首页 > 最新文献

Analysis & sensing最新文献

英文 中文
High Selectivity MEMS C2H2 Sensor for Transformer Fault Characteristic Gas Detection** 用于变压器故障特征气体检测的高选择性 MEMS C2H2 传感器**
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-06-26 DOI: 10.1002/anse.202400032
Yifeng Xu, Haixia Mei, Yu Bing, Fuyun Zhang, Ning Sui, Assoc. Prof. Tingting Zhou, Xiaopeng Fan, Lijie Wang, Prof. Tong Zhang

Acetylene (C2H2), as an important characteristic gas in transformer fault diagnosis, should be accurately detected and effectively distinguished from other dissolved gases (H2, CH4, C2H6, C2H4, CO, CO2), which is crucial to determine whether the fault occurs and the fault type, but also faces challenges now. The rational design and employment of rare earth and noble metals are expected to address this issue. In this work, SnO2-3 at% Sm2O3-1 at% PdO based MEMS gas sensor was prepared to achieve high performance detection of C2H2 which has a response value of 56 to 50 ppm C2H2, response/recovery time of 2 s/136 s, lower detection limit of 1 ppm, power consumption of 15.5 mW, and weak cross sensitivity to other transformer fault characteristic gases. Lewis acids and bases theory was used to explain the reason why rare earth Sm is a benefit element to improve selectivity to C2H2. The formation of oxygen vacancies and hetero junctions was used to explain the increased sensitivity of the material. This study proved the feasibility of rare earth and noble metals as potential additives to enable advanced gas-sensitive materials for highly selective transformer fault characteristic gas C2H2 detection.

乙炔(C2H2)作为变压器故障诊断中的重要特征气体,需要准确检测并与其他溶解气体(H2、CH4、C2H6、C2H4、CO、CO2)有效区分,这对于判断是否发生故障以及故障类型至关重要,但目前也面临着挑战。稀土和贵金属的合理设计和使用有望解决这一问题。在这项工作中,制备了基于 SnO2-3 at% Sm2O3-1 at% PdO 的 MEMS 气体传感器,实现了对 C2H2 的高性能检测,其响应值为 56 至 50 ppm C2H2,响应/恢复时间为 2 s/136 s,检测下限为 1 ppm,功耗为 15.5 mW,对其他变压器故障特征气体的交叉敏感性较弱。路易斯酸和碱理论被用来解释稀土钐为何是提高对 C2H2 选择性的有利元素。氧空位和异质结的形成被用来解释材料灵敏度提高的原因。这项研究证明了稀土和贵金属作为潜在添加剂的可行性,从而使先进的气敏材料能够用于高选择性变压器故障特征气体 C2H2 的检测。
{"title":"High Selectivity MEMS C2H2 Sensor for Transformer Fault Characteristic Gas Detection**","authors":"Yifeng Xu,&nbsp;Haixia Mei,&nbsp;Yu Bing,&nbsp;Fuyun Zhang,&nbsp;Ning Sui,&nbsp;Assoc. Prof. Tingting Zhou,&nbsp;Xiaopeng Fan,&nbsp;Lijie Wang,&nbsp;Prof. Tong Zhang","doi":"10.1002/anse.202400032","DOIUrl":"10.1002/anse.202400032","url":null,"abstract":"<p>Acetylene (C<sub>2</sub>H<sub>2</sub>), as an important characteristic gas in transformer fault diagnosis, should be accurately detected and effectively distinguished from other dissolved gases (H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>2</sub>H<sub>4</sub>, CO, CO<sub>2</sub>), which is crucial to determine whether the fault occurs and the fault type, but also faces challenges now. The rational design and employment of rare earth and noble metals are expected to address this issue. In this work, SnO<sub>2</sub>-3 at% Sm<sub>2</sub>O<sub>3</sub>-1 at% PdO based MEMS gas sensor was prepared to achieve high performance detection of C<sub>2</sub>H<sub>2</sub> which has a response value of 56 to 50 ppm C<sub>2</sub>H<sub>2</sub>, response/recovery time of 2 s/136 s, lower detection limit of 1 ppm, power consumption of 15.5 mW, and weak cross sensitivity to other transformer fault characteristic gases. Lewis acids and bases theory was used to explain the reason why rare earth Sm is a benefit element to improve selectivity to C<sub>2</sub>H<sub>2</sub>. The formation of oxygen vacancies and hetero junctions was used to explain the increased sensitivity of the material. This study proved the feasibility of rare earth and noble metals as potential additives to enable advanced gas-sensitive materials for highly selective transformer fault characteristic gas C<sub>2</sub>H<sub>2</sub> detection.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent Effects in Hyperpolarization of 15N Nuclei in [15N3]Metronidazole and [15N3]Nimorazole Antibiotics via SABRE-SHEATH** 通过 SABRE-SHEATH** 使[15N3]甲硝唑和[15N3]硝咪唑抗生素中的 15N 核超极化的溶剂效应
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-06-20 DOI: 10.1002/anse.202400045
Anna P. Yi, Dr. Oleg G. Salnikov, Dr. Dudari B. Burueva, Dr. Nikita V. Chukanov, Prof. Eduard Y. Chekmenev, Prof. Igor V. Koptyug

Metronidazole and nimorazole are antibiotics of a nitroimidazole group which also may be potentially utilized as hypoxia radiosensitizers for the treatment of cancerous tumors. Hyperpolarization of 15N nuclei in these compounds using SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei) approach provides dramatic enhancement of detection sensitivity of these analytes using magnetic resonance spectroscopy and imaging. Methanol-d4 is conventionally employed as a solvent in SABRE hyperpolarization process. Herein, we investigate SABRE-SHEATH hyperpolarization of isotopically labeled [15N3]metronidazole and [15N3]nimorazole in nondeuterated methanol and ethanol solvents. Optimization of such hyperpolarization parameters as polarization transfer magnetic field, temperature, parahydrogen flow rate and pressure allowed us to obtain an average 15N polarization of up to 7.2–7.4 % for both substrates. The highest 15N polarizations were observed in methanol-d4 for [15N3]metronidazole and in ethanol for [15N3]nimorazole. At a clinically relevant magnetic field of 1.4 T the 15N nuclei of these substrates possess long characteristic hyperpolarization lifetimes (T1) of ca. 1 to ca. 7 min. This study represents a major step toward SABRE in more biocompatible solvents, such as ethanol, and also paves the way for future utilization of these hyperpolarized nitroimidazoles as molecular contrast agents for MRI visualization of tumors.

甲硝唑和尼莫拉唑是硝基咪唑类抗生素,也可用作治疗癌症肿瘤的缺氧放射增敏剂。利用 SABRE-SHEATH(Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei)方法对这些化合物中的 15N 核进行超极化,可显著提高磁共振光谱和成像对这些分析物的检测灵敏度。在 SABRE 超极化过程中,甲醇-d4 通常被用作溶剂。在此,我们研究了同位素标记的[15N3]甲硝唑和[15N3]尼莫拉唑在非氚代甲醇和乙醇溶剂中的 SABRE-SHEATH 超极化过程。对极化传递磁场、温度、对氢流速和压力等超极化参数进行优化后,两种基质的平均 15N 极化率可达 7.2-7.4%。在甲醇-d4 中,[15N3]甲硝唑的 15N 极化率最高,在乙醇中,[15N3]尼莫拉唑的 15N 极化率最高。在 1.4 T 的临床相关磁场中,这些底物的 15N 核具有较长的特征超极化寿命(T1),约为 1 至 7 分钟。这项研究标志着在乙醇等生物相容性更强的溶剂中进行 SABRE 迈出了重要一步,同时也为将来利用这些超极化硝基咪唑作为分子对比剂进行肿瘤核磁共振成像铺平了道路。
{"title":"Solvent Effects in Hyperpolarization of 15N Nuclei in [15N3]Metronidazole and [15N3]Nimorazole Antibiotics via SABRE-SHEATH**","authors":"Anna P. Yi,&nbsp;Dr. Oleg G. Salnikov,&nbsp;Dr. Dudari B. Burueva,&nbsp;Dr. Nikita V. Chukanov,&nbsp;Prof. Eduard Y. Chekmenev,&nbsp;Prof. Igor V. Koptyug","doi":"10.1002/anse.202400045","DOIUrl":"10.1002/anse.202400045","url":null,"abstract":"<p>Metronidazole and nimorazole are antibiotics of a nitroimidazole group which also may be potentially utilized as hypoxia radiosensitizers for the treatment of cancerous tumors. Hyperpolarization of <sup>15</sup>N nuclei in these compounds using SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei) approach provides dramatic enhancement of detection sensitivity of these analytes using magnetic resonance spectroscopy and imaging. Methanol-d<sub>4</sub> is conventionally employed as a solvent in SABRE hyperpolarization process. Herein, we investigate SABRE-SHEATH hyperpolarization of isotopically labeled [<sup>15</sup>N<sub>3</sub>]metronidazole and [<sup>15</sup>N<sub>3</sub>]nimorazole in nondeuterated methanol and ethanol solvents. Optimization of such hyperpolarization parameters as polarization transfer magnetic field, temperature, parahydrogen flow rate and pressure allowed us to obtain an average <sup>15</sup>N polarization of up to 7.2–7.4 % for both substrates. The highest <sup>15</sup>N polarizations were observed in methanol-d<sub>4</sub> for [<sup>15</sup>N<sub>3</sub>]metronidazole and in ethanol for [<sup>15</sup>N<sub>3</sub>]nimorazole. At a clinically relevant magnetic field of 1.4 T the <sup>15</sup>N nuclei of these substrates possess long characteristic hyperpolarization lifetimes (<i>T</i><sub>1</sub>) of ca. 1 to ca. 7 min. This study represents a major step toward SABRE in more biocompatible solvents, such as ethanol, and also paves the way for future utilization of these hyperpolarized nitroimidazoles as molecular contrast agents for MRI visualization of tumors.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Aptamer-Based Sensors for In Vitro Detection of Small Molecules 用于体外检测小分子的基于色聚体的传感器的最新进展
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-06-20 DOI: 10.1002/anse.202400027
Yueru Mu, Zhenzhen Chen, Jiayin Zhan, Prof. Jingjing Zhang

Sensitive and accurate detection of small molecules from complex matrix has aroused increasing interest in many fields, yet remains an open challenge. Recent years have witnessed a considerable advance of aptasensors for diagnostic assay development towards diverse small molecules because aptamer is one of the most powerful classes of molecular receptors with advanced affinity and specificity. Herein, we reviewed the small-molecule aptasensors in the past five years, focusing on the principles to specific applications in clinical diagnosis, food safety, and environmental monitoring. The first introductory section on the development of aptasensors in historical view and its analytical features contextualizes essential health-related small molecules. The second part highlights the basic components of aptasensor and the detection principles of different sensors based on signal output modes. The subsequent part systematically discusses various small-molecule sensing platforms by interfacing aptamers with diverse signal amplification strategies. Finally, challenges and perspectives for improving the aptasensor performance are also discussed. By describing biochemical and analytical procedures, this review highlights the optimal use of aptamers in the detection, quantification, and imaging of important health-related small molecules and presents new insights, technical advances, and engineering strategies for practical applications.

对复杂基质中的小分子进行灵敏而准确的检测在许多领域都引起了越来越多的兴趣,但这仍然是一个有待解决的难题。近年来,由于适配体是最强大的一类分子受体,具有高度的亲和性和特异性,因此在针对各种小分子的诊断分析开发中,适配体传感器取得了长足的进步。在此,我们回顾了近五年来小分子适配体的发展历程,重点介绍了其在临床诊断、食品安全和环境监测中的原理和具体应用。第一部分从历史角度介绍了灵敏传感器的发展及其分析特点,并结合背景介绍了与健康相关的重要小分子。第二部分重点介绍了灵敏传感器的基本组件以及基于信号输出模式的不同传感器的检测原理。随后,通过将适配体与不同的信号放大策略连接起来,系统地讨论了各种小分子传感平台。最后,还讨论了提高灵敏传感器性能所面临的挑战和前景。通过描述生化和分析程序,这篇综述强调了在与健康相关的重要小分子的检测、定量和成像中对适配体的最佳利用,并介绍了实际应用中的新见解、技术进步和工程策略。
{"title":"Recent Advances in Aptamer-Based Sensors for In Vitro Detection of Small Molecules","authors":"Yueru Mu,&nbsp;Zhenzhen Chen,&nbsp;Jiayin Zhan,&nbsp;Prof. Jingjing Zhang","doi":"10.1002/anse.202400027","DOIUrl":"10.1002/anse.202400027","url":null,"abstract":"<p>Sensitive and accurate detection of small molecules from complex matrix has aroused increasing interest in many fields, yet remains an open challenge. Recent years have witnessed a considerable advance of aptasensors for diagnostic assay development towards diverse small molecules because aptamer is one of the most powerful classes of molecular receptors with advanced affinity and specificity. Herein, we reviewed the small-molecule aptasensors in the past five years, focusing on the principles to specific applications in clinical diagnosis, food safety, and environmental monitoring. The first introductory section on the development of aptasensors in historical view and its analytical features contextualizes essential health-related small molecules. The second part highlights the basic components of aptasensor and the detection principles of different sensors based on signal output modes. The subsequent part systematically discusses various small-molecule sensing platforms by interfacing aptamers with diverse signal amplification strategies. Finally, challenges and perspectives for improving the aptasensor performance are also discussed. By describing biochemical and analytical procedures, this review highlights the optimal use of aptamers in the detection, quantification, and imaging of important health-related small molecules and presents new insights, technical advances, and engineering strategies for practical applications.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Non-Faradaic Potentiodynamic Impedance Sensing Using Screen-Printed Carbon Electrodes 使用丝网印刷碳电极进行实时非法拉第电位阻抗检测
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-06-18 DOI: 10.1002/anse.202400037
Emil Fuhry, Victoria Guglielmotti, Isabell Wachta, Diego Pallarola, Kannan Balasubramanian

Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detect interfacial phenomena and analyte binding at electrode surfaces. In contrast to metallic electrodes, carbon-based electrodes are more suited due to the low cost and the availability of more versatile methods for chemical functionalization. For (bio) sensing, often the Faradaic version of EIS in a three-electrode configuration is used, where a redox-active species is used as a marker. In order to avoid interference due to the redox-active marker with the interfacial interaction, we focus here on the use of non-Faradaic EIS in the absence of any added markers. First, we utilize the sedimentation of silica beads as a model system, which reduces the complexity of the interaction simplifying the interpretation of the measured signals. Moreover, we introduce two improvements. First, impedance measurements are performed in a three-electrode configuration with applied potential as an additional variable, which serves as a handle to optimize the sensitivity. Secondly, we present a time-differential strategy to detect subtle changes and demonstrate that we can consistently follow the sedimentation of beads using the non-Faradaic impedance as a function of the applied potential. Finally, we show a proof-of-principle demonstration for the biosensing of cell attachment on the electrodes in real-time using the proposed technique.

电化学阻抗光谱(EIS)是一种适用于检测电极表面界面现象和分析物结合的分析技术。与金属电极相比,碳基电极由于成本低廉、化学功能化方法多样而更为适用。在进行(生物)传感时,通常采用三电极配置的法拉第 EIS 法,将氧化还原活性物种作为标记。为了避免氧化还原活性标记对界面相互作用的干扰,我们在此重点介绍在不添加任何标记的情况下使用非法拉第EIS。首先,我们利用硅珠的沉积作为模型系统,从而降低了相互作用的复杂性,简化了测量信号的解释。此外,我们还引入了两项改进。首先,阻抗测量是在三电极配置中进行的,外加电位作为额外变量,可作为优化灵敏度的控制手段。其次,我们提出了一种时间差策略来检测微妙的变化,并证明我们可以利用作为外加电位函数的非法拉第阻抗持续跟踪珠子的沉积。最后,我们展示了利用所提技术对附着在电极上的细胞进行实时生物传感的原理验证。
{"title":"Real-Time Non-Faradaic Potentiodynamic Impedance Sensing Using Screen-Printed Carbon Electrodes","authors":"Emil Fuhry,&nbsp;Victoria Guglielmotti,&nbsp;Isabell Wachta,&nbsp;Diego Pallarola,&nbsp;Kannan Balasubramanian","doi":"10.1002/anse.202400037","DOIUrl":"10.1002/anse.202400037","url":null,"abstract":"<p>Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detect interfacial phenomena and analyte binding at electrode surfaces. In contrast to metallic electrodes, carbon-based electrodes are more suited due to the low cost and the availability of more versatile methods for chemical functionalization. For (bio) sensing, often the Faradaic version of EIS in a three-electrode configuration is used, where a redox-active species is used as a marker. In order to avoid interference due to the redox-active marker with the interfacial interaction, we focus here on the use of non-Faradaic EIS in the absence of any added markers. First, we utilize the sedimentation of silica beads as a model system, which reduces the complexity of the interaction simplifying the interpretation of the measured signals. Moreover, we introduce two improvements. First, impedance measurements are performed in a three-electrode configuration with applied potential as an additional variable, which serves as a handle to optimize the sensitivity. Secondly, we present a time-differential strategy to detect subtle changes and demonstrate that we can consistently follow the sedimentation of beads using the non-Faradaic impedance as a function of the applied potential. Finally, we show a proof-of-principle demonstration for the biosensing of cell attachment on the electrodes in real-time using the proposed technique.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress in CO Detection Probes Based on Different Fluorophores 基于不同荧光团的 CO 检测探针的最新进展
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-06-11 DOI: 10.1002/anse.202400021
Dr. Xinkuo Fang, Dr. Pengcheng Jiang, Prof. Haitao Yu, Dr. Yanyu Qi

Carbon monoxide (CO), a simple and well-known toxic gas, is a naturally occurring gaseous transmitter that plays a crucial role in the regulation of physiological and pathological processes in living organisms. Usually, the development of various diseases can lead to the dysregulation of CO levels. Interestingly, CO has been shown to exert therapeutic effects in inflammation-related disease models. Fluorescent probes for CO detection have become a vital research field in the past decades owing to their advantages of excellent selectivity, exceptional sensitivity, and real-time in situ detection, which have been employed for the precise detection of CO in cells, tissues, and even living organisms. This paper reviews research advancements in CO fluorescent probes over the last decade, outlines the design concepts and detection mechanisms of relevant fluorescent probes, and provides design guidelines and future development prospects.

一氧化碳(CO)是一种众所周知的简单有毒气体,是一种天然存在的气体递质,在调节生物体的生理和病理过程中起着至关重要的作用。通常,各种疾病的发生会导致 CO 水平失调。有趣的是,在与炎症相关的疾病模型中,CO 已被证明具有治疗作用。过去几十年来,用于检测 CO 的荧光探针因其卓越的选择性、超高的灵敏度和实时原位检测等优点而成为一个重要的研究领域,已被用于精确检测细胞、组织甚至生物体内的 CO。本文回顾了近十年来 CO 荧光探针的研究进展,概述了相关荧光探针的设计理念和检测机理,并提供了设计指南和未来发展前景。
{"title":"Recent Progress in CO Detection Probes Based on Different Fluorophores","authors":"Dr. Xinkuo Fang,&nbsp;Dr. Pengcheng Jiang,&nbsp;Prof. Haitao Yu,&nbsp;Dr. Yanyu Qi","doi":"10.1002/anse.202400021","DOIUrl":"10.1002/anse.202400021","url":null,"abstract":"<p>Carbon monoxide (CO), a simple and well-known toxic gas, is a naturally occurring gaseous transmitter that plays a crucial role in the regulation of physiological and pathological processes in living organisms. Usually, the development of various diseases can lead to the dysregulation of CO levels. Interestingly, CO has been shown to exert therapeutic effects in inflammation-related disease models. Fluorescent probes for CO detection have become a vital research field in the past decades owing to their advantages of excellent selectivity, exceptional sensitivity, and real-time <i>in situ</i> detection, which have been employed for the precise detection of CO in cells, tissues, and even living organisms. This paper reviews research advancements in CO fluorescent probes over the last decade, outlines the design concepts and detection mechanisms of relevant fluorescent probes, and provides design guidelines and future development prospects.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141360267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Paper/Polyester-Based Laser-Induced Graphene Electrodes for Electrochemical Detection of Tadalafil 用于电化学检测他达拉非的激光诱导石墨烯混合纸/聚酯电极
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-06-11 DOI: 10.1002/anse.202400016
Shellyda G. G. Souza, Habdias A. Silva-Neto, Danielly S. Rocha, Abner de Siervo, Thiago R. L. C. Paixão, Wendell K. T. Coltro

Here, we describe for the first time the fabrication of laser-induced graphene (LIG) electrodes on a hybrid substrate composed of sandpaper and polyester. As a proof of concept, the proposed device was used as a voltammetric sensor for tadalafil (TAD) quantification in authentic tablet samples. The electrochemical TAD sensing based on differential pulse voltammetry (DPV) revealed a linear behavior in the concentration range from 25 to 250 μmol L−1(R2=0.99), a limit of detection of ~9.6 μmol L−1, sensitivity of ~0.0048 μA(μmol L−1)−1 and acceptable reproducibility values (RSD≤5.8 %). The DPV responses involving the standard addition method in pharmaceutical samples presented recovery results of TAD ranging from 93 to 108 %. Also, the proposed analytical method offered a suitable green analytical chemistry profile. We successfully demonstrated the fabrication of graphene-like sites and nanoparticles composed of alumina upon a hybrid substrate.

在此,我们首次介绍了在由砂纸和聚酯组成的混合基底上制造激光诱导石墨烯(LIG)电极的方法。作为概念验证,所提出的装置被用作伏安传感器,用于对真实片剂样品中的他达拉非(TAD)进行定量。.基于差分脉冲伏安法(DPV)的电化学 TAD 传感在 25 至 250 μmol L-1 的浓度范围内呈线性行为(R2 = 0.99),检测限约为 9.6 μmol L-1,灵敏度约为 0.0048 µA(μmol L-1)-1,重现性值可接受(RSD ≤ 5.8%)。在药物样品中采用标准添加法进行的 DPV 反应显示,TAD 的回收率在 93% 至 108% 之间。此外,所提出的分析方法还提供了一种合适的绿色分析化学方法。我们成功地展示了在混合基底上由氧化铝组成的类石墨烯位点和纳米颗粒的制备过程。
{"title":"Hybrid Paper/Polyester-Based Laser-Induced Graphene Electrodes for Electrochemical Detection of Tadalafil","authors":"Shellyda G. G. Souza,&nbsp;Habdias A. Silva-Neto,&nbsp;Danielly S. Rocha,&nbsp;Abner de Siervo,&nbsp;Thiago R. L. C. Paixão,&nbsp;Wendell K. T. Coltro","doi":"10.1002/anse.202400016","DOIUrl":"10.1002/anse.202400016","url":null,"abstract":"<p>Here, we describe for the first time the fabrication of laser-induced graphene (LIG) electrodes on a hybrid substrate composed of sandpaper and polyester. As a proof of concept, the proposed device was used as a voltammetric sensor for tadalafil (TAD) quantification in authentic tablet samples. The electrochemical TAD sensing based on differential pulse voltammetry (DPV) revealed a linear behavior in the concentration range from 25 to 250 μmol L<sup>−1</sup>(R<sup>2</sup>=0.99), a limit of detection of ~9.6 μmol L<sup>−1</sup>, sensitivity of ~0.0048 μA(μmol L<sup>−1</sup>)<sup>−1</sup> and acceptable reproducibility values (RSD≤5.8 %). The DPV responses involving the standard addition method in pharmaceutical samples presented recovery results of TAD ranging from 93 to 108 %. Also, the proposed analytical method offered a suitable green analytical chemistry profile. We successfully demonstrated the fabrication of graphene-like sites and nanoparticles composed of alumina upon a hybrid substrate.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141356805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unimolecular Cucurbit[7]uril-Based Indicator Displacement Assay with Dual Signal-Readout for the Detection of Drugs 基于葫芦[7]脲的单分子指示剂位移测定法与双信号读出法检测药物
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-06-05 DOI: 10.1002/anse.202400025
Pierre Picchetti, Maria Vittoria Balli, Seth Baker, Nilima Manoj Kumar, Patrick Gruhs, Luca Prodi, Frank Biedermann

Point-of-care diagnostics relies on optical and electrochemical sensors to develop devices that are both compact and cost-effective. Therefore, the search for new design principles for chemosensors that enable multiple signal outputs is a particularly interesting concept. In this work, we present an unimolecular chemosensor based on cucurbit[7]uril that combines two signal readouts - namely fluorescent and electrochemical signals - in a single chemosensor design. This is achieved by utilizing the tunable fluorescence and the electrochemical properties of the reporter molecule, which depend on whether or not it is engulfed by the cucurbit[7]uril cavity in the absence or presence of the analyte. By setting up an assay using the dual readout chemosensor, illicit drug formulations containing pancuronium bromide or nicotine can be detected at low micromolar concentrations (0–100 μM). This assay is compatible with standard fluorescence plate readers and electrochemical devices, including commercially available screen-printed electrodes. Overall, the chemosensor presented in this study represents a significant advance in the development of cucurbit[7]uril chemosensors, characterized by multimodal detection capabilities. It uniquely combines traditional optical and electrochemical detection methods in a single molecular design.

床旁诊断依赖于光学和电化学传感器,以开发结构紧凑、成本效益高的设备。因此,寻找能实现多信号输出的化学传感器的新设计原则是一个特别有趣的概念。在这项工作中,我们介绍了一种基于葫芦[7]脲的单分子化学传感器,它在单一化学传感器设计中结合了两种信号读出方式,即荧光信号和电化学信号。这是通过利用报告分子的可调荧光和电化学特性来实现的,这取决于报告分子是否被葫芦[7]脲空腔吞噬。通过使用双读出化学传感器建立检测方法,可以在低微摩尔浓度(0 - 100 μM)下检测含有泮库溴铵或尼古丁的非法药物制剂。这种检测方法与标准荧光平板阅读器和电化学装置兼容,包括市售的丝网印刷电极(SPE)。总之,本研究中介绍的化学传感器是葫芦素[7]脲化学传感器开发领域的一大进步,具有多模式检测能力。它在单一分子设计中独特地结合了传统的光学和电化学检测方法。
{"title":"Unimolecular Cucurbit[7]uril-Based Indicator Displacement Assay with Dual Signal-Readout for the Detection of Drugs","authors":"Pierre Picchetti,&nbsp;Maria Vittoria Balli,&nbsp;Seth Baker,&nbsp;Nilima Manoj Kumar,&nbsp;Patrick Gruhs,&nbsp;Luca Prodi,&nbsp;Frank Biedermann","doi":"10.1002/anse.202400025","DOIUrl":"10.1002/anse.202400025","url":null,"abstract":"<p>Point-of-care diagnostics relies on optical and electrochemical sensors to develop devices that are both compact and cost-effective. Therefore, the search for new design principles for chemosensors that enable multiple signal outputs is a particularly interesting concept. In this work, we present an unimolecular chemosensor based on cucurbit[7]uril that combines two signal readouts - namely fluorescent and electrochemical signals - in a single chemosensor design. This is achieved by utilizing the tunable fluorescence and the electrochemical properties of the reporter molecule, which depend on whether or not it is engulfed by the cucurbit[7]uril cavity in the absence or presence of the analyte. By setting up an assay using the dual readout chemosensor, illicit drug formulations containing pancuronium bromide or nicotine can be detected at low micromolar concentrations (0–100 μM). This assay is compatible with standard fluorescence plate readers and electrochemical devices, including commercially available screen-printed electrodes. Overall, the chemosensor presented in this study represents a significant advance in the development of cucurbit[7]uril chemosensors, characterized by multimodal detection capabilities. It uniquely combines traditional optical and electrochemical detection methods in a single molecular design.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141382561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ pH Modulation for Enhanced Chemical Sensing: Strategies and Applications 用于增强化学传感的原位 pH 值调节:策略与应用
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-06-03 DOI: 10.1002/anse.202400013
Fabian Steininger, Klaus Koren

pH is one of the key parameters in chemistry and impacts almost all chemical and biological processes. Also, within analytical chemistry and sensing, pH plays a critical role. This review underscores the critical role of pH manipulation in overcoming analytical challenges posed by complex sample matrices and dynamic environmental conditions. It explores the available tools to control pH at a local scale and how those are or can be applied to improve sensor performance. We focus on four key areas where pH modulation has been or could be leveraged to advance chemical sensing capabilities: i) sensing alkalinity and buffer capacity, ii) sample pretreatment, iii) sensing pH dependent analytes and iv) reducing biofouling. We analyze existing strategies, but also try to identify unexplored possibilities which may have potential and can be exploited for sensing.

pH 值是化学中的关键参数之一,影响着几乎所有化学和生物过程。此外,在分析化学和传感领域,pH 值也起着至关重要的作用。本综述强调了 pH 值控制在克服复杂样品基质和动态环境条件带来的分析挑战中的关键作用。它探讨了在局部范围内控制 pH 值的可用工具,以及如何应用这些工具来提高传感器性能。我们将重点放在已经或可以利用 pH 值调节来提高化学传感能力的四个关键领域:i) 传感碱度和缓冲能力;ii) 样品预处理;iii) 传感 pH 值依赖性分析物;iv) 减少生物污损。我们分析了现有的策略,同时也试图找出尚未探索的、可能具有潜力并可用于传感的可能性。
{"title":"In Situ pH Modulation for Enhanced Chemical Sensing: Strategies and Applications","authors":"Fabian Steininger,&nbsp;Klaus Koren","doi":"10.1002/anse.202400013","DOIUrl":"10.1002/anse.202400013","url":null,"abstract":"<p>pH is one of the key parameters in chemistry and impacts almost all chemical and biological processes. Also, within analytical chemistry and sensing, pH plays a critical role. This review underscores the critical role of pH manipulation in overcoming analytical challenges posed by complex sample matrices and dynamic environmental conditions. It explores the available tools to control pH at a local scale and how those are or can be applied to improve sensor performance. We focus on four key areas where pH modulation has been or could be leveraged to advance chemical sensing capabilities: i) sensing alkalinity and buffer capacity, ii) sample pretreatment, iii) sensing pH dependent analytes and iv) reducing biofouling. We analyze existing strategies, but also try to identify unexplored possibilities which may have potential and can be exploited for sensing.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bimetallic Nanoparticles as Electrochemical Labels in Immunosensors for the Detection of Biomarkers of Clinical Interest 双金属纳米粒子作为免疫传感器中的电化学标签,用于检测临床相关的生物标记物
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-17 DOI: 10.1002/anse.202400017
David Valero-Calvo, Francisco Javier García-Alonso, Alfredo de la Escosura-Muñiz

Electrochemical immunosensors have emerged in the last years as outstanding analytical systems for the detection of analytes of clinical interest. As alternative to the traditional enzymatic labels, the use of nanoparticles and especially bimetallic ones has gained increased attention thanks to their advantages related to the higher simplicity, stability and sensitivity offered. Main routes for the detection of such nanoparticle labels are based on i) dissolution of the nanoparticle into the corresponding metal ions followed by voltammetric detection; ii) taking advantage of the electrocatalytic effect of the metals towards secondary reactions; and iii) taking advantage of their electrochemiluminescence properties.

近年来,电化学免疫传感器已成为检测临床相关分析物的杰出分析系统。作为传统酶标记的替代品,纳米粒子,尤其是双金属纳米粒子的使用越来越受到关注,这是因为它们具有更简便、更稳定和更灵敏的优点。检测此类纳米粒子标签的主要方法有:i) 将纳米粒子溶解到相应的金属离子中,然后进行伏安检测;ii) 利用金属对二次反应的电催化效应;iii) 利用其电化学发光特性。在此背景下,本综述介绍了在免疫传感器中使用双金属纳米粒子作为电化学标签检测临床分析物的最新趋势。本综述介绍了在免疫传感器中使用双金属纳米粒子作为电化学标签检测临床感兴趣的分析物的最新趋势,并提供了分析性能和文献中发现的主要方法的重要概述,最后介绍了该领域的未来展望和前景。
{"title":"Bimetallic Nanoparticles as Electrochemical Labels in Immunosensors for the Detection of Biomarkers of Clinical Interest","authors":"David Valero-Calvo,&nbsp;Francisco Javier García-Alonso,&nbsp;Alfredo de la Escosura-Muñiz","doi":"10.1002/anse.202400017","DOIUrl":"10.1002/anse.202400017","url":null,"abstract":"<p>Electrochemical immunosensors have emerged in the last years as outstanding analytical systems for the detection of analytes of clinical interest. As alternative to the traditional enzymatic labels, the use of nanoparticles and especially bimetallic ones has gained increased attention thanks to their advantages related to the higher simplicity, stability and sensitivity offered. Main routes for the detection of such nanoparticle labels are based on i) dissolution of the nanoparticle into the corresponding metal ions followed by voltammetric detection; ii) taking advantage of the electrocatalytic effect of the metals towards secondary reactions; and iii) taking advantage of their electrochemiluminescence properties.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small-Molecule Fluorescent Probes for Plant Hormones and their Receptors 植物激素及其受体的小分子荧光探针
IF 2.9 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-14 DOI: 10.1002/anse.202400020
Zibo Lin, Junhao Xiong, Zihao Zhou, Prof. Qiong Chen, Prof. Jun Yin

Plant hormones and their receptors play a crucial role in regulating plant growth and adapting to the stress environment. The exploration of interaction between plant hormones and their receptors is significant to comprehend the molecular mechanisms of plant growth and development, the response mechanisms of adaptation to environmental changes, and to optimize the traits and stress-resistance of crops. Since the biosynthesis, transport, and metabolism of hormones in plants are closely relevant to spatio-temporal changes, and their content and distribution are highly dynamic, there is an urgent need for a qualitative and quantitative tool to accurately, real-time, and in situ monitor the dynamic changes of hormones in plants without injury. Fluorescent probes have been widely used in the sensing and imaging of plant hormones and their receptors, due to their high spatio-temporal resolution, high selectivity, non-invasive, high sensitivity, and tailored molecular structures. Here, this paper provides a systematical overview of the research progress in the sensing and imaging of plant hormones and their receptors using fluorescent probes. In addition, the potential prospects and remaining challenges are also discussed to design fluorescent probes with better performance and promote the development of this field.

植物激素及其受体在调节植物生长和适应胁迫环境方面起着至关重要的作用。探索植物激素及其受体之间的相互作用对于理解植物生长发育的分子机制、适应环境变化的响应机制以及优化作物性状和抗逆性具有重要意义。由于植物体内激素的生物合成、转运和代谢与时空变化密切相关,其含量和分布也高度动态,因此迫切需要一种定性和定量的工具来准确、实时和原位监测植物体内激素的动态变化而不受伤害。荧光探针具有高时空分辨率、高选择性、非侵入性、高灵敏度和定制分子结构等特点,已被广泛应用于植物激素及其受体的传感和成像。本文系统概述了利用荧光探针对植物激素及其受体进行传感和成像的研究进展。此外,还讨论了潜在的前景和仍然存在的挑战,以期设计出性能更优的荧光探针,推动该领域的发展。
{"title":"Small-Molecule Fluorescent Probes for Plant Hormones and their Receptors","authors":"Zibo Lin,&nbsp;Junhao Xiong,&nbsp;Zihao Zhou,&nbsp;Prof. Qiong Chen,&nbsp;Prof. Jun Yin","doi":"10.1002/anse.202400020","DOIUrl":"10.1002/anse.202400020","url":null,"abstract":"<p>Plant hormones and their receptors play a crucial role in regulating plant growth and adapting to the stress environment. The exploration of interaction between plant hormones and their receptors is significant to comprehend the molecular mechanisms of plant growth and development, the response mechanisms of adaptation to environmental changes, and to optimize the traits and stress-resistance of crops. Since the biosynthesis, transport, and metabolism of hormones in plants are closely relevant to spatio-temporal changes, and their content and distribution are highly dynamic, there is an urgent need for a qualitative and quantitative tool to accurately, real-time, and in situ monitor the dynamic changes of hormones in plants without injury. Fluorescent probes have been widely used in the sensing and imaging of plant hormones and their receptors, due to their high spatio-temporal resolution, high selectivity, non-invasive, high sensitivity, and tailored molecular structures. Here, this paper provides a systematical overview of the research progress in the sensing and imaging of plant hormones and their receptors using fluorescent probes. In addition, the potential prospects and remaining challenges are also discussed to design fluorescent probes with better performance and promote the development of this field.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140977972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Analysis & sensing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1