首页 > 最新文献

Advanced Theory and Simulations最新文献

英文 中文
Optical Simulations of Nanotextured All-Perovskite Tandem Solar Cells 纳米挤压全超长晶串联太阳能电池的光学模拟
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-24 DOI: 10.1002/adts.202400724
Klaus Jäger, Alvaro Tejada, Sebastian Berwig, Martin Hammerschmidt, Philipp Tockhorn, Steve Albrecht, Christiane Becker
This numerical study investigates, how textures at various locations of all-perovskite tandem solar cells affect their optical performance. For this, hexagonal sinusoidal textures with 750 nm period and aspect ratios (height-to-period) of 27% (moderate) and 54% (pronounced) are considered. The optical simulations are performed with the finite element method and an algorithm to correct for the thick glass superstrate. The complex refractive index data of the wide-bandgap (WBG) and narrow-bandgap (NBG) perovskites with spectroscopic ellipsometry is determined. Texturing between the glass superstrate and the WBG perovskite top cell has an antireflective effect across the whole wavelength region. In contrast, texturing between the WBG perovskite top cell and the NBG perovskite bottom cell has no additional effect for a moderate texture but leads to light trapping in the NBG perovskite for a pronounced texture. Moderate texturing between the NBG perovskite absorber and the metal back contact leads to light trapping in the NBG perovskite but also excites surface plasmons in the copper back contact. Dielectric interlayers between the NBG perovskite and the metal back contact can reduce the plasmonic absorption losses. Texturing potentially allows to increase the current-matched short-circuit current density beyond 17 mA <span data-altimg="/cms/asset/546d7dc4-f86b-4a59-ac23-1b39a0220b53/adts202400724-math-0001.png"></span><mjx-container ctxtmenu_counter="76" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202400724-math-0001.png"><mjx-semantics><mjx-msup data-semantic-children="0,3" data-semantic- data-semantic-role="unknown" data-semantic-speech="c m Superscript negative 2" data-semantic-type="superscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mrow data-semantic-annotation="clearspeak:simple" data-semantic-children="2" data-semantic-content="1" data-semantic- data-semantic-parent="4" data-semantic-role="negative" data-semantic-type="prefixop" size="s"><mjx-mo data-semantic- data-semantic-operator="prefixop,−" data-semantic-parent="3" data-semantic-role="subtraction" data-semantic-type="operator" rspace="1"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:25130390:media:adts202400724:adts202400724-math-0001" display="inline" location="graphic/adts202400724-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msu
本数值研究探讨了全长晶叠层太阳能电池不同位置的纹理如何影响其光学性能。为此,我们考虑了周期为 750 nm、长宽比(高度与周期之比)为 27%(适中)和 54%(明显)的六边形正弦纹理。光学模拟采用有限元法和厚玻璃基板校正算法进行。利用光谱椭偏仪确定了宽带隙(WBG)和窄带隙(NBG)包晶石的复折射率数据。玻璃基板和 WBG 包晶顶部电池之间的纹理在整个波长区域都具有减反射效果。相比之下,WBG 包晶顶部电池和 NBG 包晶底部电池之间的纹理如果纹理适中,则不会产生额外效果,但如果纹理明显,则会导致光在 NBG 包晶中捕获。NBG 包晶吸收体和金属背触点之间的中等纹理会导致光在 NBG 包晶中捕获,但也会激发铜背触点的表面等离子体。NBG 包晶和金属背触点之间的介质夹层可以减少等离子吸收损耗。纹理设计有可能将电流匹配短路电流密度提高到 17 mA cm-2${rm cm}^{-2}$以上。
{"title":"Optical Simulations of Nanotextured All-Perovskite Tandem Solar Cells","authors":"Klaus Jäger, Alvaro Tejada, Sebastian Berwig, Martin Hammerschmidt, Philipp Tockhorn, Steve Albrecht, Christiane Becker","doi":"10.1002/adts.202400724","DOIUrl":"https://doi.org/10.1002/adts.202400724","url":null,"abstract":"This numerical study investigates, how textures at various locations of all-perovskite tandem solar cells affect their optical performance. For this, hexagonal sinusoidal textures with 750 nm period and aspect ratios (height-to-period) of 27% (moderate) and 54% (pronounced) are considered. The optical simulations are performed with the finite element method and an algorithm to correct for the thick glass superstrate. The complex refractive index data of the wide-bandgap (WBG) and narrow-bandgap (NBG) perovskites with spectroscopic ellipsometry is determined. Texturing between the glass superstrate and the WBG perovskite top cell has an antireflective effect across the whole wavelength region. In contrast, texturing between the WBG perovskite top cell and the NBG perovskite bottom cell has no additional effect for a moderate texture but leads to light trapping in the NBG perovskite for a pronounced texture. Moderate texturing between the NBG perovskite absorber and the metal back contact leads to light trapping in the NBG perovskite but also excites surface plasmons in the copper back contact. Dielectric interlayers between the NBG perovskite and the metal back contact can reduce the plasmonic absorption losses. Texturing potentially allows to increase the current-matched short-circuit current density beyond 17 mA &lt;span data-altimg=\"/cms/asset/546d7dc4-f86b-4a59-ac23-1b39a0220b53/adts202400724-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"76\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/adts202400724-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-msup data-semantic-children=\"0,3\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"c m Superscript negative 2\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: 0.363em;\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2\" data-semantic-content=\"1\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msup&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400724:adts202400724-math-0001\" display=\"inline\" location=\"graphic/adts202400724-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;msu","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"1 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Analysis on the Use of Carbon Nanostructures as Interlayers to Perovskite Solar Cells Using SCAPS‐1D 利用 SCAPS-1D 将碳纳米结构用作过氧化物太阳能电池中间层的数值分析
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-17 DOI: 10.1002/adts.202400771
Wisly Fidel, Guido Perrin, Ikram Anefnaf, Richard K Koech, Dieuseul Prédélus, Nicole Doumit, Jacques Botsoa, Conchi O. Ania, Esidor Ntsoenzok
Despite the numerous efforts to optimize the performance of perovskite solar cells (PSCs), challenges persist. Carbon materials are promising candidates for this purpose, but identifying the most suitable carbon material and understanding its role in the PSC among the wide family of carbons remains a challenging task. In this study, SCAPS‐1D software is employed to optimize the use of carbon materials as interlayers to PSCs. The best configuration of the carbon interlayer and the required physicochemical properties of the carbon materials is identified for improved performance. The simulations show that the insertion of thin carbon interlayers of adequate features in n‐i‐p stacked cells (FTO/TiO2/MAPbI3/HTL/Ni) can increase the efficiency of the resulting PSCs by over 2.3 %, while significantly improving the open‐circuit voltage and the fill factor. These results underline that those carbon materials with optical bandgaps ranging from 3 to 3.5 eV offer the best performance as an interlayer to the hole tranport layer, with negligible impact of the thickness of the interlayer. This contribution offers a novel perspective on the use of carbon materials in PSCs and provides new insights into the understanding of the role of carbon materials as interlayers in PSCs.
尽管为优化过氧化物太阳能电池(PSC)的性能做出了许多努力,但挑战依然存在。碳材料是很有前途的候选材料,但从众多碳材料中找出最合适的碳材料并了解其在 PSC 中的作用仍然是一项具有挑战性的任务。本研究采用 SCAPS-1D 软件来优化碳材料作为 PSC 夹层的使用。确定了碳夹层的最佳配置和碳材料所需的物理化学特性,以提高性能。模拟结果表明,在 ni-i-p 叠层电池(FTO/TiO2/MAPbI3/HTL/Ni)中插入具有适当特征的薄碳夹层,可将所产生的 PSC 的效率提高 2.3% 以上,同时显著提高开路电压和填充因子。这些结果表明,光带隙在 3 至 3.5 eV 之间的碳材料作为空穴传输层的中间层具有最佳性能,中间层厚度的影响可以忽略不计。这篇论文为在 PSC 中使用碳材料提供了一个新的视角,并为理解碳材料在 PSC 中作为中间层的作用提供了新的见解。
{"title":"Numerical Analysis on the Use of Carbon Nanostructures as Interlayers to Perovskite Solar Cells Using SCAPS‐1D","authors":"Wisly Fidel, Guido Perrin, Ikram Anefnaf, Richard K Koech, Dieuseul Prédélus, Nicole Doumit, Jacques Botsoa, Conchi O. Ania, Esidor Ntsoenzok","doi":"10.1002/adts.202400771","DOIUrl":"https://doi.org/10.1002/adts.202400771","url":null,"abstract":"Despite the numerous efforts to optimize the performance of perovskite solar cells (PSCs), challenges persist. Carbon materials are promising candidates for this purpose, but identifying the most suitable carbon material and understanding its role in the PSC among the wide family of carbons remains a challenging task. In this study, SCAPS‐1D software is employed to optimize the use of carbon materials as interlayers to PSCs. The best configuration of the carbon interlayer and the required physicochemical properties of the carbon materials is identified for improved performance. The simulations show that the insertion of thin carbon interlayers of adequate features in n‐i‐p stacked cells (FTO/TiO<jats:sub>2</jats:sub>/MAPbI<jats:sub>3</jats:sub>/HTL/Ni) can increase the efficiency of the resulting PSCs by over 2.3 %, while significantly improving the open‐circuit voltage and the fill factor. These results underline that those carbon materials with optical bandgaps ranging from 3 to 3.5 eV offer the best performance as an interlayer to the hole tranport layer, with negligible impact of the thickness of the interlayer. This contribution offers a novel perspective on the use of carbon materials in PSCs and provides new insights into the understanding of the role of carbon materials as interlayers in PSCs.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"64 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elastic Wave Propagation in 2D Carbon Nano‐Onion Lattices 二维碳纳米洋葱晶格中的弹性波传播
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-17 DOI: 10.1002/adts.202400444
Reza Lashani, Esmaeal Ghavanloo
This study presents a simple analytical model to investigate wave propagation in 2D carbon nano‐onions (CNOs) and nitrogen‐doped carbon nano‐onions (N‐CNOs) lattices. Furthermore, the dispersion relationships of the waves and bandgaps in these lattices are derived based on Bloch's theorem. The CNOs and N‐CNOs lattices are modeled as infinite 2D mass‐in‐mass structures accurately assembled using linear springs. The Lennard–Jones potential energy is employed to obtain equivalent spring constants. A key finding of this research is the identification of bandgaps within all lattice structures, signifying regions where wave propagation is prohibited. The existence of these bandgaps offers potential for the advancement of adjustable nano‐scale metamaterials.
本研究提出了一个简单的分析模型,用于研究二维纳米碳离子(CNOs)和掺氮纳米碳离子(N-CNOs)晶格中的波传播。此外,还根据布洛赫定理推导出了这些晶格中波和带隙的色散关系。CNOs 和 N-CNOs 晶格被模拟为使用线性弹簧精确组装的无限二维质中质结构。利用伦纳德-琼斯势能获得等效弹簧常数。这项研究的一个重要发现是在所有晶格结构中都发现了带隙,这标志着禁止波传播的区域。这些带隙的存在为可调纳米级超材料的发展提供了潜力。
{"title":"Elastic Wave Propagation in 2D Carbon Nano‐Onion Lattices","authors":"Reza Lashani, Esmaeal Ghavanloo","doi":"10.1002/adts.202400444","DOIUrl":"https://doi.org/10.1002/adts.202400444","url":null,"abstract":"This study presents a simple analytical model to investigate wave propagation in 2D carbon nano‐onions (CNOs) and nitrogen‐doped carbon nano‐onions (N‐CNOs) lattices. Furthermore, the dispersion relationships of the waves and bandgaps in these lattices are derived based on Bloch's theorem. The CNOs and N‐CNOs lattices are modeled as infinite 2D mass‐in‐mass structures accurately assembled using linear springs. The Lennard–Jones potential energy is employed to obtain equivalent spring constants. A key finding of this research is the identification of bandgaps within all lattice structures, signifying regions where wave propagation is prohibited. The existence of these bandgaps offers potential for the advancement of adjustable nano‐scale metamaterials.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"30 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring Diversified Peripheral Anchor Groups in Spirofluorene‐Dithiolane‐Based Hole Transporting Materials for Efficient Organic and Perovskite Solar Cells from First‐Principle 从第一原理出发,在螺芴-二硫环戊烷基空穴传输材料中为高效有机和包光体太阳能电池定制多样化的外围锚基
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-17 DOI: 10.1002/adts.202400773
Rida Fatima, Nabeel Shahzad, Tahreem Fatima, Sonia Perveen, Ashraf M. M. Abdelbacki, Kai Wang, Javed Iqbal
This quantum mechanical approach recommends push–pull molecular engineering to fabricate hole‐transporting materials (HTMs) for photovoltaic cells. It integrates acceptor moieties via thiophene to fluorene core, resulting in five novel HTMs (SFD‐1 to SFD‐5). The results exhibit that derivative HTMs show excellent coherence in excitation, dispersion, and transportation of charge carriers, ensuring robust hole mobility. The anchor moieties functionalized HTMs unveil excellent band alignment with perovskite with fitting HOMO energy levels (−4.93–−5.35 eV), less optical absorption in visible portion ( < 520). This acceptor integration has improved the hole mobility in derivatives, accredited to the smaller hole reorganization energy (0.14–0.68 eV), and greater hole transfer integral (0.22–0.33 eV). The transition density matrix analysis exhibited robust electronic coupling, subtler charge carrier overlapping and greater charge transfer length (7.48–13.73 Å). This resulted in an excellent upsurge in intrinsic charge transference (70.75–92.70%) and smaller exciton binding energy, leading to easier exciton dissociation, and fewer recombination fatalities. However, an adequate variation in dipole moment (4.04 D to 16.34 D) and Gibbs solvation‐free energy (−18.06 to −21.89 kcal mol−1) ensures facile film formation and processability. In conclusion, this approach recommends these flourene‐based HTMs are highly desireable for forthcoming solar cell technology.
这种量子力学方法建议采用推拉式分子工程来制造用于光伏电池的空穴传输材料(HTMs)。它通过噻吩将受体分子整合到芴核心,从而产生了五种新型 HTM(SFD-1 至 SFD-5)。研究结果表明,衍生 HTM 在电荷载流子的激发、分散和传输方面表现出极佳的一致性,确保了空穴的稳健迁移。锚基团官能化的 HTMs 与包晶具有良好的能带一致性,其 HOMO 能级(-4.93-5.35 eV)与包晶相匹配,在可见光部分(< 520)的光吸收较少。由于空穴重组能(0.14-0.68 eV)和空穴转移积分(0.22-0.33 eV)较小,这种受体集成提高了衍生物中的空穴迁移率。过渡密度矩阵分析表明,衍生物具有强大的电子耦合、更微妙的电荷载流子重叠和更大的电荷转移长度(7.48-13.73 Å)。这使得本征电荷转移量大幅增加(70.75-92.70%),激子结合能更小,从而使激子解离更容易,重组致死率更低。然而,偶极矩(4.04 D 至 16.34 D)和无吉布斯溶解能(-18.06 至 -21.89 kcal mol-1)的充分变化确保了薄膜的形成和加工的简便性。总之,这种方法推荐这些基于氟烯的 HTMs 非常适用于未来的太阳能电池技术。
{"title":"Tailoring Diversified Peripheral Anchor Groups in Spirofluorene‐Dithiolane‐Based Hole Transporting Materials for Efficient Organic and Perovskite Solar Cells from First‐Principle","authors":"Rida Fatima, Nabeel Shahzad, Tahreem Fatima, Sonia Perveen, Ashraf M. M. Abdelbacki, Kai Wang, Javed Iqbal","doi":"10.1002/adts.202400773","DOIUrl":"https://doi.org/10.1002/adts.202400773","url":null,"abstract":"This quantum mechanical approach recommends push–pull molecular engineering to fabricate hole‐transporting materials (HTMs) for photovoltaic cells. It integrates acceptor moieties via thiophene to fluorene core, resulting in five novel HTMs (SFD‐1 to SFD‐5). The results exhibit that derivative HTMs show excellent coherence in excitation, dispersion, and transportation of charge carriers, ensuring robust hole mobility. The anchor moieties functionalized HTMs unveil excellent band alignment with perovskite with fitting HOMO energy levels (−4.93–−5.35 eV), less optical absorption in visible portion ( &lt; 520). This acceptor integration has improved the hole mobility in derivatives, accredited to the smaller hole reorganization energy (0.14–0.68 eV), and greater hole transfer integral (0.22–0.33 eV). The transition density matrix analysis exhibited robust electronic coupling, subtler charge carrier overlapping and greater charge transfer length (7.48–13.73 Å). This resulted in an excellent upsurge in intrinsic charge transference (70.75–92.70%) and smaller exciton binding energy, leading to easier exciton dissociation, and fewer recombination fatalities. However, an adequate variation in dipole moment (4.04 D to 16.34 D) and Gibbs solvation‐free energy (−18.06 to −21.89 kcal mol<jats:sup>−1</jats:sup>) ensures facile film formation and processability. In conclusion, this approach recommends these flourene‐based HTMs are highly desireable for forthcoming solar cell technology.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Algorithm for Extracting Transmission Spectrum From Band Structure in Low‐Dimensional Systems 从低维系统频带结构中提取传输频谱的高效算法
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-17 DOI: 10.1002/adts.202400801
M. Amir Bazrafshan, Farhad Khoeini, Catherine Stampfl
Aiming at an efficient method to determine the transport properties of a physical system, an effective and accurate band‐counting algorithm is presented to extract the transmission spectrum of a low‐dimensional system, directly from the band structure. This approach is more efficient than Hamiltonian‐dependent formalisms such as the standard Green's function (GF) or the transfer matrix methods. The only constraint of the approach is that the bands should not be mixed, i.e., for each band in the k‐path, there should be a set of eigenvalues. The efficiency of the approach is comparable to that of Green's function method, and it is applicable to any computational approach whose output is a band structure, whether for particles or quasiparticles such as electrons and phonons. Since the transport coefficient is calculated separately for each band, the occurrence of eigenvalues at the same k‐point can be captured by the algorithm. The proposed algorithm will be useful for studying transmission coefficient‐dependent quantities, such as thermoelectric‐related quantities, and also the electric current within the Landauer–Büttiker formalism.
为了采用高效方法确定物理系统的传输特性,本文提出了一种有效而精确的带计数算法,可直接从带结构中提取低维系统的传输谱。这种方法比依赖哈密顿形式的方法(如标准格林函数 (GF) 或传递矩阵方法)更有效。该方法的唯一限制条件是带不应该混杂,即 k 路径中的每个带都应该有一组特征值。该方法的效率与格林函数法不相上下,适用于任何输出为带状结构的计算方法,无论是粒子还是准粒子(如电子和声子)。由于每个能带的输运系数都是单独计算的,因此该算法可以捕捉到同一 k 点出现的特征值。所提出的算法将有助于研究依赖于传输系数的量,如热电相关量,以及兰道尔-比提克形式主义中的电流。
{"title":"Efficient Algorithm for Extracting Transmission Spectrum From Band Structure in Low‐Dimensional Systems","authors":"M. Amir Bazrafshan, Farhad Khoeini, Catherine Stampfl","doi":"10.1002/adts.202400801","DOIUrl":"https://doi.org/10.1002/adts.202400801","url":null,"abstract":"Aiming at an efficient method to determine the transport properties of a physical system, an effective and accurate band‐counting algorithm is presented to extract the transmission spectrum of a low‐dimensional system, directly from the band structure. This approach is more efficient than Hamiltonian‐dependent formalisms such as the standard Green's function (GF) or the transfer matrix methods. The only constraint of the approach is that the bands should not be mixed, i.e., for each band in the <jats:italic>k</jats:italic>‐path, there should be a set of eigenvalues. The efficiency of the approach is comparable to that of Green's function method, and it is applicable to any computational approach whose output is a band structure, whether for particles or quasiparticles such as electrons and phonons. Since the transport coefficient is calculated separately for each band, the occurrence of eigenvalues at the same <jats:italic>k</jats:italic>‐point can be captured by the algorithm. The proposed algorithm will be useful for studying transmission coefficient‐dependent quantities, such as thermoelectric‐related quantities, and also the electric current within the Landauer–Büttiker formalism.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"15 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electro-Thermo-Optical Simulations of Phase-Change GST-SiC Plasmonic Optical Modulator for Telecom Applications 用于电信应用的相变 GST-SiC 质子光调制器的电热光学模拟
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-13 DOI: 10.1002/adts.202400546
Mobina Abbaspour, Mahmoud Nikoufard, Alireza Malek Mohammad
This study proposes a novel plasmonic optical modulator integrating the phase-change material germanium-antimony-tellurium (GST) with a silicon carbide (SiC) waveguide for telecom applications. The design utilizes a 10 nm GST cladding layer and a 290 nm thick, 100 nm wide SiC ridge waveguide, with gold electrodes enabling electrothermal switching of GST between amorphous and crystalline states. Comprehensive simulations spanning optical, electrical-thermal, and opto-thermal domains investigated the modulator's performance. Optical simulations examine the effects of wavelength, ridge width, and GST thickness on effective refractive index, confinement factor, and effective area. Electrical-thermal simulations determines voltage pulse parameters for phase transitions and analyzed temperature distributions. Opto-thermal simulations explored temperature's influence on the effective refractive index during phase transitions. Results demonstrate the modulator's potential, achieving 160 Mb s−1 at 1.55 µm. The SiC-GST integration offers high thermal conductivity, low thermo-optic coefficient, and significant refractive index contrast between GST phases, enabling efficient light modulation for high-performance, compact, energy-efficient optical modulators advancing integrated photonics.
本研究提出了一种新型等离子体光调制器,它将相变材料锗锑碲 (GST) 与碳化硅 (SiC) 波导集成在一起,用于电信应用。该设计采用了 10 nm 的 GST 包层和 290 nm 厚、100 nm 宽的碳化硅脊波导,金电极可实现 GST 在非晶态和结晶态之间的电热切换。横跨光学、电热和光热领域的综合模拟研究了调制器的性能。光学模拟研究了波长、脊宽和 GST 厚度对有效折射率、约束因子和有效面积的影响。电热模拟确定了相变的电压脉冲参数,并分析了温度分布。光热模拟探索了相变过程中温度对有效折射率的影响。结果证明了该调制器的潜力,在 1.55 µm 波长下达到了 160 Mb s-1。SiC-GST 集成具有高热导率、低热光学系数以及 GST 相之间显著的折射率对比,可实现高效的光调制,用于高性能、紧凑型、高能效的光调制器,推动集成光子学的发展。
{"title":"Electro-Thermo-Optical Simulations of Phase-Change GST-SiC Plasmonic Optical Modulator for Telecom Applications","authors":"Mobina Abbaspour, Mahmoud Nikoufard, Alireza Malek Mohammad","doi":"10.1002/adts.202400546","DOIUrl":"https://doi.org/10.1002/adts.202400546","url":null,"abstract":"This study proposes a novel plasmonic optical modulator integrating the phase-change material germanium-antimony-tellurium (GST) with a silicon carbide (SiC) waveguide for telecom applications. The design utilizes a 10 nm GST cladding layer and a 290 nm thick, 100 nm wide SiC ridge waveguide, with gold electrodes enabling electrothermal switching of GST between amorphous and crystalline states. Comprehensive simulations spanning optical, electrical-thermal, and opto-thermal domains investigated the modulator's performance. Optical simulations examine the effects of wavelength, ridge width, and GST thickness on effective refractive index, confinement factor, and effective area. Electrical-thermal simulations determines voltage pulse parameters for phase transitions and analyzed temperature distributions. Opto-thermal simulations explored temperature's influence on the effective refractive index during phase transitions. Results demonstrate the modulator's potential, achieving 160 Mb s<sup>−1</sup> at 1.55 µm. The SiC-GST integration offers high thermal conductivity, low thermo-optic coefficient, and significant refractive index contrast between GST phases, enabling efficient light modulation for high-performance, compact, energy-efficient optical modulators advancing integrated photonics.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"171 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Device Simulation of 25.9% Efficient ZnOxNy/Si Tandem Solar Cell 25.9% 高效 ZnOxNy/Si 串联太阳能电池的器件模拟
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-10 DOI: 10.1002/adts.202400252
Ingvild Bergsbak, Ørnulf Nordseth, Kjetil K. Saxegaard, Vegard S. Olsen, Holger von Wenckstern, Kristin Bergum
The novel, high electron mobility material <span data-altimg="/cms/asset/e9f5e09d-2293-46b4-99bb-9e7dbfc6e7db/adts202400252-math-0002.png"></span><math altimg="urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0002" display="inline" location="graphic/adts202400252-math-0002.png"><semantics><mrow><msub><mi>ZnO</mi><mi>x</mi></msub><msub><mi mathvariant="normal">N</mi><mi>y</mi></msub></mrow>${rm ZnO}_x{rm N}_y$</annotation></semantics></math> has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, <span data-altimg="/cms/asset/92481995-6b5b-42a5-bffc-7cde7bb07e09/adts202400252-math-0003.png"></span><math altimg="urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0003" display="inline" location="graphic/adts202400252-math-0003.png"><semantics><mrow><msub><mi>ZnO</mi><mi>x</mi></msub><msub><mi mathvariant="normal">N</mi><mi>y</mi></msub></mrow>${rm ZnO}_x{rm N}_y$</annotation></semantics></math> can attain sufficiently low carrier concentration to enable <span data-altimg="/cms/asset/7afa9962-d1a2-47e8-a660-f8eeba3b2c78/adts202400252-math-0004.png"></span><math altimg="urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0004" display="inline" location="graphic/adts202400252-math-0004.png"><semantics><mrow><mi>p</mi><mi>n</mi></mrow>$pn$</annotation></semantics></math>-junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the <span data-altimg="/cms/asset/8c93e691-b80b-4b6c-8d9f-ba3ea7f78a58/adts202400252-math-0005.png"></span><math altimg="urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0005" display="inline" location="graphic/adts202400252-math-0005.png"><semantics><mrow><msub><mi>ZnO</mi><mi>x</mi></msub><msub><mi mathvariant="normal">N</mi><mi>y</mi></msub></mrow>${rm ZnO}_x{rm N}_y$</annotation></semantics></math> layer, the tandem cell consists of a <span data-altimg="/cms/asset/20c6372d-403f-4fd9-812b-4fb2557130a0/adts202400252-math-0006.png"></span><math altimg="urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0006" display="inline" location="graphic/adts202400252-math-0006.png"><semantics><mrow><msub><mi>Cu</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow>${rm Cu}_2{rm O}$</annotation></semantics></math> emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, <span data-altimg="/cms/asset/19c2e8e5-6113-4acd-b628-597a9be720bb/adts202400252-math-0007.png"></span><math altimg="urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0007" display="inline" location="graphic/adts202400252-math-0007.png"><semantics><mrow><mi>F</mi><mi>F</mi></mrow>$FF$</annotation></semantics></math>. A <span data-altimg="/cms/asset/b0b1da9a-66e1-4
我们从理论上研究了新型高电子迁移率材料 ZnOxNy${rm ZnO}_x{rm N}_y$,将其用作双端串联太阳能电池的吸收剂。除了高迁移率之外,ZnOxNy${rm ZnO}_x{rm N}_y$ 还能达到足够低的载流子浓度,从而实现 pn$pn$ 结,并且在 1.7 eV 范围内具有可调带隙。因此,它适合与硅基底部电池配对使用。除了 ZnOxNy${rm ZnO}_x{rm N}_y$ 层之外,串联电池还包括一个 Cu2O${rm Cu}_2{rm O}$ 发射器和一个硅异质结底部电池。在顶部电池的发射器和吸收器之间引入了缓冲层,以调节导致填充因子 FF$FF$ 较低的较大价带偏移。缓冲层带隙为 1.5 eV 的 ZnOxNy${rm ZnO}_x{rm N}_y$ 具有最高的功率转换效率 (PCE)。研究的目的是估算 ZnOxNy${rm ZnO}_x{rm N}_y$ 在串联太阳能电池中的最佳性能。评估了电流-电压(J$J$-V$V$)特性对 ZnOxNy${rm ZnO}_x{rm N}_y$ 层的厚度、迁移率和载流子浓度的依赖性,发现在 0.35 μm$umu {rm m}$、250 cm2${rm cm}^2$ Vs-1 和 1016$10^{16}$ cm-3${rm cm}^{-3}$条件下分别能产生最大性能。在这些条件下,该器件在 AM1.5 照明下的 J$J$-V$V$ 参数为:短路电流密度 JSC=17.76$J_{SC}=17.76$ mA cm-2${mathrm{cm}}^{-2}$;开路电压 VOC=1.74$V_{OC}=1.74$ V;FF=83.8%$FF=83.8/%$;PCE=25.9%${rm PCE},=25.9/%$。据悉,这是第一个基于 ZnOxNy${rm ZnO}_x{rm N}_y$ 的器件模拟。
{"title":"Device Simulation of 25.9% Efficient ZnOxNy/Si Tandem Solar Cell","authors":"Ingvild Bergsbak, Ørnulf Nordseth, Kjetil K. Saxegaard, Vegard S. Olsen, Holger von Wenckstern, Kristin Bergum","doi":"10.1002/adts.202400252","DOIUrl":"https://doi.org/10.1002/adts.202400252","url":null,"abstract":"The novel, high electron mobility material &lt;span data-altimg=\"/cms/asset/e9f5e09d-2293-46b4-99bb-9e7dbfc6e7db/adts202400252-math-0002.png\"&gt;&lt;/span&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0002\" display=\"inline\" location=\"graphic/adts202400252-math-0002.png\"&gt;\u0000&lt;semantics&gt;\u0000&lt;mrow&gt;\u0000&lt;msub&gt;\u0000&lt;mi&gt;ZnO&lt;/mi&gt;\u0000&lt;mi&gt;x&lt;/mi&gt;\u0000&lt;/msub&gt;\u0000&lt;msub&gt;\u0000&lt;mi mathvariant=\"normal\"&gt;N&lt;/mi&gt;\u0000&lt;mi&gt;y&lt;/mi&gt;\u0000&lt;/msub&gt;\u0000&lt;/mrow&gt;\u0000${rm ZnO}_x{rm N}_y$&lt;/annotation&gt;\u0000&lt;/semantics&gt;&lt;/math&gt; has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, &lt;span data-altimg=\"/cms/asset/92481995-6b5b-42a5-bffc-7cde7bb07e09/adts202400252-math-0003.png\"&gt;&lt;/span&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0003\" display=\"inline\" location=\"graphic/adts202400252-math-0003.png\"&gt;\u0000&lt;semantics&gt;\u0000&lt;mrow&gt;\u0000&lt;msub&gt;\u0000&lt;mi&gt;ZnO&lt;/mi&gt;\u0000&lt;mi&gt;x&lt;/mi&gt;\u0000&lt;/msub&gt;\u0000&lt;msub&gt;\u0000&lt;mi mathvariant=\"normal\"&gt;N&lt;/mi&gt;\u0000&lt;mi&gt;y&lt;/mi&gt;\u0000&lt;/msub&gt;\u0000&lt;/mrow&gt;\u0000${rm ZnO}_x{rm N}_y$&lt;/annotation&gt;\u0000&lt;/semantics&gt;&lt;/math&gt; can attain sufficiently low carrier concentration to enable &lt;span data-altimg=\"/cms/asset/7afa9962-d1a2-47e8-a660-f8eeba3b2c78/adts202400252-math-0004.png\"&gt;&lt;/span&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0004\" display=\"inline\" location=\"graphic/adts202400252-math-0004.png\"&gt;\u0000&lt;semantics&gt;\u0000&lt;mrow&gt;\u0000&lt;mi&gt;p&lt;/mi&gt;\u0000&lt;mi&gt;n&lt;/mi&gt;\u0000&lt;/mrow&gt;\u0000$pn$&lt;/annotation&gt;\u0000&lt;/semantics&gt;&lt;/math&gt;-junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the &lt;span data-altimg=\"/cms/asset/8c93e691-b80b-4b6c-8d9f-ba3ea7f78a58/adts202400252-math-0005.png\"&gt;&lt;/span&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0005\" display=\"inline\" location=\"graphic/adts202400252-math-0005.png\"&gt;\u0000&lt;semantics&gt;\u0000&lt;mrow&gt;\u0000&lt;msub&gt;\u0000&lt;mi&gt;ZnO&lt;/mi&gt;\u0000&lt;mi&gt;x&lt;/mi&gt;\u0000&lt;/msub&gt;\u0000&lt;msub&gt;\u0000&lt;mi mathvariant=\"normal\"&gt;N&lt;/mi&gt;\u0000&lt;mi&gt;y&lt;/mi&gt;\u0000&lt;/msub&gt;\u0000&lt;/mrow&gt;\u0000${rm ZnO}_x{rm N}_y$&lt;/annotation&gt;\u0000&lt;/semantics&gt;&lt;/math&gt; layer, the tandem cell consists of a &lt;span data-altimg=\"/cms/asset/20c6372d-403f-4fd9-812b-4fb2557130a0/adts202400252-math-0006.png\"&gt;&lt;/span&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0006\" display=\"inline\" location=\"graphic/adts202400252-math-0006.png\"&gt;\u0000&lt;semantics&gt;\u0000&lt;mrow&gt;\u0000&lt;msub&gt;\u0000&lt;mi&gt;Cu&lt;/mi&gt;\u0000&lt;mn&gt;2&lt;/mn&gt;\u0000&lt;/msub&gt;\u0000&lt;mi mathvariant=\"normal\"&gt;O&lt;/mi&gt;\u0000&lt;/mrow&gt;\u0000${rm Cu}_2{rm O}$&lt;/annotation&gt;\u0000&lt;/semantics&gt;&lt;/math&gt; emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, &lt;span data-altimg=\"/cms/asset/19c2e8e5-6113-4acd-b628-597a9be720bb/adts202400252-math-0007.png\"&gt;&lt;/span&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0007\" display=\"inline\" location=\"graphic/adts202400252-math-0007.png\"&gt;\u0000&lt;semantics&gt;\u0000&lt;mrow&gt;\u0000&lt;mi&gt;F&lt;/mi&gt;\u0000&lt;mi&gt;F&lt;/mi&gt;\u0000&lt;/mrow&gt;\u0000$FF$&lt;/annotation&gt;\u0000&lt;/semantics&gt;&lt;/math&gt;. A &lt;span data-altimg=\"/cms/asset/b0b1da9a-66e1-4","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-Principles Calculation of Elastic Properties in LixZn1−xO:Nd3+ Mechanoluminescence Material (Adv. Theory Simul. 9/2024) LixZn1-xO:Nd3+ 机械发光材料弹性特性的第一原理计算(Adv.)
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-10 DOI: 10.1002/adts.202470020
Soichiro Kawana, Kenji Hirata, Yuki Fujio, Tomoki Uchiyama, Chao-Nan Xu

Adding Li to ZnO:Nd3+ based on first-principles calculations reduces the elastic properties such as Young's modulus, bulk modulus, and shear modulus. In the softened LixZn1−xO:Nd3+ system, the introduction of significant strain energy is expected to improve the mechanoluminescence intensity. For further details of this study, see article number 2400099 by Chao-Nan Xu and co-workers.

根据第一原理计算,在 ZnO:Nd3+ 中添加锂会降低弹性特性,如杨氏模量、体模量和剪切模量。在软化的 LixZn1-xO:Nd3+ 系统中,大量应变能的引入有望提高机械发光强度。有关该研究的更多详情,请参阅 Chao-Nan Xu 及其合作者发表的文章 2400099。
{"title":"First-Principles Calculation of Elastic Properties in LixZn1−xO:Nd3+ Mechanoluminescence Material (Adv. Theory Simul. 9/2024)","authors":"Soichiro Kawana,&nbsp;Kenji Hirata,&nbsp;Yuki Fujio,&nbsp;Tomoki Uchiyama,&nbsp;Chao-Nan Xu","doi":"10.1002/adts.202470020","DOIUrl":"https://doi.org/10.1002/adts.202470020","url":null,"abstract":"<p>Adding Li to ZnO:Nd<sup>3+</sup> based on first-principles calculations reduces the elastic properties such as Young's modulus, bulk modulus, and shear modulus. In the softened Li<sub><i>x</i></sub>Zn<sub>1−<i>x</i></sub>O:Nd<sup>3+</sup> system, the introduction of significant strain energy is expected to improve the mechanoluminescence intensity. For further details of this study, see article number 2400099 by Chao-Nan Xu and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 9","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202470020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3 二元稀土三元碲化镉(NdTe3)的结构、弹性、热力学和光电特性的详细第一性原理研究
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-10 DOI: 10.1002/adts.202400528
Tanbin Chowdhury, B. Rahman Rano, Ishtiaque M. Syed, S. H. Naqib

Rare-earth tritellurides (RTe3) are popular for their charge density wave (CDW) phase, magnetotransport properties, and pressure-induced superconducting state among other features. In this literature, Density functional theory is exploited to study various properties of NdTe3. The calculated elastic and thermomechanical parameters, which are hitherto untouched for any RTe3, uncover soft, ductile, highly machinable, and damage-tolerant characteristics, as well as highly anisotropic mechanical behavior of this layered compound. Its thermomechanical properties make it a prospective thermal barrier coating material. Band structure, density of states, Fermi surfaces, and various optical functions of the material are reported. The band structure demonstrates highly directional metallic nature. The highly dispersive bands indicate very low effective charge carrier mass for the in-plane directions. The Fermi surfaces display symmetric pockets, including signs of nesting, bilayer splitting among others, corroborating previous works. The optical spectra expose high reflectivity across the visible region, while absorption is high in the ultraviolet region. Two plasma frequencies are noticed in the optical loss function. The optical conductivity, reflectivity, and absorption reaffirm its metallic properties. The electronic band structure manifests evidence of CDW phase in the ground state.

稀土三碲化物(RTe3)因其电荷密度波(CDW)相、磁传输特性和压力诱导超导状态等特点而广受欢迎。在这篇文献中,密度泛函理论被用来研究 NdTe3 的各种特性。计算得出的弹性和热力学参数是迄今为止任何 RTe3 都未曾涉及的,这些参数揭示了这种层状化合物的柔软、韧性、高度可加工性和耐损伤性,以及高度各向异性的力学行为。它的热机械特性使其有望成为一种热障涂层材料。报告还介绍了该材料的带状结构、态密度、费米面和各种光学功能。带状结构显示出高度定向的金属性质。高色散带表明面内方向的有效电荷载流子质量很低。费米面显示出对称的口袋,包括嵌套、双层分裂等迹象,这与之前的研究成果相吻合。光学光谱显示出整个可见光区域的高反射率,而紫外线区域的高吸收率。在光学损耗函数中发现了两个等离子频率。光导率、反射率和吸收率再次证明了它的金属特性。电子带结构显示出基态的 CDW 相。
{"title":"A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3","authors":"Tanbin Chowdhury,&nbsp;B. Rahman Rano,&nbsp;Ishtiaque M. Syed,&nbsp;S. H. Naqib","doi":"10.1002/adts.202400528","DOIUrl":"10.1002/adts.202400528","url":null,"abstract":"<p>Rare-earth tritellurides (<i>R</i>Te<sub>3</sub>) are popular for their charge density wave (CDW) phase, magnetotransport properties, and pressure-induced superconducting state among other features. In this literature, Density functional theory is exploited to study various properties of NdTe<sub>3</sub>. The calculated elastic and thermomechanical parameters, which are hitherto untouched for any <i>R</i>Te<sub>3</sub>, uncover soft, ductile, highly machinable, and damage-tolerant characteristics, as well as highly anisotropic mechanical behavior of this layered compound. Its thermomechanical properties make it a prospective thermal barrier coating material. Band structure, density of states, Fermi surfaces, and various optical functions of the material are reported. The band structure demonstrates highly directional metallic nature. The highly dispersive bands indicate very low effective charge carrier mass for the in-plane directions. The Fermi surfaces display symmetric pockets, including signs of nesting, bilayer splitting among others, corroborating previous works. The optical spectra expose high reflectivity across the visible region, while absorption is high in the ultraviolet region. Two plasma frequencies are noticed in the optical loss function. The optical conductivity, reflectivity, and absorption reaffirm its metallic properties. The electronic band structure manifests evidence of CDW phase in the ground state.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amino Acid Sorting Based on Bifurcated Nanochannels with Tunable Surface Charge (Adv. Theory Simul. 9/2024) 基于具有可调表面电荷的分叉纳米通道的氨基酸分拣(Adv.)
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-09-10 DOI: 10.1002/adts.202470019
Zhen Zhang, Gensheng Wu, Yin Zhang, Jingjie Sha, Wei Si

The cover image depicts the transfer of biomolecules in double charge-modified nanochannels for efficient targeted sorting of different types of amino acids. This phenomenon is attributed to the generation of opposing electroosmotic fluxes within the different charge-modified nanochannels, which allows amino acids to be efficiently separated and sorted according to their specific charge properties. The central motif symbolizes the periodically switching external electric field. For further information, see article number 2301251 by Wei Si and co-workers.

封面图片描述了生物分子在双电荷改性纳米通道中的转移,从而实现了不同类型氨基酸的高效定向分拣。这种现象归因于不同电荷修饰的纳米通道内产生了相反的电渗流,从而使氨基酸能够根据其特定的电荷特性进行有效的分离和分拣。中央图案象征着周期性切换的外部电场。欲了解更多信息,请参阅 Wei Si 及其合作者发表的第 2301251 号文章。
{"title":"Amino Acid Sorting Based on Bifurcated Nanochannels with Tunable Surface Charge (Adv. Theory Simul. 9/2024)","authors":"Zhen Zhang,&nbsp;Gensheng Wu,&nbsp;Yin Zhang,&nbsp;Jingjie Sha,&nbsp;Wei Si","doi":"10.1002/adts.202470019","DOIUrl":"https://doi.org/10.1002/adts.202470019","url":null,"abstract":"<p>The cover image depicts the transfer of biomolecules in double charge-modified nanochannels for efficient targeted sorting of different types of amino acids. This phenomenon is attributed to the generation of opposing electroosmotic fluxes within the different charge-modified nanochannels, which allows amino acids to be efficiently separated and sorted according to their specific charge properties. The central motif symbolizes the periodically switching external electric field. For further information, see article number 2301251 by Wei Si and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 9","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202470019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Theory and Simulations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1