首页 > 最新文献

Advanced Theory and Simulations最新文献

英文 中文
Machine Learning-Guided Discovery of Natural MDM2 Inhibitors: A Multistage In Silico Pipeline from Screening to ADMET Profiling 机器学习引导下发现天然MDM2抑制剂:从筛选到ADMET分析的多阶段硅管道
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-30 DOI: 10.1002/adts.202501502
Bishal Budha, Mohamed Mohyeldin, Ali Raza Ayub, Madan Khanal, Arjun Acharya
Tumor protein p53 (TP53) and mouse double minute two homolog (MDM2) regulate each other via an autoregulatory feedback loop that is frequently disrupted by MDM2 overexpression or mutation, a hallmark in sarcomas, glioblastomas, and breast carcinomas. In the absence of FDA-approved MDM2 inhibitors, a multi-stage in silico strategy is applied to identify novel candidates from COCONUT, a comprehensive natural product library. Using experimentally validated ChEMBL data, 40 machine-learning models are trained and evaluated; the best RandomForestClassifier selects 116 compounds from approximately 700,000 after sequential PAINS, Brenk, and Lipinski filtering. Docking-based screening prioritizes two leads with binding energies of <span data-altimg="/cms/asset/eca4fbde-6496-4321-807f-d4463d600bc3/adts70246-math-0001.png"></span><mjx-container ctxtmenu_counter="9" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts70246-math-0001.png"><mjx-semantics><mjx-mrow data-semantic-annotation="clearspeak:simple" data-semantic-children="1" data-semantic-content="0" data-semantic- data-semantic-role="negative" data-semantic-speech="negative 10.0" data-semantic-type="prefixop"><mjx-mo data-semantic- data-semantic-operator="prefixop,−" data-semantic-parent="2" data-semantic-role="subtraction" data-semantic-type="operator" rspace="1" style="margin-left: 0.056em;"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="float" data-semantic-type="number"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:25130390:media:adts70246:adts70246-math-0001" display="inline" location="graphic/adts70246-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-children="1" data-semantic-content="0" data-semantic-role="negative" data-semantic-speech="negative 10.0" data-semantic-type="prefixop"><mo data-semantic-="" data-semantic-operator="prefixop,−" data-semantic-parent="2" data-semantic-role="subtraction" data-semantic-type="operator">−</mo><mn data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="float" data-semantic-type="number">10.0</mn></mrow>$-10.0$</annotation></semantics></math></mjx-assistive-mml></mjx-container> <span data-altimg="/cms/asset/cd493ee6-fa3c-4b4a-906c-6907f4111a9b/adts70246-math-0002.png"></span><mjx-container ctxtmenu_counter="10" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts70246-math
肿瘤蛋白p53 (TP53)和小鼠双分钟二同系物(MDM2)通过一个自我调节反馈回路相互调节,该回路经常被MDM2过表达或突变破坏,这是肉瘤、胶质母细胞瘤和乳腺癌的标志。在缺乏fda批准的MDM2抑制剂的情况下,采用多阶段硅片策略从COCONUT(一个综合天然产物库)中鉴定新的候选药物。利用实验验证的ChEMBL数据,对40个机器学习模型进行了训练和评估;经过连续的PAINS、Brenk和Lipinski过滤,最佳的RandomForestClassifier从大约700,000个化合物中选择了116个。基于对接的筛选优先考虑两个结合能为−10.0 $-10.0$ kcalmol−1 $mathrm{kcal},mathrm{mol}^{-1}$ (CNP0492204.2)和−9.6 $-9.6$ kcalmol−1 $mathrm{kcal},mathrm{mol}^{-1}$ (CNP0385629.2)的导联,它们都参与关键的相互作用,并具有新型喹唑啉酮类肽模拟支架。分子动力学模拟证实了与MDM2的稳定结合:CNP0492204.2诱导局部n端环柔弹性,而CNP0385629.2有利于与Tyr56深埋和π $pi$ -堆叠。尽管模式不同,MM/GBSA计算表明结合自由能相似(Δ±Gbind $Delta G_{mathrm{bind}}$:−71.26 $-71.26$和−70.75 $-70.75$ kcalmol−1 $mathrm{kcal},mathrm{mol}^{-1}$),与机制不同但同样有效的抑制一致。密度泛函理论表征了电子特征和反应性,ADMET谱分析显示了良好的药物样性质和低预测毒性。总体而言,CNP0492204.2和CNP0385629.2是潜在的MDM2抑制剂,值得体外和体内验证以及早期临床前开发研究。
{"title":"Machine Learning-Guided Discovery of Natural MDM2 Inhibitors: A Multistage In Silico Pipeline from Screening to ADMET Profiling","authors":"Bishal Budha, Mohamed Mohyeldin, Ali Raza Ayub, Madan Khanal, Arjun Acharya","doi":"10.1002/adts.202501502","DOIUrl":"https://doi.org/10.1002/adts.202501502","url":null,"abstract":"Tumor protein p53 (TP53) and mouse double minute two homolog (MDM2) regulate each other via an autoregulatory feedback loop that is frequently disrupted by MDM2 overexpression or mutation, a hallmark in sarcomas, glioblastomas, and breast carcinomas. In the absence of FDA-approved MDM2 inhibitors, a multi-stage in silico strategy is applied to identify novel candidates from COCONUT, a comprehensive natural product library. Using experimentally validated ChEMBL data, 40 machine-learning models are trained and evaluated; the best RandomForestClassifier selects 116 compounds from approximately 700,000 after sequential PAINS, Brenk, and Lipinski filtering. Docking-based screening prioritizes two leads with binding energies of &lt;span data-altimg=\"/cms/asset/eca4fbde-6496-4321-807f-d4463d600bc3/adts70246-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/adts70246-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"negative\" data-semantic-speech=\"negative 10.0\" data-semantic-type=\"prefixop\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"2\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"float\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts70246:adts70246-math-0001\" display=\"inline\" location=\"graphic/adts70246-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1\" data-semantic-content=\"0\" data-semantic-role=\"negative\" data-semantic-speech=\"negative 10.0\" data-semantic-type=\"prefixop\"&gt;&lt;mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"2\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"&gt;−&lt;/mo&gt;&lt;mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"float\" data-semantic-type=\"number\"&gt;10.0&lt;/mn&gt;&lt;/mrow&gt;$-10.0$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt; &lt;span data-altimg=\"/cms/asset/cd493ee6-fa3c-4b4a-906c-6907f4111a9b/adts70246-math-0002.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/adts70246-math","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"52 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145651004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete Conversion and Fast Light From Double Quantum Dot-Metal Nanoparticle System Under the Orbital Angular Momentum Light 轨道角动量光下双量子点-金属纳米粒子体系的完全转换与快光
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-29 DOI: 10.1002/adts.202501150
Mohanad Ahmed Abdulmahdi, Amin Habbeb Al-Khursan
This work studies four-wave mixing (FWM) in a double quantum dot (DQD)-metal nanoparticle (MNP) system. Two control optical waves and a weak probe are applied. The probe is characterized by its orbital angular momentum (OAM) light optical properties. An analytical form of the probe and the generated FWM signal is obtained using spatial-temporal equations. A high second control field reduces efficiency, thereby increasing the FWM signal. At weak coupling DQD-MNP, the first coupling field increases the efficiency, and a near-complete conversion is attained. Such a result is unprecedented and arises from the DQD's properties, where the manipulation between DQD states is high and the DQD behaves as a whole system. Weak coupling gives high efficiency. Such a result refers to the direct effect of the controlling fields on the FWM conversion. The OAM number increases the probe and FWM fields. A fast light is obtained, and the group-velocity peak is shifted under a strong control field. While both complete conversion and fast light are observed at the earliest, other results are within the range reported in the literature. The results obtained are essential for many critical applications.
本文研究了双量子点(DQD)-金属纳米粒子(MNP)体系中的四波混频(FWM)。采用两个控制光波和一个弱探头。该探测器具有轨道角动量(OAM)光光学特性。利用时空方程得到了探头和产生的FWM信号的解析形式。较高的第二控制场降低了效率,从而增加了FWM信号。在弱耦合的DQD-MNP中,第一耦合场提高了效率,实现了近乎完全的转换。这样的结果是前所未有的,并且源于DQD的属性,其中DQD状态之间的操纵是高的,并且DQD作为一个整体系统表现。弱耦合提高了效率。这个结果是指控制场对FWM转换的直接影响。OAM数量增加了探测和FWM字段。在强控制场的作用下,获得了快光,群速度峰发生了位移。虽然最早观察到完全转换和快光,但其他结果都在文献报道的范围内。所获得的结果对于许多关键应用是必不可少的。
{"title":"Complete Conversion and Fast Light From Double Quantum Dot-Metal Nanoparticle System Under the Orbital Angular Momentum Light","authors":"Mohanad Ahmed Abdulmahdi, Amin Habbeb Al-Khursan","doi":"10.1002/adts.202501150","DOIUrl":"https://doi.org/10.1002/adts.202501150","url":null,"abstract":"This work studies four-wave mixing (FWM) in a double quantum dot (DQD)-metal nanoparticle (MNP) system. Two control optical waves and a weak probe are applied. The probe is characterized by its orbital angular momentum (OAM) light optical properties. An analytical form of the probe and the generated FWM signal is obtained using spatial-temporal equations. A high second control field reduces efficiency, thereby increasing the FWM signal. At weak coupling DQD-MNP, the first coupling field increases the efficiency, and a near-complete conversion is attained. Such a result is unprecedented and arises from the DQD's properties, where the manipulation between DQD states is high and the DQD behaves as a whole system. Weak coupling gives high efficiency. Such a result refers to the direct effect of the controlling fields on the FWM conversion. The OAM number increases the probe and FWM fields. A fast light is obtained, and the group-velocity peak is shifted under a strong control field. While both complete conversion and fast light are observed at the earliest, other results are within the range reported in the literature. The results obtained are essential for many critical applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"12 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Engineering of Cs2AuScI6 Double Halide Perovskite Solar Cell: A DFT and SCAPS-1D Approach to 31.82% Efficiency Cs2AuScI6双卤化物钙钛矿太阳能电池的性能工程:DFT和SCAPS-1D方法达到31.82%的效率
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-29 DOI: 10.1002/adts.202501693
Shuaib Mahmud, Md. Mainol Islam, Md. Mukter Hossain, Md. Mohi Uddin, Md. Ashraf Ali
In response to pressing environmental priorities, the development of nontoxic and stable alternatives to lead-based Perovskite solar cells is critical. This study focuses on Cs2AuScI6, a lead-free Perovskite, as a promising photovoltaic material. Through density functional theory (DFT) calculations using Wien2k, a bandgap of 1.30 eV is revealed, with Au-d and Sc-d orbitals playing key roles in electronic properties and Au atoms dominating charge distribution. The material exhibits visible absorption peaks of the 105 order, indicating its potential for solar applications. Conducted by DFT, 36 configurations combining various electron transport layers and hole transport layers (HTLs) are investigated. Copper Barium Tin Sulfide (CBTS) is identified as the optimal HTL due to its alignment with the absorber material. Five standout device architectures of ITO/WS2/Cs2AuScI6/CBTS/Ni, ITO/ZnO/Cs2AuScI6/CBTS/Ni, ITO/TiO2/Cs2AuScI6/CBTS/Ni, ITO/PCBM/Cs2AuScI6/CBTS/Ni, and ITO/IGZO/Cs2AuScI6/CBTS/Ni (Where ITO means Indium Tin Oxide) achieved exceptional power conversion efficiencies of 31.48%, 31.46%, 29.44%, 28.75%, and 31.82%, respectively, surpassing the 18.61% efficiency of the ITO/C60/Cs2AuScI6/CBTS/Ni structure. The study further examines practical performance factors, including resistances, temperature effects, current–voltage (JV) characteristics, and quantum efficiency, thereby enhancing its real-world applicability. These findings highlight the potential of Cs2AuScI6 as a nontoxic, inorganic alternative for perovskite solar technology, contributing to the sustainable development of photovoltaics.
为了应对紧迫的环境优先事项,开发无毒且稳定的铅基钙钛矿太阳能电池替代品至关重要。本文重点研究了无铅钙钛矿Cs2AuScI6作为一种很有前途的光伏材料。通过Wien2k的密度泛函理论(DFT)计算,揭示了一个1.30 eV的带隙,Au-d和Sc-d轨道在电子性质中起关键作用,Au原子主导电荷分布。该材料表现出105阶的可见吸收峰,表明其在太阳能应用方面的潜力。利用离散傅里叶变换,研究了36种不同电子传输层和空穴传输层(HTLs)组合的构型。铜钡锡硫化(CBTS)被确定为最佳的HTL,因为它与吸收材料对齐。ITO/WS2/Cs2AuScI6/CBTS/Ni、ITO/ZnO/Cs2AuScI6/CBTS/Ni、ITO/TiO2/Cs2AuScI6/CBTS/Ni、ITO/PCBM/Cs2AuScI6/CBTS/Ni和ITO/IGZO/Cs2AuScI6/CBTS/Ni(其中ITO表示氧化铟锡)等5种器件结构的功率转换效率分别为31.48%、31.46%、29.44%、28.75%和31.82%,超过了ITO/C60/Cs2AuScI6/CBTS/Ni结构18.61%的效率。该研究进一步考察了实际性能因素,包括电阻、温度效应、电流-电压(J-V)特性和量子效率,从而增强了其在现实世界中的适用性。这些发现突出了Cs2AuScI6作为钙钛矿太阳能技术的无毒无机替代品的潜力,有助于光伏发电的可持续发展。
{"title":"Performance Engineering of Cs2AuScI6 Double Halide Perovskite Solar Cell: A DFT and SCAPS-1D Approach to 31.82% Efficiency","authors":"Shuaib Mahmud, Md. Mainol Islam, Md. Mukter Hossain, Md. Mohi Uddin, Md. Ashraf Ali","doi":"10.1002/adts.202501693","DOIUrl":"https://doi.org/10.1002/adts.202501693","url":null,"abstract":"In response to pressing environmental priorities, the development of nontoxic and stable alternatives to lead-based Perovskite solar cells is critical. This study focuses on Cs<sub>2</sub>AuScI<sub>6</sub>, a lead-free Perovskite, as a promising photovoltaic material. Through density functional theory (DFT) calculations using Wien2k, a bandgap of 1.30 eV is revealed, with Au-<i>d</i> and Sc-<i>d</i> orbitals playing key roles in electronic properties and Au atoms dominating charge distribution. The material exhibits visible absorption peaks of the 10<sup>5</sup> order, indicating its potential for solar applications. Conducted by DFT, 36 configurations combining various electron transport layers and hole transport layers (HTLs) are investigated. Copper Barium Tin Sulfide (CBTS) is identified as the optimal HTL due to its alignment with the absorber material. Five standout device architectures of ITO/WS<sub>2</sub>/Cs<sub>2</sub>AuScI<sub>6</sub>/CBTS/Ni, ITO/ZnO/Cs<sub>2</sub>AuScI<sub>6</sub>/CBTS/Ni, ITO/TiO<sub>2</sub>/Cs<sub>2</sub>AuScI<sub>6</sub>/CBTS/Ni, ITO/PCBM/Cs<sub>2</sub>AuScI<sub>6</sub>/CBTS/Ni, and ITO/IGZO/Cs<sub>2</sub>AuScI<sub>6</sub>/CBTS/Ni (Where ITO means Indium Tin Oxide) achieved exceptional power conversion efficiencies of 31.48%, 31.46%, 29.44%, 28.75%, and 31.82%, respectively, surpassing the 18.61% efficiency of the ITO/C<sub>60</sub>/Cs<sub>2</sub>AuScI<sub>6</sub>/CBTS/Ni structure. The study further examines practical performance factors, including resistances, temperature effects, current–voltage (<i>J</i>–<i>V</i>) characteristics, and quantum efficiency, thereby enhancing its real-world applicability. These findings highlight the potential of Cs<sub>2</sub>AuScI<sub>6</sub> as a nontoxic, inorganic alternative for perovskite solar technology, contributing to the sustainable development of photovoltaics.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"144 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Approach for Predicting Efficiency in Organic Photovoltaics from 2D Molecular Images of D/A Pairs 基于D/A对二维分子图像预测有机光伏效率的深度学习方法
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-29 DOI: 10.1002/adts.202500822
Khoukha Khoussa, Patrick Lévêque, Larbi Boubchir
Organic Photovoltaic (OPV) Devices Have Emerged as a Promising Alternative to Conventional Solar Cells due to Their Flexibility, Lightweight Nature, and Potential for Low-cost Production. However, Optimizing OPV Performance Remains a Complex Challenge, Traditionally Requiring Extensive Experimental Trials or Computational Chemistry Approaches Based on Molecular Descriptors. To Accelerate the Development of High-efficiency OPVs, Artificial Intelligence (AI) Has Been Increasingly Utilized, Particularly Machine Learning Models That Rely on Chemical Descriptors. While these Methods Have Shown Success, They Are Often Limited by the Quality and Completeness of the Selected Descriptors, Potentially Overlooking Key Structural and Morphological Information. In this Work, We Propose a Novel Deep Learning Framework Leveraging Convolutional Neural Networks (CNNs) to Predict OPV Performance Directly from 2D Images of Donor and Acceptor Materials. By Employing a Customized Representation of Molecular Structures, Our Approach Captures Spatial and Hierarchical Patterns That Traditional Descriptors Based ML Models May Miss. We Compare Our Model's Predictive Capability to Conventional Machine Learning Techniques and Demonstrate Its Potential for Improving Prediction Accuracy and Generalization without Need to Add the Frontier Molecular Orbitals (FMOs) to Enhance Predictions. Our Findings Highlight the Power of Deep Learning in Accelerating the Discovery of Efficient Organic Photovoltaic Materials, Paving the Way for a Data-driven Approach to Materials Science and Device Optimization.
有机光伏(OPV)设备由于其灵活性、轻量化和低成本生产的潜力,已经成为传统太阳能电池的一个有前途的替代品。然而,优化OPV性能仍然是一个复杂的挑战,传统上需要大量的实验试验或基于分子描述符的计算化学方法。为了加速高效opv的开发,人工智能(AI)已经越来越多地得到应用,特别是依赖化学描述符的机器学习模型。虽然这些方法已经显示出成功,但它们往往受到所选描述符的质量和完整性的限制,可能会忽略关键的结构和形态信息。在这项工作中,我们提出了一种新的深度学习框架,利用卷积神经网络(cnn)直接从供体和受体材料的二维图像中预测OPV性能。通过采用分子结构的定制表示,我们的方法捕获了传统基于描述符的ML模型可能错过的空间和层次模式。我们将模型的预测能力与传统机器学习技术进行了比较,并展示了其在提高预测精度和泛化方面的潜力,而无需添加前沿分子轨道(FMOs)来增强预测。我们的研究结果突出了深度学习在加速发现高效有机光伏材料方面的力量,为数据驱动的材料科学和器件优化方法铺平了道路。
{"title":"Deep Learning Approach for Predicting Efficiency in Organic Photovoltaics from 2D Molecular Images of D/A Pairs","authors":"Khoukha Khoussa, Patrick Lévêque, Larbi Boubchir","doi":"10.1002/adts.202500822","DOIUrl":"https://doi.org/10.1002/adts.202500822","url":null,"abstract":"Organic Photovoltaic (OPV) Devices Have Emerged as a Promising Alternative to Conventional Solar Cells due to Their Flexibility, Lightweight Nature, and Potential for Low-cost Production. However, Optimizing OPV Performance Remains a Complex Challenge, Traditionally Requiring Extensive Experimental Trials or Computational Chemistry Approaches Based on Molecular Descriptors. To Accelerate the Development of High-efficiency OPVs, Artificial Intelligence (AI) Has Been Increasingly Utilized, Particularly Machine Learning Models That Rely on Chemical Descriptors. While these Methods Have Shown Success, They Are Often Limited by the Quality and Completeness of the Selected Descriptors, Potentially Overlooking Key Structural and Morphological Information. In this Work, We Propose a Novel Deep Learning Framework Leveraging Convolutional Neural Networks (CNNs) to Predict OPV Performance Directly from 2D Images of Donor and Acceptor Materials. By Employing a Customized Representation of Molecular Structures, Our Approach Captures Spatial and Hierarchical Patterns That Traditional Descriptors Based ML Models May Miss. We Compare Our Model's Predictive Capability to Conventional Machine Learning Techniques and Demonstrate Its Potential for Improving Prediction Accuracy and Generalization without Need to Add the Frontier Molecular Orbitals (FMOs) to Enhance Predictions. Our Findings Highlight the Power of Deep Learning in Accelerating the Discovery of Efficient Organic Photovoltaic Materials, Paving the Way for a Data-driven Approach to Materials Science and Device Optimization.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"203 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparative Performance Analysis of Activation Functions for Cardiovascular Disease Detection Using ECG Images 利用心电图像检测心血管疾病的激活函数性能比较分析
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-29 DOI: 10.1002/adts.202501567
Mrityunjay Chaubey, Abhay Kumar Pathak, Marisha, Manjari Gupta
In recent years, artificial intelligence (AI) has become an automated tool for detecting cardiovascular diseases using ECG images. Activation functions are the core of neural network models, ranging from shallow to deep convolutional neural networks (CNN). In ECG image-based cardiovascular disease detection, activation functions enable the network to capture non-linear patterns like irregular heartbeats and subtle anomalies. The proposed CNN architecture in this paper comprised convolutional layers for feature extraction, followed by custom activation functions to introduce non-linearity and enhanced learning. These features are downsampled using max pooling and aggregated through global average pooling. Fully connected layers, with a suitable dropout regularization, map the features to the final classification output, which is probabilistically determined using a softmax activation function. This paper used a public dataset of ECG images of cardiac patients to analyze the significance of activation functions in predicting the four main cardiac abnormalities: irregular heartbeat, myocardial infarction, history of myocardial infarction, and normal person classes. We have analyzed 19 different activation functions for their detection performance on the same dataset. The detection performance is compared with the existing state-of-the-art studies. A set of activation functions is suggested for robust and accurate detection of cardiovascular disease using ECG images.
近年来,人工智能(AI)已经成为利用心电图图像检测心血管疾病的自动化工具。激活函数是神经网络模型的核心,范围从浅卷积神经网络到深度卷积神经网络(CNN)。在基于心电图像的心血管疾病检测中,激活函数使网络能够捕获不规则心跳和细微异常等非线性模式。本文提出的CNN架构包括用于特征提取的卷积层,然后是引入非线性和增强学习的自定义激活函数。这些特征使用最大池化进行下采样,并通过全局平均池化进行聚合。使用合适的dropout正则化的完全连接层将特征映射到最终的分类输出,这是使用softmax激活函数概率确定的。本文利用公开的心电图像数据集,分析了激活函数在预测心律失常、心肌梗死、心肌梗死史和正常人类别四种主要心脏异常中的意义。我们分析了19种不同的激活函数在同一数据集上的检测性能。将该方法的检测性能与现有的最新研究进行了比较。提出了一套激活函数用于心电图像的鲁棒性和准确性检测。
{"title":"A Comparative Performance Analysis of Activation Functions for Cardiovascular Disease Detection Using ECG Images","authors":"Mrityunjay Chaubey, Abhay Kumar Pathak, Marisha, Manjari Gupta","doi":"10.1002/adts.202501567","DOIUrl":"https://doi.org/10.1002/adts.202501567","url":null,"abstract":"In recent years, artificial intelligence (AI) has become an automated tool for detecting cardiovascular diseases using ECG images. Activation functions are the core of neural network models, ranging from shallow to deep convolutional neural networks (CNN). In ECG image-based cardiovascular disease detection, activation functions enable the network to capture non-linear patterns like irregular heartbeats and subtle anomalies. The proposed CNN architecture in this paper comprised convolutional layers for feature extraction, followed by custom activation functions to introduce non-linearity and enhanced learning. These features are downsampled using max pooling and aggregated through global average pooling. Fully connected layers, with a suitable dropout regularization, map the features to the final classification output, which is probabilistically determined using a softmax activation function. This paper used a public dataset of ECG images of cardiac patients to analyze the significance of activation functions in predicting the four main cardiac abnormalities: irregular heartbeat, myocardial infarction, history of myocardial infarction, and normal person classes. We have analyzed 19 different activation functions for their detection performance on the same dataset. The detection performance is compared with the existing state-of-the-art studies. A set of activation functions is suggested for robust and accurate detection of cardiovascular disease using ECG images.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"115 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi‐Objective Optimization of a Novel Auxetic Tubular Re‐Entrant Structure (ATRS) Using 3D Printing and Statistical Design 基于3D打印和统计设计的新型辅助管状再入结构(ATRS)多目标优化
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-28 DOI: 10.1002/adts.202501893
Kang Du, Xiaopeng Huang, Xin Yao, Guansheng Qiu, Song Zhao, Zhi Huang
This study presents, a comprehensive investigation into the failure behavior and parametric optimization of novel 3D‐printed Auxetic Tubular Re‐entrant Structures (ATRS), using an integrated experimental–numerical framework. Compression tests are performed on four ATRS designs featuring different unit cell angles, thicknesses, and widths to confirm simulation accuracy and evaluate mechanical performance. Excellent agreement is observed between experimental and simulation results, capturing both the initial linear response and the nonlinear buckling behavior. The simulations revealed exceptional auxetic responses and showed how geometric parameters govern stress localization and failure initiation. Reduced unit cell widths led to earlier buckling owing to a smaller load‐bearing area and increased soft mode activation, whereas larger angles raised buckling forces but triggered instability sooner. Also, energy absorption capacity rose significantly with increases in unit cell width, angle, and thickness, reaching as much as four times higher in thicker samples. According to Response Surface Methodology (RSM) and Analysis of Variance (ANOVA), thickness and width are the primary parameters influencing buckling force, stiffness, and energy absorption, with thickness having the greatest impact. These findings facilitate accurate predictive modeling of ATRS mechanical behavior driven by geometric design and offer new pathways for designing damage‐tolerant structures with tunable mechanical responses.
本研究采用集成的实验-数值框架,对新型3D打印辅助管状再入结构(ATRS)的破坏行为和参数优化进行了全面研究。在四种不同的ATRS设计上进行了压缩测试,这些设计具有不同的单元格角度、厚度和宽度,以确认模拟的准确性并评估机械性能。实验结果与模拟结果非常吻合,既捕捉到了初始线性响应,也捕捉到了非线性屈曲行为。模拟结果显示了异常的形变响应,并显示了几何参数如何控制应力局部化和破坏起始。由于较小的承载面积和增加的软模式激活,单元格宽度的减小会导致更早的屈曲,而较大的角度会增加屈曲力,但会更快地引发不稳定。此外,能量吸收能力随着单位电池宽度、角度和厚度的增加而显著增加,在较厚的样品中达到四倍之多。根据响应面法(RSM)和方差分析(ANOVA),厚度和宽度是影响屈曲力、刚度和能量吸收的主要参数,其中厚度的影响最大。这些发现促进了几何设计驱动下ATRS力学行为的准确预测建模,并为设计具有可调力学响应的损伤容忍结构提供了新的途径。
{"title":"Multi‐Objective Optimization of a Novel Auxetic Tubular Re‐Entrant Structure (ATRS) Using 3D Printing and Statistical Design","authors":"Kang Du, Xiaopeng Huang, Xin Yao, Guansheng Qiu, Song Zhao, Zhi Huang","doi":"10.1002/adts.202501893","DOIUrl":"https://doi.org/10.1002/adts.202501893","url":null,"abstract":"This study presents, a comprehensive investigation into the failure behavior and parametric optimization of novel 3D‐printed Auxetic Tubular Re‐entrant Structures (ATRS), using an integrated experimental–numerical framework. Compression tests are performed on four ATRS designs featuring different unit cell angles, thicknesses, and widths to confirm simulation accuracy and evaluate mechanical performance. Excellent agreement is observed between experimental and simulation results, capturing both the initial linear response and the nonlinear buckling behavior. The simulations revealed exceptional auxetic responses and showed how geometric parameters govern stress localization and failure initiation. Reduced unit cell widths led to earlier buckling owing to a smaller load‐bearing area and increased soft mode activation, whereas larger angles raised buckling forces but triggered instability sooner. Also, energy absorption capacity rose significantly with increases in unit cell width, angle, and thickness, reaching as much as four times higher in thicker samples. According to Response Surface Methodology (RSM) and Analysis of Variance (ANOVA), thickness and width are the primary parameters influencing buckling force, stiffness, and energy absorption, with thickness having the greatest impact. These findings facilitate accurate predictive modeling of ATRS mechanical behavior driven by geometric design and offer new pathways for designing damage‐tolerant structures with tunable mechanical responses.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"172 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic Structure and Topology‐Based Insights into Andrographolides as Potential CDK2 Inhibitors: Comprehensive DFT and Molecular Dynamics Investigation 电子结构和基于拓扑的洞见穿心莲内酯作为潜在的CDK2抑制剂:综合DFT和分子动力学研究
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-28 DOI: 10.1002/adts.202501807
Jibin K. Varughese, Jisna Jose, Abdullah F. AlAsmari, Mohammad Rashid Khan, Shamama Nishat, Nemat Ali, Thomas V. Mathew
Andrographolide is a bicyclic diterpenoid lactone that has garnered considerable interest for its potential therapeutic applications, particularly in anticancer effects. Cyclin‐dependent kinases (CDKs), especially CDK2 and its regulatory subunits, are dysregulated in many human cancers, and emerging evidence suggests that CDK2 inhibition induces antitumor activity. This study provides a comprehensive analysis of the electronic structure and topology of three distinct andrographolide derivatives (AG‐OH, AG‐NO 2 , and AG‐Cl) to assess their efficacy as inhibitors of CDK2. Density functional theory (DFT) calculations are utilized to examine frontier molecular orbitals (FMOs), electrostatic potential (ESP) surfaces, and natural bond orbital (NBO) interactions, yielding detailed insights into their reactivity, electronic distributions, and intramolecular charge transfer properties. The reduced density gradient (RDG) and non‐covalent interaction analyses elucidated critical stabilization regions and interaction intensities among the derivatives. ADMET calculations demonstrated that all derivatives adhered to Lipinski's rule of five and exhibited advantageous pharmacokinetic characteristics, including moderate lipophilicity (Consensus LogP 2.58–4.06) and acceptable polarity (TPSA 86.99–132.81 Å 2 ), indicating their potential as CDK2 inhibitors. Molecular docking studies demonstrated robust binding affinities in the range −9.2–−10.2 kcal/mol, later validated by molecular dynamics (MD) simulations, where the RMSD remained stable approximately at 0.2 nm. Calculations of binding free energy using MM‐GBSA confirmed the strong and stable nature of the complex, with binding energy values ranging from −26.54 to −39.70 kcal/mol, exhibiting significantly favorable energetics. Our thorough computational analysis identifies andrographolides as potential CDK2 inhibitors, providing valuable insights for future experimental validation and potential development as anticancer agents.
穿心莲内酯是一种双环二萜内酯,因其潜在的治疗应用,特别是抗癌作用而引起了相当大的兴趣。细胞周期蛋白依赖性激酶(CDKs),尤其是CDK2及其调控亚基,在许多人类癌症中失调,新出现的证据表明,抑制CDK2可诱导抗肿瘤活性。本研究对三种不同的穿心莲内酯衍生物(AG‐OH、AG‐NO 2和AG‐Cl)的电子结构和拓扑结构进行了全面分析,以评估它们作为CDK2抑制剂的功效。密度泛函理论(DFT)计算用于研究前沿分子轨道(FMOs)、静电势(ESP)表面和自然键轨道(NBO)相互作用,从而详细了解它们的反应性、电子分布和分子内电荷转移性质。降低密度梯度(RDG)和非共价相互作用分析阐明了衍生物之间的临界稳定区域和相互作用强度。ADMET计算表明,所有衍生物都符合Lipinski的五法则,并表现出有利的药代动力学特征,包括适度的亲脂性(共识LogP为2.58-4.06)和可接受的极性(TPSA为86.99-132.81 Å 2),表明它们具有作为CDK2抑制剂的潜力。分子对接研究表明,在−9.2 -−10.2 kcal/mol范围内具有强大的结合亲和力,随后通过分子动力学(MD)模拟验证,RMSD保持稳定在0.2 nm左右。利用MM - GBSA计算的结合自由能证实了该配合物的强稳定性,结合能范围为−26.54 ~−39.70 kcal/mol,表现出明显的有利能量学。我们彻底的计算分析确定穿心莲内酯是潜在的CDK2抑制剂,为未来的实验验证和潜在的抗癌药物开发提供了有价值的见解。
{"title":"Electronic Structure and Topology‐Based Insights into Andrographolides as Potential CDK2 Inhibitors: Comprehensive DFT and Molecular Dynamics Investigation","authors":"Jibin K. Varughese, Jisna Jose, Abdullah F. AlAsmari, Mohammad Rashid Khan, Shamama Nishat, Nemat Ali, Thomas V. Mathew","doi":"10.1002/adts.202501807","DOIUrl":"https://doi.org/10.1002/adts.202501807","url":null,"abstract":"Andrographolide is a bicyclic diterpenoid lactone that has garnered considerable interest for its potential therapeutic applications, particularly in anticancer effects. Cyclin‐dependent kinases (CDKs), especially CDK2 and its regulatory subunits, are dysregulated in many human cancers, and emerging evidence suggests that CDK2 inhibition induces antitumor activity. This study provides a comprehensive analysis of the electronic structure and topology of three distinct andrographolide derivatives (AG‐OH, AG‐NO <jats:sub>2</jats:sub> , and AG‐Cl) to assess their efficacy as inhibitors of CDK2. Density functional theory (DFT) calculations are utilized to examine frontier molecular orbitals (FMOs), electrostatic potential (ESP) surfaces, and natural bond orbital (NBO) interactions, yielding detailed insights into their reactivity, electronic distributions, and intramolecular charge transfer properties. The reduced density gradient (RDG) and non‐covalent interaction analyses elucidated critical stabilization regions and interaction intensities among the derivatives. ADMET calculations demonstrated that all derivatives adhered to Lipinski's rule of five and exhibited advantageous pharmacokinetic characteristics, including moderate lipophilicity (Consensus LogP 2.58–4.06) and acceptable polarity (TPSA 86.99–132.81 Å <jats:sup>2</jats:sup> ), indicating their potential as CDK2 inhibitors. Molecular docking studies demonstrated robust binding affinities in the range −9.2–−10.2 kcal/mol, later validated by molecular dynamics (MD) simulations, where the RMSD remained stable approximately at 0.2 nm. Calculations of binding free energy using MM‐GBSA confirmed the strong and stable nature of the complex, with binding energy values ranging from −26.54 to −39.70 kcal/mol, exhibiting significantly favorable energetics. Our thorough computational analysis identifies andrographolides as potential CDK2 inhibitors, providing valuable insights for future experimental validation and potential development as anticancer agents.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"5 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Conductivity Modulation in Carbon Nanotubes via Silicon Nanowire Encapsulation Investigated Using Neuroevolution Potential 利用神经进化电位研究硅纳米线封装碳纳米管的热导率调制
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-28 DOI: 10.1002/adts.202501834
Wei Zhang, Tinghong Gao, Yutao Liu, Guofa Shen, Bei Wang, Zhongzhong Zhu, Jin Huang, Shipeng Zhang, Shuang Li
One‐dimensional van der Waals heterostructures based on single‐walled carbon nanotubes (SWCNT) have recently attracted increasing attention because of their structural flexibility and tunable thermal transport properties. Therefore, this study proposes a silicon nanowire (SiNW) encapsulation approach to construct a SiNW@CNT composite and systematically investigate its thermal transport behavior. Using an efficient neuroevolution potential model, we developed a high‐precision machine learning potential tailored for the SiNW@CNT structure. Using homogeneous non‐equilibrium molecular dynamics, equilibrium molecular dynamics, and heterogeneous nonequilibrium molecular dynamics simulations combined with spectral heat flux analysis, we found that SiNW encapsulation markedly reduces the thermal conductivity of SWCNT. The reduction in thermal conductivity becomes more pronounced as the SiNW filling ratio increases. At the maximum filling ratio, SiNW@CNT exhibits a thermal conductivity approximately 50% that of hollow SWCNTs. This reduction is attributed to SiNW encapsulation, which enhances phonon scattering within the SWCNT, shortens the phonon mean free path and lifetimes, and decreases overall thermal transport efficiency. In addition, as the system size increases, the thermal conductivity difference between SWCNT and SiNW@CNT widens, highlighting a clear size dependence and a transition from ballistic to diffusive transport. These findings provide a crucial theoretical basis for designing novel nanocomposites with tunable thermal conductivity.
基于单壁碳纳米管(SWCNT)的一维范德华异质结构由于其结构的灵活性和可调的热输运特性近年来引起了越来越多的关注。因此,本研究提出了一种硅纳米线(SiNW)封装方法来构建SiNW@CNT复合材料,并系统地研究其热输运行为。利用高效的神经进化潜力模型,我们开发了针对SiNW@CNT结构量身定制的高精度机器学习潜力。通过均相非平衡分子动力学、平衡分子动力学和非均相非平衡分子动力学模拟,结合光谱热通量分析,我们发现SiNW封装显著降低了swcnts的导热性。随着SiNW填充率的增加,导热系数的降低更加明显。在最大填充率下,SiNW@CNT的导热系数约为空心SWCNTs的50%。这种减少归因于SiNW封装,它增强了swcnts内声子的散射,缩短了声子的平均自由程和寿命,降低了整体热传输效率。此外,随着系统尺寸的增加,swcnts和SiNW@CNT之间的导热系数差异扩大,突出了明显的尺寸依赖性和从弹道传输到扩散传输的转变。这些发现为设计具有可调导热性能的新型纳米复合材料提供了重要的理论基础。
{"title":"Thermal Conductivity Modulation in Carbon Nanotubes via Silicon Nanowire Encapsulation Investigated Using Neuroevolution Potential","authors":"Wei Zhang, Tinghong Gao, Yutao Liu, Guofa Shen, Bei Wang, Zhongzhong Zhu, Jin Huang, Shipeng Zhang, Shuang Li","doi":"10.1002/adts.202501834","DOIUrl":"https://doi.org/10.1002/adts.202501834","url":null,"abstract":"One‐dimensional van der Waals heterostructures based on single‐walled carbon nanotubes (SWCNT) have recently attracted increasing attention because of their structural flexibility and tunable thermal transport properties. Therefore, this study proposes a silicon nanowire (SiNW) encapsulation approach to construct a SiNW@CNT composite and systematically investigate its thermal transport behavior. Using an efficient neuroevolution potential model, we developed a high‐precision machine learning potential tailored for the SiNW@CNT structure. Using homogeneous non‐equilibrium molecular dynamics, equilibrium molecular dynamics, and heterogeneous nonequilibrium molecular dynamics simulations combined with spectral heat flux analysis, we found that SiNW encapsulation markedly reduces the thermal conductivity of SWCNT. The reduction in thermal conductivity becomes more pronounced as the SiNW filling ratio increases. At the maximum filling ratio, SiNW@CNT exhibits a thermal conductivity approximately 50% that of hollow SWCNTs. This reduction is attributed to SiNW encapsulation, which enhances phonon scattering within the SWCNT, shortens the phonon mean free path and lifetimes, and decreases overall thermal transport efficiency. In addition, as the system size increases, the thermal conductivity difference between SWCNT and SiNW@CNT widens, highlighting a clear size dependence and a transition from ballistic to diffusive transport. These findings provide a crucial theoretical basis for designing novel nanocomposites with tunable thermal conductivity.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"104 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Photovoltaic Potential of Rhombohedral RbGeX 3 (X = Cl, Br, I) Perovskites Via Combined DFT and SCAPS‐1D Study 通过DFT和SCAPS‐1D联合研究揭示菱面体rbgex3 (X = Cl, Br, I)钙钛矿的光伏潜力
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-28 DOI: 10.1002/adts.202501477
Piyush Kumar Dash, Palash Banerjee, Anupriya Nyayban, Subhasis Panda
In pursuit of efficient, non‐toxic all‐inorganic perovskite solar cells (PSCs), we have investigated the rhombohedral phase of the rubidium germanium halide perovskites (X = Cl, Br, I) using density functional theory (DFT). The band structures and partial density of states are computed using PBE and TB‐mBJ functionals, both with and without spin‐orbit coupling (SOC), to accurately estimate the bandgaps. Optical properties, including the dielectric function, absorption coefficient, and refractive index, are evaluated within the PBE framework. Among the halides, is identified as the most promising absorber material, exhibiting the narrowest bandgap (0.96 eV with TB‐mBJ + SOC) and superior optical absorption characteristics. SCAPS‐1D simulations are carried out using DFT‐derived input parameters including bandgap, effective density of states, and carrier mobilities. Device performance is optimized by exploring various inorganic hole and electron transport layers (HTL/ETL). The influence of the absorber layer (AL) thickness, doping levels, defect densities at AL, ETL/AL, and AL/HTL interfaces, back contact materials, as well as series and shunt resistance is examined. The optimized all‐inorganic, non‐toxic device structure FTO///CuI/Au achieves a power conversion efficiency (PCE) of 25.76% with a fill factor (FF) of 79.81%.
为了追求高效、无毒的全无机钙钛矿太阳能电池(PSCs),我们利用密度泛函理论(DFT)研究了卤化铷锗钙钛矿(X = Cl, Br, I)的菱面体相。使用PBE和TB - mBJ泛函计算了带结构和态的部分密度,在有和没有自旋轨道耦合(SOC)的情况下,精确地估计了带隙。光学性质,包括介电函数,吸收系数和折射率,在PBE框架内进行评估。在卤化物中,由于具有最窄的带隙(TB - mBJ + SOC时为0.96 eV)和优异的光吸收特性,被认为是最有前途的吸收材料。SCAPS - 1D模拟使用DFT衍生的输入参数进行,包括带隙、有效态密度和载流子迁移率。通过探索各种无机空穴和电子传输层(html /ETL)来优化器件性能。研究了吸收层(AL)厚度、掺杂水平、AL、ETL/AL和AL/HTL界面缺陷密度、背触点材料以及串联和分流电阻的影响。优化后的全无机、无毒器件结构FTO// CuI/Au的功率转换效率(PCE)为25.76%,填充系数(FF)为79.81%。
{"title":"Unveiling the Photovoltaic Potential of Rhombohedral RbGeX 3 (X = Cl, Br, I) Perovskites Via Combined DFT and SCAPS‐1D Study","authors":"Piyush Kumar Dash, Palash Banerjee, Anupriya Nyayban, Subhasis Panda","doi":"10.1002/adts.202501477","DOIUrl":"https://doi.org/10.1002/adts.202501477","url":null,"abstract":"In pursuit of efficient, non‐toxic all‐inorganic perovskite solar cells (PSCs), we have investigated the rhombohedral phase of the rubidium germanium halide perovskites (X = Cl, Br, I) using density functional theory (DFT). The band structures and partial density of states are computed using PBE and TB‐mBJ functionals, both with and without spin‐orbit coupling (SOC), to accurately estimate the bandgaps. Optical properties, including the dielectric function, absorption coefficient, and refractive index, are evaluated within the PBE framework. Among the halides, is identified as the most promising absorber material, exhibiting the narrowest bandgap (0.96 eV with TB‐mBJ + SOC) and superior optical absorption characteristics. SCAPS‐1D simulations are carried out using DFT‐derived input parameters including bandgap, effective density of states, and carrier mobilities. Device performance is optimized by exploring various inorganic hole and electron transport layers (HTL/ETL). The influence of the absorber layer (AL) thickness, doping levels, defect densities at AL, ETL/AL, and AL/HTL interfaces, back contact materials, as well as series and shunt resistance is examined. The optimized all‐inorganic, non‐toxic device structure FTO///CuI/Au achieves a power conversion efficiency (PCE) of 25.76% with a fill factor (FF) of 79.81%.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Interfacial Properties of Metal–Bilayer TMD Heterostructures 金属-双层TMD异质结构界面性能的增强
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-11-28 DOI: 10.1002/adts.202501061
Debasish Biswasray, Bala Murali Krishna Mariserla, Appalakondaiah Samudrala
High contact resistance at metal/semiconductor interfaces remains a critical bottleneck in realizing high-performance devices based on 2D transition metal dichalcogenides (TMDs), primarily due to large Schottky barrier heights (SBH). In this work, we employ first-principles calculations to systematically investigate the interfacial properties of various metals (Au, Ag, Pd, Ti, Pt) in contact with van der Waals (vdW) bilayer TMD heterostructures, specifically MoS2${rm MoS}_2$-
金属/半导体界面的高接触电阻仍然是实现基于二维过渡金属二硫族化合物(TMDs)的高性能器件的关键瓶颈,主要是由于大的肖特基势垒高度(SBH)。本文采用第一线原理计算方法系统地研究了各种金属(Au, Ag, Pd, Ti, Pt)与范德华双层TMD异质结构接触时的界面性质,特别是MoS2${rm MoS}_2$-MoSe2${rm MoSe}_2$和WS2${rm WS}_2$-WSe2${rm WSe}_2$。我们的研究结果表明,由于带隙明显缩小,与单层相比,TMD异质结构中的SBHs大幅减少。值得注意的是,由于较弱的轨道重叠和减少的费米能级钉住,Ti和Ag的接触产生了接近欧姆的行为,可以忽略SBHs,而Pd和Pt的接触产生了更强的金属化和更高的SBHs。这些发现表明,当与合适的金属触点配对时,vdW双层TMD异质结构提供了最小化接触电阻的有希望的途径,从而推进了高效光电器件的设计。
{"title":"Enhanced Interfacial Properties of Metal–Bilayer TMD Heterostructures","authors":"Debasish Biswasray, Bala Murali Krishna Mariserla, Appalakondaiah Samudrala","doi":"10.1002/adts.202501061","DOIUrl":"https://doi.org/10.1002/adts.202501061","url":null,"abstract":"High contact resistance at metal/semiconductor interfaces remains a critical bottleneck in realizing high-performance devices based on 2D transition metal dichalcogenides (TMDs), primarily due to large Schottky barrier heights (SBH). In this work, we employ first-principles calculations to systematically investigate the interfacial properties of various metals (Au, Ag, Pd, Ti, Pt) in contact with van der Waals (vdW) bilayer TMD heterostructures, specifically <span data-altimg=\"/cms/asset/c626e172-da38-41dc-ae19-479b8859d218/adts70245-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70245-math-0001.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper M o upper S 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70245:adts70245-math-0001\" display=\"inline\" location=\"graphic/adts70245-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper M o upper S 2\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">MoS</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub>${rm MoS}_2$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-<span data-altimg=\"/cms/asset/219c300f-6a59-4d58-85e5-13d53d6cdc21/adts70245-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"28\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70245-math-0002.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper M o upper S e 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"106 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Theory and Simulations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1