At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H2) induced polarization (PHIP), can generate sufficiently high liquid state 13C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H2 to create non-equilibrium spin populations. In hydrogenative PHIP, para-H2 is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst. The hydrogenation catalyst plays a crucial role in converting the singlet spin order of para-H2 into detectable nuclear polarization. Currently, rhodium(I) bisphosphine complexes are the most widely employed catalysts for PHIP, capable of catalyzing the addition of para-H2 to unsaturated precursors in organic solvents or aqueous media, depending on the ligand. Chiral catalysts enable the stereoselective production of hyperpolarized substrates. Ruthenium(II) piano stool complexes are capable of trans addition and are used to generate hyperpolarized fumarate. However, these catalysts systems are not optimal, and the greatest source of nuclear spin polarization loss is attributed to the mixing of singlet and triplet states of the protons derived from the para-H2 during the hydrogenation process. Hence, future efforts should focus on enhancing the efficiency and kinetics of these catalysts.
{"title":"Homogeneous Catalysts for Hydrogenative PHIP Used in Biomedical Applications","authors":"Dr. Mai T. Huynh, Prof. Zoltan Kovacs","doi":"10.1002/anse.202400044","DOIUrl":"10.1002/anse.202400044","url":null,"abstract":"<p>At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H<sub>2</sub>) induced polarization (PHIP), can generate sufficiently high liquid state <sup>13</sup>C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H<sub>2</sub> to create non-equilibrium spin populations. In hydrogenative PHIP, para-H<sub>2</sub> is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst. The hydrogenation catalyst plays a crucial role in converting the singlet spin order of para-H<sub>2</sub> into detectable nuclear polarization. Currently, rhodium(I) bisphosphine complexes are the most widely employed catalysts for PHIP, capable of catalyzing the addition of para-H<sub>2</sub> to unsaturated precursors in organic solvents or aqueous media, depending on the ligand. Chiral catalysts enable the stereoselective production of hyperpolarized substrates. Ruthenium(II) piano stool complexes are capable of <i>trans</i> addition and are used to generate hyperpolarized fumarate. However, these catalysts systems are not optimal, and the greatest source of nuclear spin polarization loss is attributed to the mixing of singlet and triplet states of the protons derived from the para-H<sub>2</sub> during the hydrogenation process. Hence, future efforts should focus on enhancing the efficiency and kinetics of these catalysts.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hector Daniel Almeida Gonzalez, Janser Hernandez Ojeda, Angel Luis Corcho-Valdés, Ivan Padron-Ramirez, Marina Perez Cruz, Claudia Iriarte-Mesa, Luis Felipe Desdin-Garcia, Pierangelo Gobbo, Manuel Antuch
Carbon nano-onions (CNOs) promise to improve the range of applications of carbon materials for electroanalytical applications. In this review, we explore the synthesis, characterization, and electrochemical applications of CNOs. CNO-based sensors present impressive features, including low detection limits in the femtogram per milliliter range, a broad linear detection range spanning up to 7 orders of magnitude, exceptional selectivity, reproducibility, and stability. Synthetic methods and characterization techniques for CNOs were thoroughly examined, shedding light on their pivotal role in biosensing technologies. Comparative analyses with other carbon materials underscore CNOs′ competitive performance, either surpassing or matching many counterparts. Despite their relatively recent integration in biosensing applications, CNOs exhibit comparable or superior results concerning other carbon-based materials. Indeed, the incorporation of CNOs into hybrid nanocomposites has shown promising outcomes, indicating a synergistic potential for future advancements in biosensing technologies. Our review provides a broad approach to the application of CNOs to the field, with emphasis on breakthroughs of the last 5 years.
{"title":"The Promise of Carbon Nano-Onions: Preparation, Characterization and Their Application in Electrochemical Sensing","authors":"Hector Daniel Almeida Gonzalez, Janser Hernandez Ojeda, Angel Luis Corcho-Valdés, Ivan Padron-Ramirez, Marina Perez Cruz, Claudia Iriarte-Mesa, Luis Felipe Desdin-Garcia, Pierangelo Gobbo, Manuel Antuch","doi":"10.1002/anse.202400035","DOIUrl":"10.1002/anse.202400035","url":null,"abstract":"<p>Carbon nano-onions (CNOs) promise to improve the range of applications of carbon materials for electroanalytical applications. In this review, we explore the synthesis, characterization, and electrochemical applications of CNOs. CNO-based sensors present impressive features, including low detection limits in the femtogram per milliliter range, a broad linear detection range spanning up to 7 orders of magnitude, exceptional selectivity, reproducibility, and stability. Synthetic methods and characterization techniques for CNOs were thoroughly examined, shedding light on their pivotal role in biosensing technologies. Comparative analyses with other carbon materials underscore CNOs′ competitive performance, either surpassing or matching many counterparts. Despite their relatively recent integration in biosensing applications, CNOs exhibit comparable or superior results concerning other carbon-based materials. Indeed, the incorporation of CNOs into hybrid nanocomposites has shown promising outcomes, indicating a synergistic potential for future advancements in biosensing technologies. Our review provides a broad approach to the application of CNOs to the field, with emphasis on breakthroughs of the last 5 years.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahzad Ahmed, Arshiya Ansari, Syed Kashif Ali, Bhagyashree R. Patil, Farhana Riyaz, Afzal Khan, Pranay Ranjan
Biosensors are analytical tools that integrate a biological element with a physicochemical detector in order to quantify the existence or concentration of chemicals, biomolecules, or other biological elements for human health monitoring purposes. Electrochemical techniques for biological analyte detection include the use of electrochemical sensors to identify and quantify the existence and concentration of biological molecules. These techniques are often used because of their high sensitivity, specificity, quick reaction time, and the possibility of being made smaller in size, but still, the research problem in electrochemical-based biosensing largely revolves around improving biosensors′ sensitivity, selectivity, stability, and response time. Borophene, an intriguing and novel substance within the domain of two-dimensional (2D) materials, emerges as a highly promising protagonist in the continuous and dynamic history of nanoscience and nanotechnology. Borophene, characterized by its distinctive electronic, mechanical, and thermal properties, enthralls scientists due to its atomic structure consisting exclusively of boron atoms organized in a honeycomb lattice. In recent years, borophene hybrids and composites have emerged as potentially fruitful avenues for expanding their utility in numerous fields and improving their properties. In addition, borophene and its hybrid systems hold significant potential to overcome the limitations of current electrochemical-based biosensors. By leveraging their unique properties—such as high surface area, chemical versatility, and mechanical strength—these materials can improve biosensors′ limitations. Moreover, the integration of borophene with other materials can further optimize performance, paving the way for advanced and practical biosensing solutions. This perspective presents a synopsis of recent developments in biosensing composites and hybrids based on borophene, including polymers and other nanomaterials. In addition, we emphasized the remarkable characteristics of borophene hybrids, which permit the detection of biological analytes such as proteins, nucleic acids, and small molecules in a sensitive and selective manner. Additionally, a summary of the computational investigations into analyte detection utilizing borophene-based systems has been provided. In a nutshell, we discussed the challenges and future directions in the field, outlining opportunities for further innovation and optimization of borophene-based biosensing platforms.
{"title":"Pioneering Sensing Technologies Using Borophene-Based Composite/Hybrid Electrochemical Biosensors for Health Monitoring: A Perspective","authors":"Shahzad Ahmed, Arshiya Ansari, Syed Kashif Ali, Bhagyashree R. Patil, Farhana Riyaz, Afzal Khan, Pranay Ranjan","doi":"10.1002/anse.202400034","DOIUrl":"10.1002/anse.202400034","url":null,"abstract":"<p>Biosensors are analytical tools that integrate a biological element with a physicochemical detector in order to quantify the existence or concentration of chemicals, biomolecules, or other biological elements for human health monitoring purposes. Electrochemical techniques for biological analyte detection include the use of electrochemical sensors to identify and quantify the existence and concentration of biological molecules. These techniques are often used because of their high sensitivity, specificity, quick reaction time, and the possibility of being made smaller in size, but still, the research problem in electrochemical-based biosensing largely revolves around improving biosensors′ sensitivity, selectivity, stability, and response time. Borophene, an intriguing and novel substance within the domain of two-dimensional (2D) materials, emerges as a highly promising protagonist in the continuous and dynamic history of nanoscience and nanotechnology. Borophene, characterized by its distinctive electronic, mechanical, and thermal properties, enthralls scientists due to its atomic structure consisting exclusively of boron atoms organized in a honeycomb lattice. In recent years, borophene hybrids and composites have emerged as potentially fruitful avenues for expanding their utility in numerous fields and improving their properties. In addition, borophene and its hybrid systems hold significant potential to overcome the limitations of current electrochemical-based biosensors. By leveraging their unique properties—such as high surface area, chemical versatility, and mechanical strength—these materials can improve biosensors′ limitations. Moreover, the integration of borophene with other materials can further optimize performance, paving the way for advanced and practical biosensing solutions. This perspective presents a synopsis of recent developments in biosensing composites and hybrids based on borophene, including polymers and other nanomaterials. In addition, we emphasized the remarkable characteristics of borophene hybrids, which permit the detection of biological analytes such as proteins, nucleic acids, and small molecules in a sensitive and selective manner. Additionally, a summary of the computational investigations into analyte detection utilizing borophene-based systems has been provided. In a nutshell, we discussed the challenges and future directions in the field, outlining opportunities for further innovation and optimization of borophene-based biosensing platforms.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengbin Liu, Qiwei Wang, Prof. Lili Shi, Prof. Tao Li
Here we report a robust G-quadruplex (G4) dimer-guided transmembrane DNA nanovehicle for targeted payload delivery, based on dimeric G4-proximized aptamers that efficiently target transferrin receptors (TfR) over-expressed on cancer cell surface. It enables the cancer-specific delivery of fluorescent G4 ligands and therapeutic drugs for cellular imaging and treatment.
{"title":"Robust G-Quadruplex Dimer-Guided Transmembrane DNA Nanovehicles for Targeted Payload Delivery","authors":"Chengbin Liu, Qiwei Wang, Prof. Lili Shi, Prof. Tao Li","doi":"10.1002/anse.202400048","DOIUrl":"10.1002/anse.202400048","url":null,"abstract":"<p>Here we report a robust G-quadruplex (G4) dimer-guided transmembrane DNA nanovehicle for targeted payload delivery, based on dimeric G4-proximized aptamers that efficiently target transferrin receptors (TfR) over-expressed on cancer cell surface. It enables the cancer-specific delivery of fluorescent G4 ligands and therapeutic drugs for cellular imaging and treatment.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Andreas B. Schmidt, Prof. Dr. Eduard Y. Chekmenev, Henri de Maissin, Philipp R. Groß, Stefan Petersen, Luca Nagel, Prof. Dr. Franz Schilling, Dr. Ilai Schwartz, Prof. Dr. Thomas Reinheckel, Prof. Dr. Jan-Bernd Hövener, Dr. Stephan Knecht
Hyperpolarized magnetic resonance imaging (HP-MRI) has emerged as a powerful tool in molecular imaging, providing in vivo, real-time insights into metabolic pathways without ionizing radiation. Signal Amplification by Reversible Exchange (SABRE) represents a promising hyperpolarization technique, leveraging parahydrogen to enhance MRI signals. In this concept, we delineate the evolution of SABRE and landmark papers that have enabled us recently to produce biocompatible and low-cost hyperpolarized pyruvate within minutes for in vivo metabolic imaging, showcasing SABRE′s potential for preclinical and near-future clinical settings. Looking ahead, with ongoing efforts focused on optimizing polarizer technology and expanding applications beyond pyruvate, we envision SABRE as a key player in the research and application of HP-MRI due to its simplicity and throughput.
{"title":"Signal Amplification by Reversible Exchange and its Translation to Hyperpolarized Magnetic Resonance Imaging in Biomedicine","authors":"Dr. Andreas B. Schmidt, Prof. Dr. Eduard Y. Chekmenev, Henri de Maissin, Philipp R. Groß, Stefan Petersen, Luca Nagel, Prof. Dr. Franz Schilling, Dr. Ilai Schwartz, Prof. Dr. Thomas Reinheckel, Prof. Dr. Jan-Bernd Hövener, Dr. Stephan Knecht","doi":"10.1002/anse.202400039","DOIUrl":"10.1002/anse.202400039","url":null,"abstract":"<p>Hyperpolarized magnetic resonance imaging (HP-MRI) has emerged as a powerful tool in molecular imaging, providing <i>in vivo</i>, real-time insights into metabolic pathways without ionizing radiation. Signal Amplification by Reversible Exchange (SABRE) represents a promising hyperpolarization technique, leveraging parahydrogen to enhance MRI signals. In this concept, we delineate the evolution of SABRE and landmark papers that have enabled us recently to produce biocompatible and low-cost hyperpolarized pyruvate within minutes for <i>in vivo</i> metabolic imaging, showcasing SABRE′s potential for preclinical and near-future clinical settings. Looking ahead, with ongoing efforts focused on optimizing polarizer technology and expanding applications beyond pyruvate, we envision SABRE as a key player in the research and application of HP-MRI due to its simplicity and throughput.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}