首页 > 最新文献

Advanced Theory and Simulations最新文献

英文 中文
Advancing HTL‐Free Cs 2 PtI 6 Carbon Perovskite Solar Cells: Insights from Hybrid Simulation and Machine Learning 推进无html的c2pti - 6碳钙钛矿太阳能电池:来自混合模拟和机器学习的见解
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-13 DOI: 10.1002/adts.202501860
Mahasen H. Albelbeisi, Saleh Chebaane, Sana Ben Khalifa, Norah A. M. Alsaif
The primary causes of the high cost of perovskite solar cells are metal electrodes and hole transport layers. In this theoretical work, we examine the outputs of a hole transport layer‐free carbon‐based solar cell with an FTO/ETL/Cs 2 PtI 6 /Carbon electrode structure using the Solar Cell Capacitance Simulator (SCAPS‐1D). The paper studied various carbon electrode types‐Graphene/Carbon Black (G/CB) (5 eV), Graphene (4.9 eV), Graphene Oxide (GO) (4.8 eV), and Bio‐carbon (4.5 eV)‐ and electron transport layers‐SnO 2 , TiO 2 , LBSO, and WO 3 . The studied parameters included perovskite and ETL layer thickness, doping density, and defect density. The outputs showed that the best PCE of 15.50% resulted from using G/CB electrode and TiO 2 as the ETL, with a thickness of 0.09 µm, and a doping density of 10 × 10 19 cm −3 . Additionally, for the Cs 2 PtI 6 absorber layer, a Cs 2 PtI 6 composition with a thickness of 1.2 µm, a defect density of 1× 10 15 cm −3 , and a doping density of 10 × 10 12 cm −3 demonstrated superior performance, resulting in a PCE of 15.50%. These findings suggest that the FTO/TiO 2 /Cs 2 PtI 6 /G/CB structure, particularly with optimized TiO 2 and Cs 2 PtI 6 layers, holds great potential for hole transport layer‐free‐carbon‐based solar cell fabrication. Furthermore, machine learning models with a random forest algorithm evaluated the relative importance of the features on cell efficiency, and predicted the efficiency of the suggested configuration with R 2 of 0.93 underscoring the potential of machine learning in enhancing solar cell design and performance.
钙钛矿太阳能电池成本高的主要原因是金属电极和空穴传输层。在这项理论工作中,我们使用太阳能电池电容模拟器(SCAPS‐1D)研究了具有FTO/ETL/ c2pti 6 /碳电极结构的无空穴传输层碳基太阳能电池的输出。本文研究了不同的碳电极类型——石墨烯/炭黑(G/CB) (5 eV)、石墨烯(4.9 eV)、氧化石墨烯(GO) (4.8 eV)和生物碳(4.5 eV)——以及电子传输层——SnO 2、tio2、LBSO和wo3。研究参数包括钙钛矿和ETL层厚度、掺杂密度和缺陷密度。结果表明,以G/CB电极和tio2为ETL,厚度为0.09µm,掺杂密度为10 × 10 19 cm−3,PCE为15.50%。此外,对于c2pti 6吸收层,厚度为1.2 μ m,缺陷密度为1× 10 15 cm−3,掺杂密度为10 × 10 12 cm−3的c2pti 6组合物表现出优异的性能,PCE为15.50%。这些发现表明,FTO/ tio2 / c2pti 6 /G/CB结构,特别是优化的tio2和c2pti 6层,在无空穴传输层的碳基太阳能电池制造中具有很大的潜力。此外,使用随机森林算法的机器学习模型评估了特征对电池效率的相对重要性,并预测了建议配置的效率,r2为0.93,强调了机器学习在提高太阳能电池设计和性能方面的潜力。
{"title":"Advancing HTL‐Free Cs 2 PtI 6 Carbon Perovskite Solar Cells: Insights from Hybrid Simulation and Machine Learning","authors":"Mahasen H. Albelbeisi, Saleh Chebaane, Sana Ben Khalifa, Norah A. M. Alsaif","doi":"10.1002/adts.202501860","DOIUrl":"https://doi.org/10.1002/adts.202501860","url":null,"abstract":"The primary causes of the high cost of perovskite solar cells are metal electrodes and hole transport layers. In this theoretical work, we examine the outputs of a hole transport layer‐free carbon‐based solar cell with an FTO/ETL/Cs <jats:sub>2</jats:sub> PtI <jats:sub>6</jats:sub> /Carbon electrode structure using the Solar Cell Capacitance Simulator (SCAPS‐1D). The paper studied various carbon electrode types‐Graphene/Carbon Black (G/CB) (5 eV), Graphene (4.9 eV), Graphene Oxide (GO) (4.8 eV), and Bio‐carbon (4.5 eV)‐ and electron transport layers‐SnO <jats:sub>2</jats:sub> , TiO <jats:sub>2</jats:sub> , LBSO, and WO <jats:sub>3</jats:sub> . The studied parameters included perovskite and ETL layer thickness, doping density, and defect density. The outputs showed that the best PCE of 15.50% resulted from using G/CB electrode and TiO <jats:sub>2</jats:sub> as the ETL, with a thickness of 0.09 µm, and a doping density of 10 × 10 <jats:sup>19</jats:sup> cm <jats:sup>−3</jats:sup> . Additionally, for the Cs <jats:sub>2</jats:sub> PtI <jats:sub>6</jats:sub> absorber layer, a Cs <jats:sub>2</jats:sub> PtI <jats:sub>6</jats:sub> composition with a thickness of 1.2 µm, a defect density of 1× 10 <jats:sup>15</jats:sup> cm <jats:sup>−3</jats:sup> , and a doping density of 10 × 10 <jats:sup>12</jats:sup> cm <jats:sup>−3</jats:sup> demonstrated superior performance, resulting in a PCE of 15.50%. These findings suggest that the FTO/TiO <jats:sub>2</jats:sub> /Cs <jats:sub>2</jats:sub> PtI <jats:sub>6</jats:sub> /G/CB structure, particularly with optimized TiO <jats:sub>2</jats:sub> and Cs <jats:sub>2</jats:sub> PtI <jats:sub>6</jats:sub> layers, holds great potential for hole transport layer‐free‐carbon‐based solar cell fabrication. Furthermore, machine learning models with a random forest algorithm evaluated the relative importance of the features on cell efficiency, and predicted the efficiency of the suggested configuration with R <jats:sup>2</jats:sup> of 0.93 underscoring the potential of machine learning in enhancing solar cell design and performance.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Behavior and Magnetocaloric Simulation in LSMO/NaF Composites Using Landau Theory 基于朗道理论的LSMO/NaF复合材料临界行为及磁热模拟
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-10 DOI: 10.1002/adts.202501677
Mohamed Hsini, Nadia Zaidi, Amel Haouas
The critical behavior of (1−x) LSMO/xNaF composites with x = 0, 0.05, 0.15, and 0.20 near the second‐order paramagnetic–ferromagnetic transition is investigated through a combination of Arrott–Noakes formalism (ANF) and Kouvel–Fisher (KF) analysis. Critical exponents ( β , γ ) are determined iteratively to be (1.0004, 0.3406), (1.1593, 0.6230), (1.0467, 0.4391), and (1.0479, 0.4673) for (1‐x)LSMO/xNaF with x = 0, 0.05, 0.15, and 0.20, respectively. Furthermore, magnetocaloric entropy changes , computed via Landau theory, exhibited strong correspondence with Maxwell relation results, with minor discrepancies at high fields attributed to saturation effects. Overall, the results highlight the robustness of Landau phenomenology in describing criticality and magnetocaloric behavior, while revealing subtle doping‐induced modifications in exchange interactions.
结合arrot - noakes形式(ANF)和Kouvel-Fisher (KF)分析,研究了x = 0、0.05、0.15和0.20时(1−x) LSMO/xNaF复合材料在二阶顺磁-铁磁跃迁附近的临界行为。当x = 0、0.05、0.15和0.20时,(1‐x)LSMO/xNaF的临界指数(β, γ)分别为(1.0004,0.3406)、(1.1593,0.6230)、(1.0467,0.4391)和(1.0479,0.4673)。此外,通过朗道理论计算的磁热熵变化与麦克斯韦关系的结果具有很强的一致性,在高场中由于饱和效应而产生的差异较小。总的来说,结果突出了朗道现象学在描述临界性和磁热行为方面的鲁棒性,同时揭示了掺杂诱导的交换相互作用中的微妙修饰。
{"title":"Critical Behavior and Magnetocaloric Simulation in LSMO/NaF Composites Using Landau Theory","authors":"Mohamed Hsini, Nadia Zaidi, Amel Haouas","doi":"10.1002/adts.202501677","DOIUrl":"https://doi.org/10.1002/adts.202501677","url":null,"abstract":"The critical behavior of (1−x) LSMO/xNaF composites with x = 0, 0.05, 0.15, and 0.20 near the second‐order paramagnetic–ferromagnetic transition is investigated through a combination of Arrott–Noakes formalism (ANF) and Kouvel–Fisher (KF) analysis. Critical exponents ( <jats:italic>β</jats:italic> , <jats:italic>γ</jats:italic> ) are determined iteratively to be (1.0004, 0.3406), (1.1593, 0.6230), (1.0467, 0.4391), and (1.0479, 0.4673) for (1‐x)LSMO/xNaF with x = 0, 0.05, 0.15, and 0.20, respectively. Furthermore, magnetocaloric entropy changes , computed via Landau theory, exhibited strong correspondence with Maxwell relation results, with minor discrepancies at high fields attributed to saturation effects. Overall, the results highlight the robustness of Landau phenomenology in describing criticality and magnetocaloric behavior, while revealing subtle doping‐induced modifications in exchange interactions.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"6 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Design of High-Efficiency ZrS2/Perovskite Tandem Solar Cell via Bandgap and Current Matching Optimization (Adv. Theory Simul. 12/2025) 基于带隙和电流匹配优化的高效ZrS2/钙钛矿串联太阳能电池的计算设计(Adv. Theory Simul. 12/2025)
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-09 DOI: 10.1002/adts.70208
Nabin Kumar Shaw, Basudeba Maharana, Avijit Kumar, Shyamal Chatterjee

A conceptual design of a two-terminal tandem solar cell featuring ZrS2 as the top absorber and CH3NH3SnI3 perovskite as the bottom absorber layer of the two sub-cells. Color-coded incident photon paths illustrate wavelength-selective absorption in each sub-cell, highlighting efficient spectral utilization and enhanced energy conversion performance. More details can be found in the Research Article by Avijit Kumar, Shyamal Chatterjee, and co-workers (DOI: 10.1002/adts.202501325).

以ZrS2为顶部吸收层,CH3NH3SnI3钙钛矿为底部吸收层的双端串联太阳能电池的概念设计。颜色编码的入射光子路径说明了每个子细胞的波长选择性吸收,突出了高效的光谱利用和增强的能量转换性能。更多细节可以在Avijit Kumar, Shyamal Chatterjee及其同事的研究文章中找到(DOI: 10.1002/ ads .202501325)。
{"title":"Computational Design of High-Efficiency ZrS2/Perovskite Tandem Solar Cell via Bandgap and Current Matching Optimization (Adv. Theory Simul. 12/2025)","authors":"Nabin Kumar Shaw,&nbsp;Basudeba Maharana,&nbsp;Avijit Kumar,&nbsp;Shyamal Chatterjee","doi":"10.1002/adts.70208","DOIUrl":"https://doi.org/10.1002/adts.70208","url":null,"abstract":"<p>A conceptual design of a two-terminal tandem solar cell featuring ZrS<sub>2</sub> as the top absorber and CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> perovskite as the bottom absorber layer of the two sub-cells. Color-coded incident photon paths illustrate wavelength-selective absorption in each sub-cell, highlighting efficient spectral utilization and enhanced energy conversion performance. More details can be found in the Research Article by Avijit Kumar, Shyamal Chatterjee, and co-workers (DOI: 10.1002/adts.202501325).\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"8 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adts.70208","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145706323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information (Adv. Theory Simul. 12/2025) 发行信息(Adv. Theory Simul. 12/2025)
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-09 DOI: 10.1002/adts.70207
{"title":"Issue Information (Adv. Theory Simul. 12/2025)","authors":"","doi":"10.1002/adts.70207","DOIUrl":"https://doi.org/10.1002/adts.70207","url":null,"abstract":"","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"8 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adts.70207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145706324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat Transfer Analysis of Alumina+Copper/Sodium Alginate Radiative Hybrid Nanofluid in Darcy‐Forchheimer Flow Over a Nonlinear Stretching/Shrinking Porous Surface 氧化铝+铜/海藻酸钠辐射混合纳米流体在非线性拉伸/收缩多孔表面Darcy - Forchheimer流动中的传热分析
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-07 DOI: 10.1002/adts.202501778
Khaled Matarneh, Ahmad A. Abubaker, Ubaidullah Yashkun, Adnan Asghar, Raja'i Aldiabat, Liaquat Ali Lund
This numerical study investigates dual solution branches of sodium alginate‐based hybrid nanofluid flow over exponentially stretching and shrinking surfaces. Main objective is to analyze how solid volume fraction affects stretching and shrinking behavior, and to evaluate variations in skin friction coefficient and heat transfer rate under suction and permeability effects. Additionally, influences of permeability, magnetic field strength, and viscous dissipation on velocity and temperature profiles of hybrid nanofluid are thoroughly examined. By applying an exponential similarity transformation, governing partial differential equations are reduced to ordinary differential equations. These transformed equations are solved numerically using the three‐stage Lobatto III‐A formula via MATLAB's bvp4c solver. Results confirm the presence of dual (non‐unique) solutions within specific parameter ranges, with non‐uniqueness arising as controlling parameters approach critical suction or shrinking limits. An increase in permeability parameter decreases heat transfer and skin friction for the upper branch, while a similar decreasing trend is noted for the lower branch. Temperature gradients reduce with higher permeability, whereas higher Eckert numbers amplify thermal effects. Increasing copper nanoparticle volume fraction suppresses heat transfer for the upper branch but enhances it for the lower branch. Overall, findings offer valuable insights for optimizing fluid flow and thermal management in engineering applications.
本数值研究调查了海藻酸钠基混合纳米流体在指数拉伸和收缩表面上的双溶液分支。主要目的是分析固体体积分数如何影响拉伸和收缩行为,并评估吸力和渗透力作用下皮肤摩擦系数和传热速率的变化。此外,还研究了磁导率、磁场强度和粘性耗散对混合纳米流体速度和温度分布的影响。应用指数相似变换,将控制偏微分方程化为常微分方程。通过MATLAB的bvp4c求解器,使用三级Lobatto III‐A公式对这些转换后的方程进行数值求解。结果证实了在特定参数范围内存在对偶(非唯一)解,当控制参数接近临界吸力或收缩极限时,会出现非唯一性。渗透性参数的增加会降低上支路的换热和皮肤摩擦,而下支路的传热和皮肤摩擦也有类似的下降趋势。渗透率越高,温度梯度越小,而埃克特数越高,热效应越大。铜纳米颗粒体积分数的增加抑制了上支的传热,但增强了下支的传热。总的来说,这些发现为优化工程应用中的流体流动和热管理提供了有价值的见解。
{"title":"Heat Transfer Analysis of Alumina+Copper/Sodium Alginate Radiative Hybrid Nanofluid in Darcy‐Forchheimer Flow Over a Nonlinear Stretching/Shrinking Porous Surface","authors":"Khaled Matarneh, Ahmad A. Abubaker, Ubaidullah Yashkun, Adnan Asghar, Raja'i Aldiabat, Liaquat Ali Lund","doi":"10.1002/adts.202501778","DOIUrl":"https://doi.org/10.1002/adts.202501778","url":null,"abstract":"This numerical study investigates dual solution branches of sodium alginate‐based hybrid nanofluid flow over exponentially stretching and shrinking surfaces. Main objective is to analyze how solid volume fraction affects stretching and shrinking behavior, and to evaluate variations in skin friction coefficient and heat transfer rate under suction and permeability effects. Additionally, influences of permeability, magnetic field strength, and viscous dissipation on velocity and temperature profiles of hybrid nanofluid are thoroughly examined. By applying an exponential similarity transformation, governing partial differential equations are reduced to ordinary differential equations. These transformed equations are solved numerically using the three‐stage Lobatto III‐A formula via MATLAB's bvp4c solver. Results confirm the presence of dual (non‐unique) solutions within specific parameter ranges, with non‐uniqueness arising as controlling parameters approach critical suction or shrinking limits. An increase in permeability parameter decreases heat transfer and skin friction for the upper branch, while a similar decreasing trend is noted for the lower branch. Temperature gradients reduce with higher permeability, whereas higher Eckert numbers amplify thermal effects. Increasing copper nanoparticle volume fraction suppresses heat transfer for the upper branch but enhances it for the lower branch. Overall, findings offer valuable insights for optimizing fluid flow and thermal management in engineering applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"20 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the Electron Concentration, d‐Orbital Energy Level, and Atomic Mismatch on Quantitative Phase Prediction in Complex Concentrated Alloys (CCAs): Empirical Criteria and Machine Learning Insights 电子浓度、d轨道能级和原子错配对复杂浓缩合金(CCAs)定量相预测的影响:经验标准和机器学习见解
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-06 DOI: 10.1002/adts.202501736
Ayush Sourav, Ankit Singh Negi, Shanmugasundaram Thangaraju
Dual‐phase high‐entropy alloys (DPHEAs) exhibit superior strength‐ductility synergy compared to single‐phase counterparts, with properties strongly governed by phase fraction. This necessitates robust quantitative phase prediction, as most prior studies remain qualitative. In this study, we develop and evaluate two complementary frameworks for quantitative phase prediction in DPHEAs: a threshold‐based approach and a machine learning (ML) approach. Both methods incorporate key descriptors of electronic structure and atomic size mismatch, including valence electron concentration (VEC), atomic size difference (δ), d‐orbital energy level (Md), and a newly introduced critical mismatch factor (δ c ). Amongst the threshold‐based approach, VEC + δ c showed the highest accuracy (81%), while in the ML approach, the random forest (RF) achieved 88% accuracy. The Md and VEC have similar predictive capability within the framework of threshold‐based modeling, owing to the high linear correlation between VEC and Md (Pearson coefficient of 0.97). Whereas δ c , which shows minimal correlation with electronic descriptors, emerged as the dominant parameter in threshold‐based modeling. In contrast, feature importance analysis from the RF regression identified Md as the dominant predictor, surpassing the commonly used VEC. The study demonstrated that electronic structure descriptors and atomic mismatch measures are complementary in nature for reliable phase prediction.
与单相合金相比,双相高熵合金(DPHEAs)表现出优越的强度-延展性协同作用,其性能受相分数的强烈影响。这需要可靠的定量相位预测,因为大多数先前的研究仍然是定性的。在本研究中,我们开发并评估了DPHEAs中定量相位预测的两个互补框架:基于阈值的方法和机器学习(ML)方法。这两种方法都包含了电子结构和原子尺寸失配的关键描述符,包括价电子浓度(VEC)、原子尺寸差(δ)、d轨道能级(Md)和新引入的临界失配因子(δ c)。在基于阈值的方法中,VEC + δ c的准确率最高(81%),而在ML方法中,随机森林(RF)的准确率达到88%。在基于阈值的建模框架内,由于VEC和Md之间的高度线性相关(Pearson系数为0.97),Md和VEC具有相似的预测能力。而δ c与电子描述符的相关性最小,在基于阈值的建模中成为主导参数。相比之下,来自RF回归的特征重要性分析将Md确定为主要预测因子,超过了常用的VEC。研究表明,为了实现可靠的相位预测,电子结构描述子和原子失配测量在本质上是互补的。
{"title":"Effects of the Electron Concentration, d‐Orbital Energy Level, and Atomic Mismatch on Quantitative Phase Prediction in Complex Concentrated Alloys (CCAs): Empirical Criteria and Machine Learning Insights","authors":"Ayush Sourav, Ankit Singh Negi, Shanmugasundaram Thangaraju","doi":"10.1002/adts.202501736","DOIUrl":"https://doi.org/10.1002/adts.202501736","url":null,"abstract":"Dual‐phase high‐entropy alloys (DPHEAs) exhibit superior strength‐ductility synergy compared to single‐phase counterparts, with properties strongly governed by phase fraction. This necessitates robust quantitative phase prediction, as most prior studies remain qualitative. In this study, we develop and evaluate two complementary frameworks for quantitative phase prediction in DPHEAs: a threshold‐based approach and a machine learning (ML) approach. Both methods incorporate key descriptors of electronic structure and atomic size mismatch, including valence electron concentration (VEC), atomic size difference (δ), d‐orbital energy level (Md), and a newly introduced critical mismatch factor (δ <jats:sub>c</jats:sub> ). Amongst the threshold‐based approach, VEC + δ <jats:sub>c</jats:sub> showed the highest accuracy (81%), while in the ML approach, the random forest (RF) achieved 88% accuracy. The Md and VEC have similar predictive capability within the framework of threshold‐based modeling, owing to the high linear correlation between VEC and Md (Pearson coefficient of 0.97). Whereas δ <jats:sub>c</jats:sub> , which shows minimal correlation with electronic descriptors, emerged as the dominant parameter in threshold‐based modeling. In contrast, feature importance analysis from the RF regression identified Md as the dominant predictor, surpassing the commonly used VEC. The study demonstrated that electronic structure descriptors and atomic mismatch measures are complementary in nature for reliable phase prediction.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"36 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling Numerical Solutions of Zeldovich Model Using Collocation Method via Fourth‐Order Uniform Hyperbolic Polynomial B‐Spline 利用四阶一致双曲多项式B样条配点法揭示Zeldovich模型的数值解
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-06 DOI: 10.1002/adts.202501349
Berat Karaagac, Kolade M. Owolabi, Alaattin Esen
This study presents a numerical approach to the Zeldovich model using a fourth‐order uniform hyperbolic polynomial B‐spline collocation method. The Zeldovich model, relevant in combustion theory, describes flame propagation, thermal explosions, and detonation phenomena. In the proposed scheme, the time derivative is discretized with a finite difference method, spatial derivatives are approximated using the Crank–Nicolson method, and the nonlinear terms are linearized via the Rubin–Graves technique. The resulting system of algebraic equations satisfies the prescribed boundary conditions and is solved to obtain approximate solutions. Stability is established through von Neumann analysis, while accuracy and convergence are evaluated against exact solutions using error norms and convergence rates. The results demonstrate that the method captures the nonlinear dynamics of the Zeldovich equation with high accuracy and stability, providing a streamlined and efficient alternative for its numerical treatment.
本文提出了一种采用四阶均匀双曲多项式B样条配点法求解Zeldovich模型的数值方法。与燃烧理论相关的泽尔多维奇模型描述了火焰传播、热爆炸和爆轰现象。在该方案中,时间导数用有限差分法离散化,空间导数用Crank-Nicolson方法逼近,非线性项用Rubin-Graves技术线性化。所得到的代数方程组满足规定的边界条件,求解得到近似解。稳定性是通过冯·诺依曼分析建立的,而准确性和收敛性是利用误差范数和收敛率对精确解进行评估的。结果表明,该方法能够准确、稳定地捕捉Zeldovich方程的非线性动力学,为Zeldovich方程的数值处理提供了一种简化、高效的方法。
{"title":"Unveiling Numerical Solutions of Zeldovich Model Using Collocation Method via Fourth‐Order Uniform Hyperbolic Polynomial B‐Spline","authors":"Berat Karaagac, Kolade M. Owolabi, Alaattin Esen","doi":"10.1002/adts.202501349","DOIUrl":"https://doi.org/10.1002/adts.202501349","url":null,"abstract":"This study presents a numerical approach to the Zeldovich model using a fourth‐order uniform hyperbolic polynomial B‐spline collocation method. The Zeldovich model, relevant in combustion theory, describes flame propagation, thermal explosions, and detonation phenomena. In the proposed scheme, the time derivative is discretized with a finite difference method, spatial derivatives are approximated using the Crank–Nicolson method, and the nonlinear terms are linearized via the Rubin–Graves technique. The resulting system of algebraic equations satisfies the prescribed boundary conditions and is solved to obtain approximate solutions. Stability is established through von Neumann analysis, while accuracy and convergence are evaluated against exact solutions using error norms and convergence rates. The results demonstrate that the method captures the nonlinear dynamics of the Zeldovich equation with high accuracy and stability, providing a streamlined and efficient alternative for its numerical treatment.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"26 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning‐Driven Modeling for Thermal Runaway Warning During Lithium‐Ion Battery Charging in Electric Vehicles 电动汽车锂离子电池充电过程中热失控预警的深度学习驱动建模
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-05 DOI: 10.1002/adts.202501438
Chengyang Liang, Dexin Gao, Yuanming Cheng, JiaQi Zhang, Qing Yang
Regarding the threat posed by lithium‐ion battery charging thermal runaway to electric vehicle (EV) safety applications, this paper proposes a Q‐learning optimized multimodal deep learning framework, and based on this framework, further constructs a lithium‐ion battery charging temperature prediction model for EVs. By integrating the local feature extraction capability of Convolutional Neural Networks (CNN), the temporal memory characteristics of Long Short‐Term Memory networks (LSTM), and the temporal modeling advantages of Temporal Convolutional Networks (TCN), the framework employs a Q‐learning algorithm to optimize network weights, ultimately resulting in the formation of the EV lithium‐ion battery charging temperature prediction model (QCLT) with high‐precision prediction capabilities. Experiments selected highly correlated parameters in EV charging through Pearson correlation coefficient as inputs, and validated the model using charging data from both NCM (Nickel‐Cobalt‐Manganese) and LFP (Lithium Iron Phosphate) lithium batteries. Comparative results showed that the QCLT model demonstrated superior prediction accuracy over other benchmark models. Furthermore, dynamic warning thresholds were established using the sliding window method, with additional validation through thermal runaway data under varying ambient temperatures. Constructed based on the aforementioned multimodal deep learning framework, the QCLT model can effectively predict abnormal temperature residual variations, issuing timely warning signals before thermal runaway occurs. This provides a critical time window for implementing safety protection measures, thereby reducing accident risks.
针对锂离子电池充电热失控对电动汽车安全应用的威胁,提出了一种Q - learning优化的多模态深度学习框架,并在此框架的基础上进一步构建了电动汽车锂离子电池充电温度预测模型。该框架通过综合卷积神经网络(CNN)的局部特征提取能力、长短期记忆网络(LSTM)的时间记忆特性以及时间卷积网络(TCN)的时间建模优势,采用Q学习算法优化网络权重,最终形成具有高精度预测能力的电动汽车锂离子电池充电温度预测模型(QCLT)。实验通过Pearson相关系数选择电动汽车充电中高度相关的参数作为输入,并使用NCM(镍-钴-锰)和LFP(磷酸铁锂)锂电池的充电数据对模型进行验证。对比结果表明,QCLT模型的预测精度优于其他基准模型。此外,采用滑动窗口法建立了动态预警阈值,并通过不同环境温度下的热失控数据进行了验证。基于上述多模态深度学习框架构建的QCLT模型能够有效预测温度残差异常变化,在热失控发生前及时发出预警信号。这为实施安全保护措施提供了一个关键的时间窗口,从而降低事故风险。
{"title":"Deep Learning‐Driven Modeling for Thermal Runaway Warning During Lithium‐Ion Battery Charging in Electric Vehicles","authors":"Chengyang Liang, Dexin Gao, Yuanming Cheng, JiaQi Zhang, Qing Yang","doi":"10.1002/adts.202501438","DOIUrl":"https://doi.org/10.1002/adts.202501438","url":null,"abstract":"Regarding the threat posed by lithium‐ion battery charging thermal runaway to electric vehicle (EV) safety applications, this paper proposes a Q‐learning optimized multimodal deep learning framework, and based on this framework, further constructs a lithium‐ion battery charging temperature prediction model for EVs. By integrating the local feature extraction capability of Convolutional Neural Networks (CNN), the temporal memory characteristics of Long Short‐Term Memory networks (LSTM), and the temporal modeling advantages of Temporal Convolutional Networks (TCN), the framework employs a Q‐learning algorithm to optimize network weights, ultimately resulting in the formation of the EV lithium‐ion battery charging temperature prediction model (QCLT) with high‐precision prediction capabilities. Experiments selected highly correlated parameters in EV charging through Pearson correlation coefficient as inputs, and validated the model using charging data from both NCM (Nickel‐Cobalt‐Manganese) and LFP (Lithium Iron Phosphate) lithium batteries. Comparative results showed that the QCLT model demonstrated superior prediction accuracy over other benchmark models. Furthermore, dynamic warning thresholds were established using the sliding window method, with additional validation through thermal runaway data under varying ambient temperatures. Constructed based on the aforementioned multimodal deep learning framework, the QCLT model can effectively predict abnormal temperature residual variations, issuing timely warning signals before thermal runaway occurs. This provides a critical time window for implementing safety protection measures, thereby reducing accident risks.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"602 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable Artificial Neural Networks for Band Gap Prediction in 2D Hybrid Organic–Inorganic Perovskites 二维杂化有机-无机钙钛矿带隙预测的可解释人工神经网络
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-03 DOI: 10.1002/adts.202500902
Jian Chen, Jianwei Wei, Kexin Chen, Yaohui Yin, Ai Wang, Chao Xin
Two-dimensional hybrid organic–inorganic perovskites (2D-HOIPs) possess remarkable photoelectric properties, including strong light absorption, high electrical conductivity, and long carrier lifetimes, making them promising candidates for optoelectronic applications. This study aims to accurately predict their band gaps using machine learning (ML) to identify high-performance 2D-HOIPs. A total of 354 data points are collected from the HHPMDB database, and 32 compositional and structural features are selected via recursive feature elimination with fivefold cross-validation. An Artificial Neural Network (ANN) model is developed, achieving an excellent predictive performance with an R2 of 0.926. Shapley Additive Explanations (SHAP) analysis is employed to interpret feature contributions to the band gap. We compared the predicted values from our models with those calculated using Generalized Gradient Approximation (GGA), ensuring an error range of approximately 0.2 eV, thereby confirming the accuracy of our models. Additionally, comparisons between Perdew–Burke–Ernzerhof (PBE) and High Local Exchange 2016 (HLE16) band gaps further confirmed model accuracy. This approach enables rapid and cost-effective prediction of the 2D-HOIP band gap.
二维杂化有机-无机钙钛矿(2D-HOIPs)具有优异的光电性能,包括强光吸收、高导电性和长载流子寿命,使其成为光电应用的有希望的候选者。本研究旨在使用机器学习(ML)准确预测其带隙,以识别高性能2d - hoip。从HHPMDB数据库中共收集354个数点,通过递归特征消去和五重交叉验证筛选出32个组成和结构特征。建立了人工神经网络(ANN)模型,取得了良好的预测效果,R2为0.926。采用Shapley加性解释(SHAP)分析来解释特征对带隙的贡献。我们将我们的模型预测值与使用广义梯度近似(GGA)计算的预测值进行了比较,确保误差范围约为0.2 eV,从而证实了我们模型的准确性。此外,perdu - burke - ernzerhof (PBE)和High Local Exchange 2016 (HLE16)带隙之间的比较进一步证实了模型的准确性。这种方法能够快速、经济地预测2D-HOIP带隙。
{"title":"Interpretable Artificial Neural Networks for Band Gap Prediction in 2D Hybrid Organic–Inorganic Perovskites","authors":"Jian Chen, Jianwei Wei, Kexin Chen, Yaohui Yin, Ai Wang, Chao Xin","doi":"10.1002/adts.202500902","DOIUrl":"https://doi.org/10.1002/adts.202500902","url":null,"abstract":"Two-dimensional hybrid organic–inorganic perovskites (2D-HOIPs) possess remarkable photoelectric properties, including strong light absorption, high electrical conductivity, and long carrier lifetimes, making them promising candidates for optoelectronic applications. This study aims to accurately predict their band gaps using machine learning (ML) to identify high-performance 2D-HOIPs. A total of 354 data points are collected from the HHPMDB database, and 32 compositional and structural features are selected via recursive feature elimination with fivefold cross-validation. An Artificial Neural Network (ANN) model is developed, achieving an excellent predictive performance with an R<sup>2</sup> of 0.926. Shapley Additive Explanations (SHAP) analysis is employed to interpret feature contributions to the band gap. We compared the predicted values from our models with those calculated using Generalized Gradient Approximation (GGA), ensuring an error range of approximately 0.2 eV, thereby confirming the accuracy of our models. Additionally, comparisons between Perdew–Burke–Ernzerhof (PBE) and High Local Exchange 2016 (HLE16) band gaps further confirmed model accuracy. This approach enables rapid and cost-effective prediction of the 2D-HOIP band gap.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"247 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Ligand–Receptor Dynamics: Comparative Analysis of Catecholamines, L‐DOPA, and Epinine Binding to the D 2 Dopamine Receptor 探索配体-受体动力学:儿茶酚胺、L -多巴和肾上腺素与d2多巴胺受体结合的比较分析
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-12-02 DOI: 10.1002/adts.202501486
Bhabesh Baro, Biplab Sarkar
The receptor–ligand interactions are crucial for understanding the mechanisms of biological regulation and these interactions give a theoretical basis for the design and discovery of new drug targets. Understanding the molecular interactions between D 2 dopamine receptor and dopamine‐related analogues is essential for designing effective therapeutics. In this study, we performed a comprehensive computational investigation of the binding interactions between D 2 R and a set of catecholamines (dopamine, adrenaline, and noradrenaline) along with L‐DOPA and epinine, structurally related analogues with pharmacological significance. Molecular docking was carried out to predict binding poses and affinities, followed by molecular dynamics (MD) simulations to assess the stability and conformational dynamics of the ligand‐receptor complexes. Binding free energy using the MM‐PBSA method, NCIPLOT, QTAIM and SAPT energy decomposition are carried out to provide quantitative insights into ligand binding strengths. The results indicated that L‐DOPA exhibits the most stable interaction with D 2 R, forming persistent hydrogen bonds and hydrophobic contacts within the receptor's orthosteric binding site.
受体-配体相互作用对于理解生物调控机制至关重要,这些相互作用为设计和发现新的药物靶点提供了理论基础。了解d2多巴胺受体和多巴胺相关类似物之间的分子相互作用对于设计有效的治疗方法至关重要。在这项研究中,我们对d2 R与一组儿茶酚胺(多巴胺、肾上腺素和去甲肾上腺素)以及L‐DOPA和肾上腺素之间的结合相互作用进行了全面的计算研究,这些结构相关的类似物具有药理意义。进行分子对接以预测结合姿态和亲和力,然后进行分子动力学(MD)模拟以评估配体-受体复合物的稳定性和构象动力学。结合自由能使用MM‐PBSA方法,NCIPLOT, QTAIM和SAPT能量分解进行,以提供配体结合强度的定量见解。结果表明,L‐DOPA与d2r的相互作用最稳定,在受体的正位结合位点形成持久的氢键和疏水接触。
{"title":"Exploring Ligand–Receptor Dynamics: Comparative Analysis of Catecholamines, L‐DOPA, and Epinine Binding to the D 2 Dopamine Receptor","authors":"Bhabesh Baro, Biplab Sarkar","doi":"10.1002/adts.202501486","DOIUrl":"https://doi.org/10.1002/adts.202501486","url":null,"abstract":"The receptor–ligand interactions are crucial for understanding the mechanisms of biological regulation and these interactions give a theoretical basis for the design and discovery of new drug targets. Understanding the molecular interactions between D <jats:sub>2</jats:sub> dopamine receptor and dopamine‐related analogues is essential for designing effective therapeutics. In this study, we performed a comprehensive computational investigation of the binding interactions between D <jats:sub>2</jats:sub> R and a set of catecholamines (dopamine, adrenaline, and noradrenaline) along with L‐DOPA and epinine, structurally related analogues with pharmacological significance. Molecular docking was carried out to predict binding poses and affinities, followed by molecular dynamics (MD) simulations to assess the stability and conformational dynamics of the ligand‐receptor complexes. Binding free energy using the MM‐PBSA method, NCIPLOT, QTAIM and SAPT energy decomposition are carried out to provide quantitative insights into ligand binding strengths. The results indicated that L‐DOPA exhibits the most stable interaction with D <jats:sub>2</jats:sub> R, forming persistent hydrogen bonds and hydrophobic contacts within the receptor's orthosteric binding site.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"1 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Theory and Simulations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1