameters are dependent on the application of nanocomposite hydrogels.

Therefore, the orientation of the range of nanomaterials, product characteristics, along with sufficient information on the application of these materials, need to be considered to obtain a successful material.

In this review article, the scientific advances in the field of nanocomposite hydrogels, focusing on their types based on the nanoparticle types, and their properties with a new perspective on rheology, self-healing behavior, thermal stability, biologic, and morphology are investigated. Eventually, the applicability of these materials is collected in a comprehensive table in various fields such as biomedical, enhanced oil recovery, agriculture, etc. for the first time presents comparisons with more details.

随着各种理论和实验技术的不断涌现,纳米复合水凝胶在各个科学领域的研究取得了长足的发展。因此,本综述对纳米复合水凝胶的制造进行了分类,以提供全面的指导。在这方面,纳米材料的类型和数量以及水凝胶网络的形成对改善水凝胶的物理、化学和生物特性具有重要影响。必须指出的是,这些参数取决于纳米复合水凝胶的应用。因此,要想获得成功的材料,就必须考虑纳米材料范围的定位、产品特性以及有关这些材料应用的充分信息。在这篇综述文章中,研究了纳米复合水凝胶领域的科学进展,重点是基于纳米粒子类型的纳米复合水凝胶类型,并从流变学、自愈行为、热稳定性、生物和形态学的新角度研究了它们的特性。最后,这些材料在生物医学、提高石油采收率、农业等各个领域的适用性被收集在一个综合表格中,并首次进行了更详细的比较。
{"title":"New insights into nanocomposite hydrogels; a review on recent advances in characteristics and applications","authors":"Fatemeh Karchoubi,&nbsp;Reza Afshar Ghotli,&nbsp;Hossein Pahlevani,&nbsp;Mahsa Baghban Salehi","doi":"10.1016/j.aiepr.2023.06.002","DOIUrl":"10.1016/j.aiepr.2023.06.002","url":null,"abstract":"<div><p>The study of nanocomposite hydrogels in their various scientific areas has grown remarkably along the years with emergence of various theoretical and experimental techniques. Therefore, this review is categorized to provide a comprehensive guide on the fabrication of nanocomposite hydrogels. In this regard, the type and amounts of nanomaterial, and the hydrogel network formation have a significant impact on the improvement of physical, chemical, and biological properties of hydrogels. It has to be noted that these parameters are dependent on the application of nanocomposite hydrogels.</p><p>Therefore, the orientation of the range of nanomaterials, product characteristics, along with sufficient information on the application of these materials, need to be considered to obtain a successful material.</p><p>In this review article, the scientific advances in the field of nanocomposite hydrogels, focusing on their types based on the nanoparticle types, and their properties with a new perspective on rheology, self-healing behavior, thermal stability, biologic, and morphology are investigated. Eventually, the applicability of these materials is collected in a comprehensive table in various fields such as biomedical, enhanced oil recovery, agriculture, etc. for the first time presents comparisons with more details.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000453/pdfft?md5=4aaed7d9ef0174c10b0b97126ec66190&pid=1-s2.0-S2542504823000453-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42201796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of 4D printing – Technologies, shape shifting, smart polymer based materials, and biomedical applications 4D打印技术、形状转换、智能材料和生物医学应用综述
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.aiepr.2023.08.002
Ramisha Sajjad , Sohaib Tahir Chauhdary , Muhammad Tuoqeer Anwar , Ali Zahid , Azhar Abbas Khosa , Muhammad Imran , Muhammad Haider Sajjad

Additive Manufacturing (AM) has been a noticeable technology and made significant progress since the late 1980s. Despite the tremendous growth, this technology is still facing numerous manufacturing challenges. AM of structures and smart materials such as shape memory polymers and alloys is one of the most actively researched areas in which printed objects can alter their properties and shape when exposed to a stimulus e.g., light, temperature, magnetic fields, pH, and humidity. The AM-build parts which can take advantage of these shape-changing features, lead to the growth of 4D printing by introducing time as a fourth dimension in AM processes. This new field originated in 2013, and since then, it has generated great interest due to its potential to build innovative, multi-functional, self-assembling, and self-repairing components with modifiable properties, shapes, and functionalities. This review article intends to examine the major developments of 4D printing in the biomedical field. The study will provide an overview of various 4D printing technologies including vat photo-polymerization, extrusion-based methods, and material jetting and their uses in the biomedical field. It focuses on smart materials like SMPs, LCEs, SMPAs, etc., and their applications in various industries e.g., mechanical, biomedical, aerospace, etc., and explores external stimuli such as moisture, temperature, pH, magnetic fields, and light. The article delves into the promising applications of 4D printing in biomedical fields such as drug delivery, orthopedics, medical devices, tissue engineering, and dentistry and analyzes the challenges associated with 4D printing in the biomedical field, and suggests the future directions including optimization of printing parameters, and exploration of novel materials to broaden its applications.

自 20 世纪 80 年代末以来,快速成型制造(AM)已成为一项引人注目的技术,并取得了重大进展。尽管发展势头迅猛,但这项技术在制造方面仍面临诸多挑战。结构和智能材料(如形状记忆聚合物和合金)的增材制造是研究最为活跃的领域之一,其中打印物体在受到光、温度、磁场、pH 值和湿度等刺激时可改变其属性和形状。可以利用这些形状变化特征的 AM 制造部件,通过在 AM 流程中引入时间作为第四维,促进了 4D 打印的发展。这一新领域起源于 2013 年,自那时起,由于其在制造具有可修改属性、形状和功能的创新型、多功能、自组装和自修复部件方面的潜力,引起了人们的极大兴趣。这篇综述文章旨在探讨 4D 打印在生物医学领域的主要发展。研究将概述各种 4D 打印技术,包括大桶光聚合、基于挤压的方法和材料喷射及其在生物医学领域的应用。文章重点关注 SMP、LCE、SMPAs 等智能材料及其在机械、生物医学、航空航天等不同行业的应用,并探讨了湿度、温度、pH 值、磁场和光等外部刺激因素。文章深入探讨了 4D 打印在药物输送、整形外科、医疗器械、组织工程和牙科等生物医学领域的应用前景,分析了 4D 打印在生物医学领域的相关挑战,并提出了未来的发展方向,包括优化打印参数和探索新型材料,以拓宽其应用领域。
{"title":"A review of 4D printing – Technologies, shape shifting, smart polymer based materials, and biomedical applications","authors":"Ramisha Sajjad ,&nbsp;Sohaib Tahir Chauhdary ,&nbsp;Muhammad Tuoqeer Anwar ,&nbsp;Ali Zahid ,&nbsp;Azhar Abbas Khosa ,&nbsp;Muhammad Imran ,&nbsp;Muhammad Haider Sajjad","doi":"10.1016/j.aiepr.2023.08.002","DOIUrl":"10.1016/j.aiepr.2023.08.002","url":null,"abstract":"<div><p>Additive Manufacturing (AM) has been a noticeable technology and made significant progress since the late 1980s. Despite the tremendous growth, this technology is still facing numerous manufacturing challenges. AM of structures and smart materials such as shape memory polymers and alloys is one of the most actively researched areas in which printed objects can alter their properties and shape when exposed to a stimulus e.g., light, temperature, magnetic fields, pH, and humidity. The AM-build parts which can take advantage of these shape-changing features, lead to the growth of 4D printing by introducing time as a fourth dimension in AM processes. This new field originated in 2013, and since then, it has generated great interest due to its potential to build innovative, multi-functional, self-assembling, and self-repairing components with modifiable properties, shapes, and functionalities. This review article intends to examine the major developments of 4D printing in the biomedical field. The study will provide an overview of various 4D printing technologies including vat photo-polymerization, extrusion-based methods, and material jetting and their uses in the biomedical field. It focuses on smart materials like SMPs, LCEs, SMPAs, etc., and their applications in various industries e.g., mechanical, biomedical, aerospace, etc., and explores external stimuli such as moisture, temperature, pH, magnetic fields, and light. The article delves into the promising applications of 4D printing in biomedical fields such as drug delivery, orthopedics, medical devices, tissue engineering, and dentistry and analyzes the challenges associated with 4D printing in the biomedical field, and suggests the future directions including optimization of printing parameters, and exploration of novel materials to broaden its applications.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000520/pdfft?md5=a9883d5450cd779c92b584e796d57996&pid=1-s2.0-S2542504823000520-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45968347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Industrial and Engineering Polymer Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1